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Reconnection in Extreme Astrophysical Environments
Arist’s impression of a black hole M87 (EHT) Crab Pulsar (Hubble/Chandra)

See: Uzdenksy in “Magnetic reconnection: Concepts and applications” arXiv:1510.05397 (2016)
1. Coolingis a significant loss mechanism (.01 K T4):
* Modifies partition of magnetic energy between electrons, ions, kinetic
« Leads to cooling instabilities, radiative collapse

2. Radiation: key observational signature in remote environments:
*  Where and when are X-rays produced - localized bursts?
« How does this couple to the reconnection process? (Localized cooling)



Radiatively Cooled Reconnection in the Laboratory

Uzdensky-McKinney model:
» Sweet-Parker with V.u = 0 replaced by

N}~ = Frad
« Radiative collapse for Bremsstrahlung emission

current 2L
layer Uzdensky and McKinney, PoP 2011
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Uzdensky-McKinney model:
» Sweet-Parker with V.u = 0 replaced by

-2 _ P
N}~ = Frad
» Radiative collapse for Bremsstrahlung emission

* Experiments require:
» High density to radiate strongly
+ Plenty of magnetic energy to dissipate
« Sufficient time-scales to see dynamics
* Synchrotron = Bremsstrahlung + Line radiation
* Modify cooling rate through material choice
* No radiation reaction, cooling only
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current 2L
layer Uzdensky and McKinney, PoP 2011

High-energy-density experiments:
Lasers and pulsed-power



Pulsed-power-driven Magnetic Reconnection

Current

=1 to 10 MA,
100 to 300 ns rise time
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Magnetic Reconnection from Double Exploding Wire Arrays

Plasma
Flow

Reconnection X
Layer

Hare et al PRL 2017, PoP 2017, 2018

Wire

N
Central

Conductor
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Exploding wire arrays in parallel:
« Sustained flows (Tgyipe ~ 10 74)

* Quasi-2D geometry
 Collisional (6§ > A rp)

* Inflows: pip ~ Pp ~ Dkin
* No guide field
(but see Thomas Varnish's poster)




Magnetic Reconnection from Double Exploding Wire Arrays

MAGPIE: 1.4 MA, 250 ns rise time
Load goes here
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Magnetic Reconnection from Double Exploding Wire Arrays

MAGPIE: 1.4 MA, 250 nsrise time
Z Machine: 20 MA, 300 ns rise time

n & I%P,qq xn? o« I*

I— ‘ “ Z’s unique capability: strongly
S =, radiatively cooled reconnection
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GORGON MHD simulations

GORGON (J. Chittenden, Imperial) : 3D Eulerian resistive MHD code
with radiation loss and separate ion and electron energy equations

Xyl2: Rp =20 mm, D=30 mm, dy =75 um, N,, = 150, Ip =20 MA, M,zq = 13020

= 1019

2D sims:

50 um resolution
180x90 mm

16 hrs, 256 cores

y [mm]

1017

1015

—-60 -40 -20 0 20 40 60
X [mm]

e Recombinationloss: P,yq = M,54C, 1, Tel/2 (Z?nEZ7Y/T,), with Myqq = 3

* More complex loss models possible!
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Plasmoids and Collapse

250 ns 280 ns 400 ns * Flows collide at mid-plane
* Inflow density rises with current
* Radiative cooling rises with density

* Thermal pressure removed:
layer collapses

Collapse
SMOiI 25 /

20 - >
< _-\\\\
Z 15 -
c
g 10 A
=
Q

5 —

0 = I | I | |

0 100 200 300 400 500 600
t [ns]

jdhare@mit.edu, MR2022 11



Plasmoids and Collapse
250 ns 280 ns 400 ns * Flows collide at mid-plane

* Inflow density rises with current
* Radiative cooling rises with density

* Thermal pressure removed:
layer collapses

Lundquist number variation with radiative cooling

1200
m H apSEd — xy08: Mypy=10 — xy09: My =3
S OI — xy07: Mg =1 —— xy06: Moy =6
e r 1000 A
800 A
=
Q
=T
3 600 -
]
wn
400
200
Collapse
0 T T T T T T T
100 150 200 250 300 350 400 450 500
t [ns] 12

