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Abstract—The paper proposes an implementation of Graph
Neural Networks (GNNs) for distribution power system Traveling
Wave (TW) - based protection schemes. Simulated faults on
the IEEE 34 system are processed by using the Karrenbauer
Transform and the Stationary Wavelet Transform (SWT), and the
energy of the resulting signals is calculated using the Parseval’s
Energy Theorem. This data is used to train Graph Convolutional
Networks (GCNs) to perform fault zone location. Several levels of
measurement noise are considered for comparison. The results
show outstanding performance, more than 90% for the most
developed models, and outline a fast, reliable, asynchronous and
distributed protection scheme for distribution level networks.

Index Terms—Power System Protection, Traveling Waves, Dis-
tribution Systems, Graph Neural Networks, Stationary Wavelet
Transform

I. INTRODUCTION

Promising changes are occurring in power system pro-
tection. Numerous studies that apply Traveling Wave (TW)
- based methods to distribution systems will make ultra-
fast protection a reality at the distribution level [1]. These
approaches are usually based on Machine Learning/Deep
Learning methods due to the complexity of the task: the
TW propagation in distribution systems is heavily affected by
the propagation path characteristics, such as line lengths and
elements present in the system [2].

The application of Graph Neural Networks (GNNs) is a
relatively new topic in power systems protection, but it is al-
ready showing impressive results in comparison to previously
presented Machine Learning (ML) or Deep Learning (DL)
methods in many different tasks [3]. These advancements are
only the beginning of a new generation of GNNs-based meth-
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ods, which will continue to improve practical implementations
of ML/DL protection schemes.

One of the reasons for this success is that GNNs not only
use node measurements, but they also give a spatial rela-
tionship between nodes. Besides a potential superior perfor-
mance, GNNs provide other desirable properties to protection
schemes: GNNs assume a distributed communication system
between the nodes. In the most common type of GNNs, the
Graph Convolutional Networks (GCNs), the nodes update their
information with data coming from their immediate neighbors.
Distributed systems are resilient to system failures and cyber-
attacks, as a significant number of nodes would have to be
incapacitated in order to pose a risk to the system [4].

The remaining of the paper is organized as follows. Sec-
tion II introduces recent fault location methods based on
GNNs and some references that use TWs to perform fault
location on power distribution systems. Section III explains
the theory of GCNs. Next, Section IV describes the fault
simulation procedure, the signal-processing stage, and the
proposed GCN models. Section V gathers the accuracy results
for the considered models with and without measurement
noise. Section VI includes a brief discussion about the results
shown by other methods on a similar task and the proposed
method. Section VII provides some insights about how the
work in this paper could be expanded. Finally, the conclusions
of this paper are gathered in Section VIIL.

II. BACKGROUND

The usage of GNNs in power systems is a very recent topic.
Reference [3] provides a recent review of recent developments
in that area. For power system protection only a handful of
approaches have been proposed. In [5], GCNs are used to
predict fault location on the IEEE 123 bus test case, taking
into account measurement noise and changes in topology. The
input features are the voltage and current phasors. The GCNs
achieve an accuracy close to 90%, with a one-hop accuracy of
more than 95%. This level of accuracy cannot be reached by
other ML methods that are included for comparison. Similarly,
in [6], voltage and current phasors are used as the node
features, while the admittance matrix is used to define the edge
features. In [7], a fault diagnosis method for the shipboard
power system is presented. The employed data time window
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is 5 seconds. The reported accuracy for fault type and location
prediction is greater than 99%. The work in [8] proposes
an alternative representation of the adjacency matrix to show
the correlation between historical data and current samples.
In addition, it gives some practical insights about the most
suitable optimization algorithm for training, and about the
length of the GCNs. Unsurprisingly, the GCNs outperforms
all the other methods in terms of accuracy.

In summary, GNNs offer new modeling capabilities that
include spatial relationships, which have been reported as ben-
eficial in terms of model accuracy and generalization in many
areas of power systems. To the best of the authors’ knowledge,
there aren’t any GNNs approaches on Traveling Wave (TW)-
based power system protection. The TWs phenomena occurs
in the first microseconds after the fault inception. These wide-
band waves propagate through the system at nearly the speed
of light and are attenuated and distorted due to the line
impedance and discontinuities in the system [2]. There is
extensive research on how to use the information contained in
those waves for fault location and classification purposes. For
example, the works in [9], [10] aim to find the fault location
using time differences between TW arrivals. On the other
hand, the works in [11]-[13] develop advanced ML-based
method for fault location using Random Forest. A similar task
is performed in [14]-[16] employing Convolutional Neural
Networks (CNNGs) instead. These papers report high accuracy,
around 90%, for asynchronous DL-based protection on the
IEEE 34 nodes system.