jdhare@mit.edu, MR2022



Pressure balance in the layer

Pre-collapse: flux pile-up decelerates flow
Fox PRL 2011, Suttle PRL 2016

a) Pressure balance at 250 ns

Ma=1 Ben=1

= Ptot
= Pyin = pVi/2

~ Py =B2/2,

= Pth =neTe + NiT;

Pressure [Pa]
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Pressure balance in the layer

Pressure [Pa]

Pre-collapse: flux pile-up decelerates flow Post-collapse: fast reconnection removes
Fox PRL 2011, Suttle PRL 2016 flux pile-up

a) Pressure balance at 250 ns b) Pressure balance at 400 ns

Ma=1 Ben=1

= Pth =neTe + NiTi = Pyip = pV2Z/2

= Pg =B}/2Uo = Prot
| | | | | | |
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2
X [mm]
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Plasmoids in the Reconnection Layer

0 100 200

El

jz [GNmE]

Plasmoids:

e Carry a lot of current

y [mm]

=1 0 1
*x [mm]

Note: Exaggerated aspect ratio idhare@mit.edu, MR2022
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Plasmoids in the Reconnection Layer

100

jz [GNmE]

Plasmoids:

« Carry a lot of current

* Are hot, with lown
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Plasmoids in the Reconnection Layer

Plasmoids:

* Carry a lot of current

* Are hot, with low n
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« Are dense

-1 0 1

=1 0 1 -1 0 1
* [mm]

X [mm]

X [mm]

x [mm]

Note: Exaggerated aspect ratio idhare@mit.edu, MR2022
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Plasmoids in the Reconnection Layer

ne [x101% cm—3] Prag [X 1018 W/m?3]

Plasmoids:

Carry a lot of current

Are hot, with low n

 Are dense

y [mm]

Radiate strongly

-1 0 1 -1 0 1
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Post Processing to Determine Spectral Intensity
Using the XP2 code from Aidan Crilly and Jerry Chittenden

Spectral Intensity for xyl6
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Experimental Hardware from First Shot on April 215 e

Weeks to build, a microsecond to destroy!
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Many diagnostics, can only present an overview
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Magnetic Probe Measurements: Plasma Flow

Analysis by R. Datta

Inductive Voltage
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Bow shock around B-dot probe: Plasma Flow

T-probe
(14 mm
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Bow shock around B-dot probe: Plasma Flow , &

23697 SEGOI Shot - Frame 4 GOI1
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Distance from wires (mm)
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Time Integrated X-ray Spectrum: Hot Plasma
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X-ray Spectra are a Rich Source of information

Intensity (arb. units)
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Filtered Diode Sighals: Layer Formation, Collapse

Experiment Simulation
MARZ z3697 Current & Emission GORGON + XP2 Simulated Current & Emission
20k Total current (1.07 * BCAVE) o0k Total current (sin2)
X-ray emission (SiD + 2 yum Mylar) X-ray emission (SiD + 2 ym Mylar)
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« Radiated power rises after current start, drops before current peak
« X-ray spectra appears softer than simulated: more shots in November
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Conclusions

MARZ 23697 Current & Emission

| Total current (1.07 * BCAVE)
X-ray emission (SiD + 2 pm Mylar)

Reconnection X + Central
Layer Conductor
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* Key signature of reconnection; modifies energy partition; leads to collapse

Strong radiative cooling important in extreme astrophysical environments:

* High-energy-density pulsed-power experiments can reach strong radiative cooling regime

2D MHD simulations show rich physics: plasmoid formation, layer collapse

* Preliminary experimental results from the Z machine show viability of platform for
radiatively cooled reconnection studies: more shots in November
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