III. THE METHOD
A. The Fault Location Task

The test case is the IEEE 34 nodes system, which is divided
into 11 protection zones, considering laterals as individual
protection zones. The main backbone is divided into three
smaller zones using the voltage regulator as a boundary, as
shown in Fig. 1. The goal of the approach is to be able to
identify which protection zone must be isolated after a fault
occurs, which is treated as a supervised classification problem.
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Fig. 1. Proposed protection zone distribution

Note that a power system is, at the most basic level, a
set of nodes interconnected by lines (in graph theory, they
correspond to the “edges”). As it was mentioned before, GCNs

are able to provide spatial relationships to the measurements.
In this application, the node features are the 3-Phase (3P)/
1-Phase (1P) voltage and current measurements. The edge
feature is just the line length, as the distance is one of the
most critical factors in TW propagation.

B. Graph Neural Networks

The proposed method is based on GCNs, which are able
to provide a spatial relationship to the voltage and current
measurements. The features will form a matrix X of size nxd,
where n is the number of nodes in the system and d is the
length of the time series per node. The physical connections
between the nodes is given by the adjacency matrix A, which
has a size of n x n [17]. This matrix can be either binary or
weighted. If binary, as it is in this paper, the element A;; is 1 if
the nodes ¢ and j are connected, and it is O otherwise. A graph-
based neural network model f(X, A) takes both node features
matrix X and adjacency A as a minimal input. State-of-the-
art spatial GCNs are a sequence of the following layer-wise
propagation rule, as explained in [17]:

HHY = 60 + D=3 4'D 2 HOW D), (1)

where A’ = A+1 is the modified adjacency matrix A consider-
ing the self-connections adding the identity matrix I, b() is the
optional layer-specific trainable bias term, W) is the layer-
specific trainable weight matrix, o is the activation function,
D is the diagonal node degree matrix of the adjacency matrix
A’, which is defined as:

Dy = jAj, )

and H® is the output of the [*" layer. Note that in the first
layer H® = X. A GCN layer updates the node data, but
not the graph connectivity. The input and output graphs are
defined by the same adjacency matrix [18]. The multiplication
between the feature matrix H") and the modified adjacency
matrix A’ is an efficient way of message-passing between the
different nodes of the system: The state of a node is only
updated with the self-state and the state of the immediately
connected nodes. This propagation rule effectively maps the
information contained in a structured graph into a fixed-length
matrix that can be multiplied by a set of trainable weights
during the forward propagation stage.

If a weight is assigned for each edge, the formula is
modified to:
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where Hi(l) is the output of the {*" layer for node i, cji is the
product of the square root of node degrees and e;; is the scalar
weight on the edge from node j to node 4. Note that both (")



and WO are the same for all the nodes. Finally, the edge
weights can be normalized applying the following expression:

Cji = Z €k Z Chi- 4
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For training purposes, Eq. (3) is implemented as Eq. (1) with
a weighted multiplication to incorporate the edge weights.

IV. THE USE CASE
A. Fault Simulation

The dataset is composed of 2034 fault cases. The fault
conditions depend on whether the node is 3P or 1P. There
is only one fault in the system for each case. The system is
in a steady state when the fault occurs. For 3P nodes, the
conditions are as follows:

o Two fault inception angles: 1 millisecond apart.

o Three fault resistance values: 0.01, 1, and 10 ohms.

« Eleven fault types: 3 Single-Line-to-Ground (SLG) faults,

3 Line-to-Line (LL) faults, 3 Line-to-Line-to-Ground
(LLG) faults, 3-Phase fault (3P) and 3-Phase-to-Ground
(3PG) fault.

This sums up a total of 66 faults per 3P node. For 1P nodes:

« Nine inception angles: Same as for the 3P case, plus extra
seven inception angles equally distributed in a period of
13 milliseconds.

¢ Six fault resistance values: 0.01, 0.1, 1, 2, 5 and 10 ohms.

e One fault type: From the corresponding phase to ground
(SLG).

This yields a total of 48 faults cases for each 1P node. Split-
ting on an 80/20% training/testing dataset, the total number of
faults per protection zone, as defined in Fig. 1, is shown in
Table I. A learning rate scheduler is employed to modify the
learning during the learning process. Part of the training data
acts as a validation set in which the model learning is tested
in every epoch. If the validation loss has not improved in 4
consecutive epochs, the current learning rate is multiplied by
0.9. This procedure achieves smoother training. The Adam
optimizer is selected, and the initial learning rate is 0.003.
In order to get a sense of the model variance to training
data, a 10-fold cross validation is applied to the training set.
The portion of data that is not used in each iteration is the
validation set.

B. Pre-processing Stage

Similar to [11], the measured current and voltages undergo
a pre-processing stage that transforms the raw measurements
into more useful data that can be fed into the models. The
following steps are performed independently in each node and
in an asynchronous way.

1) Given the raw voltage and current measurements (either
3P or 1P depending on the node), the first step is to
detect the TW arrival timestamp. Once this is achieved,
the signal is cropped + 50 us. Note that the 3P mea-
surements are transformed into the ground mode by the
Karrenbauer Transformation (KT). For both 3P and 1P

TABLE I
TRAINING, VALIDATION AND TESTING SETS

Protection Zone Training Set | Validation Set Testing Set
Backbone 1 238 26 66
Backbone 2 333 36 93
Backbone 3 285 31 80

Lateral 1 35 3 10
Lateral 2 104 11 29
Lateral 3 35 3 10
Lateral 4 35 3 10
Lateral 5 95 10 27
Lateral 6 35 3 10
Lateral 7 190 21 53
Lateral 8 82 9 23

nodes, the voltage and current measurements are reduced
to arrays of 1,000 samples each, which correspond to
100 ps at a sampling rate of 10 MHz.

2) Voltage and current arrays are decomposed into 6 fre-
quency bands using the SWT. Note that the resulting
coefficients of the SWT are reconstructed to return
voltage and current magnitude again. The frequency
bands can be observed in Table II. The output of this
step is a total of 12 arrays of length 1,000 samples.

3) The energy of each of the signals along the 100 us
window is computed using Parseval’s Energy Theorem.
Therefore, after this step all the signals are positive,
monotonically increasing and magnitude jumps are am-
plified.

4) Finally, the 12 energy arrays of length 1,000 samples
are concatenated and downsampled by 10 (for the sake
of computation speed) to form a final array of length
1,200 samples.

TABLE 11
SWT BOUNDARIES FOR FREQUENCY BANDS

Decomposition Level Lower Frequency Upper Frequency
1 2.5 MHz 5 MHz
2 1.25 MHz 2.5 MHz
3 625 kHz 1.25 MHz
4 312.5 kHz 625 kHz
5 156.25 kHz 312.5 kHz
6 78.125 kHz 156.25 kHz

C. The Graph Neural Networks Models

A total of four GCN model versions are considered, varying
the number of GCN layers they contain. Hereafter, models
with 1 to 4 GCN layers will be labeled with the letters “A” to
“D”, respectively. The layer’s size can be observed in Table III.
All models end with a LogSoftmax layer that returns the log-
probabilities that the fault is in each protection zone. As an
example, the structure of model “C” can be observed in Fig. 2.

Note that, by computing Eq. (1), the output of the model
is a set of 34 predictions, one per node, each one of size
equal to the number of protection zones. In GCNs, each node
is able to give a predicted fault location based on its own
measurements and some messages coming from neighboring
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communication between nodes, that is able to pass information
through several layers of neighboring nodes. In the case of
models “A” and “B”, the lower amount of communication
brings down the accuracy.

TABLE IV
MEAN (STANDARD DEVIATION) ACCURACIES FOR DISTRIBUTED
APPROACH WITHOUT MEASUREMENT NOISE

Model | Training (%) | Validation (%) | Testing (%) NE;“?,% )
A 3324 (0.19) | 32.94 (121) | 32.99 (0.247) | 3341
B 57775 (1.69) | 56.61 (2.14) | 5459 (1.57) | 5842
C 8830 (2.23) | 8558 (292) | S4.14 (2.34) | 88.01
D 95.65 (2.65) | 93.09 (2.96) | 9151 (3.18) | 94.38
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Fig. 2. Model with 3 GCN layers

TABLE III
GCN LAYERS’ PARAMETERS SIZE
Model | GCN layer 1 | GCN layer 2 | GCN layer 3 | GCN layer 4
A 1200-by-11 - - -
B 1200-by-300 300-by-11 - -
C 1200-by-600 | 600-by-200 200-by-11 -
D 1200-by-1000 | 1000-by-500 | 500-by-200 200-by-11

Tables V and VI display the same results as Table IV
but for SNRs of 60 and 45 dB, respectively. As it can be
seen, the best GCN model is model “D” in all the cases. Its
maximum accuracy decreases slightly down to 93.40% in a
small measurement noise scenario of SNR equal to 60 dB. For
a more significant measurement noise, the maximum accuracy
is 84.42%. This is a good result taking into account that just
+50 ps of data are used. Models “A” to “C” exhibit similar
results.

TABLE V
MEAN (STANDARD DEVIATION) ACCURACIES FOR DISTRIBUTED
APPROACH WITH SNR = 60 DB

nodes. For training purposes, all the nodes’ predictions are
considered at the same time (i.e., for a specific fault case, all
the nodes are expected to predict the correct fault location
independently of their position in the system). The loss metric
to evaluate the model performance is cross-entropy.

V. RESULTS

This section studies the performance considering nodes
as individual protection devices (a “distributed” protection
scheme), and considering the system as a quorum in which
the output is the average of all the individual node predictions
(a “centralized” protection scheme). This last approach gives
a single prediction for the model, which is similar to what
traditional ML/DL approaches return. Results are shown for
cases with and without measurements noise. Two Signal-to-
Noise-Ratios (SNRs) of 60 and 45 dB have been used.

Table IV shows the accuracy results without measurement
noise of nodes that individually give a correct prediction for
the 10-fold cross-validation trained models on the training,
validation and testing sets. In general, for models “C” and “D”,
more than 90% of all the nodes are accurate considering all the
fault cases. The maximum accuracy on the testing set is the
criteria for selecting the best model, which is model “D”. For
this model, one of the 10-fold models achieves an accuracy of
94.38%, which means that in average that percentage of nodes
correctly identify the faulty protection zone for each fault
case. This outstanding performance can be explained by the

Model | Training (%) | Validation (%) | Testing (%) MT;:“?% )
A 3342 (0.38) | 3298 (1.08) | 33.05(038) | 3353
B 6171 (1.82) | 60.60 (2.09) | 58.96 (1.82) | 62.38
C 3973 (2.29) | 85.06 (3.07) | 83.63 (2.54) | 87.84
D 95.92 (2.25) | 90.68 (2.67) | $9.50 (2.54) | 93.40

TABLE VI

MEAN (STANDARD DEVIATION) ACCURACIES FOR DISTRIBUTED
APPROACH WITH SNR =45 DB

Model Training (%) | Validation (%) Testing (%) N”[l;e ;u?(%) )
A 32.99 (0.19) 32.42 (0.97) 32.31 (0.22) 32.63
B 48.52 (1.93) 47.30 (1.63) 45.98 (1.59) 48.05
C 82.22 (1.31) 76.15 (2.20) 75.35 (1.53) 78.47
D 94.21 (0.56) 84.33 (1.25) 83.71 (0.39) 84.42

When averaging the nodes’ prediction to return a single
prediction for each fault case, similar insights can be extracted
from Table VII. Note that accuracies are higher because it is
easier for a group of nodes to give the correct prediction,
rather than just a single node. It is especially significant in
the case of model “D”, which has a maximum accuracy of
99.51% on the testing set. In addition, it can be observed in
the averaged outcome that the standard deviation of the 10-
fold cross validation models is significantly lower than when
taking into account individual nodes.

As could be expected, the centralized protection scheme that
averages all the nodes prediction is also affected negatively by
measurement noise. The results are presented in Tables VIII
and IX. However, the effect is much less noticeable. For



TABLE VII

MEAN (STANDARD DEVIATION) ACCURACIES FOR CENTRALIZED

APPROACH WITHOUT MEASUREMENT NOISE

Model Training (%) | Validation (%) Testing (%) 1\/’[1‘;;&?% )
A 72.94 (1.68) 72.43 (3.67) 71.65 (1.51) 73.47
B 84.78 (0.94) 84.61 (1.76) 82.31 (1.49) 85.82
C 99.91 (0.08) 99.07 (0.99) 98.51 (0.29) 99.02
D 100.00 (0.00) 99.39 (0.94) 98.88 (0.54) 99.51

TABLE VIII

MEAN (STANDARD DEVIATION) ACCURACIES FOR CENTRALIZED
APPROACH WITH SNR = 60 DB

Model | Training (%) | Validation (%) | Testing (%) Nf;f“?% )
A 7402 (142) | 7346 (395) | 7175 (1.94) | 7420
B 9118 (2.36) | 90.02 (2.82) | 88.80 (2.90) | 01.97
C 99.94 (0.03) | 98.90 (1.04) | 98.63 (047) | 9927
D 100.00 (0.00) | 99.38 (0.55) | 98.97 (0.28) | 99.27

TABLE IX

MEAN (STANDARD DEVIATION) ACCURACIES FOR CENTRALIZED
APPROACH WITH SNR =45 DB

Model | Training (%) | Validation (%) | Testing (%) MT;TU?% )
A 7280 (1.63) | 71.98 (2.72) | 70.90 (1.37) | 73.23
B 8152 (3.12) | 7895 (3.84) | 78.85 (2.90) | 82.23
C 99.01 (0.04) | 9852 (1.00) | 9841 (039) | 99.02
D 100.00 (0.00) | 98.84 (1.14) | 98.61 (0.53) | 99.51

model “D”, this is reduced to an accuracy drop of about 1%
in training, validation, and testing accuracies. However, the
maximum testing accuracy remains above 99% in all the cases.
Similar insights can be extracted from the other models. This
shows the strong performance of GNNs and the benefits of
quorum.

VI. DISCUSSION

Other previous works have already studied the problem of
fault location in the IEEE 34 nodes system. Even if the task is
not identical (those works aim to find the node instead of the
protection zone), some insights can be taken for comparison.
First, in [16], accuracies for no-noise measurements are around
90% (between 80 to 95% depending on the node), which is just
slightly below the 94.38% achieved by the GCNs. However,
when noise is present, the accuracy drops significantly down
to 70% in average (some nodes even report a 40 or a 60%
accuracy). Using GCNs boosts the performance of all the
nodes in such a way that, even in scenarios with noise, up
to 84% of the individual nodes are able to give an accurate
prediction. The work in [15] reports a similar performance,
but it uses +0.5 ms of data instead.

Generally speaking, most of the DL approaches in the
literature don’t require a distributed implementation, and using
data from all nodes simultaneously is a common practice. The
reported results (in this case, averaging the output in order to
give a single prediction) are superior to those shown in [14] for
a similar task. Finally, the results of this work are aligned with

those of other GCN implementations, such as those in [5] and
[7], with the difference that the amount of information used
in our method is hundreds of times smaller.

VII. FUTURE WORK

The implementation of GNNs in power system protection
is a growing topic. Some papers already showed the superi-
ority of this method in comparison to previously developed
approaches. Future work in TW protection with GNNs could
include a complete accuracy comparison with other methods.
Second, in this work it is supposed that the required com-
munication works without any problem. A reliability study
could be conducted studying the accuracy under tampered
communications.

In addition, in this work only up to four GCN layers
have been considered. An optimization study considering a
wider number of layers could be performed. Finally, in the
considered distribution system, there are many nodes that
are located close in distance to their neighbors. A certain
aggregation analysis could be carried out to study the drop
in performance when several close-by nodes are summarized
in just a single node.

VIII. CONCLUSION

The method proposed in this paper, based on the usage
of Graph Convolutional Networks (GCNs), achieves an out-
standing performance using Traveling Waves (TWs) to locate
where faults happened on the distribution system. Results show
that notably high accuracies can be achieved both on a node-
wise or system-wide basis (“distributed” and “centralized”
protection schemes, respectively). The models are tested on
fault cases with and without measurement noise.

The model with 4 GCN layers achieves a 94.38% and
99.51% accuracy without measurement noise on the testing
set for the “distributed” and “centralized” approaches, respec-
tively. Models with fewer GCN layers achieve lower accura-
cies. In the case of Signal-to-Noise-Ratio (SNR) of 60 dB,
these accuracy values remain close: 93.40% and 99.27%. For
a SNR equal to 45 dB, the “distributed” approach performance
decreases down to 84.42%, while the “centralized” approach
reports an accuracy of 99.51%. Note that fault detection is
handled separately with 100% accuracy, so these accuracies
for determining the location of the fault are very high.
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