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Utilizing in situ TEM mechanical testing to elucidate nanoscale
mechanisms dictating mechanical properties
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“» ¢ Macroscopic and Microscopic Helium Effects
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Nanoscale Helium Bubbles
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Bubbles evolution at temperature can elucidate
physical mechanisms

HmBlisters form at boundaries by absorbing nearby
cavities

HmLarge faceted cavities form inside the grains by
absorbing smaller bubbles and possibly He from the
matrix

HmBlisters eventually burst, leaving behind a denuded
zone at the boundary

Pre-
existing
void

How does heating rate
affect bubble
evolution?

Fig. 6. BF TEM micrographs showing the mechanism of cavity

minratinn and r~nalacranca whicrh  drivac cavihe arnadh Adorinn

Taylor, C. A, et al. (2020). "Using In Situ TEM
Helium Implantation and Annealing to Study Cavity

Nucleation and Growth." JOM 72(5): 2032-2041. 1x1017 He implantation, 450 C hold C. Taylor, TMS, 2019.
with in-situ resistive heating
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Realizing rapid, in-situ TEM heating with 1064 nm laser
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—~ P A Heating rate affects He bubble size
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m Fast IR Laser: 3 W, 3sec pulse
= Slow DT Heating: 10C/min to 450 C
m The final temperature was attempted to be same:

Higher heating rate

450 C yields larger bubbles
= Pd thin film (50 nm) ex-situ implanted to a fluence
of 6x10'¢ ions/cm? with 10 keV He Future work involving direct-detection

camera will track bubble motion during
heating transients at up to 500 fps

Direct Electron DE-64 Camera
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r4 Emulatlng erbium hydride aging through ion
| irradiation

He implantation of ErD, causes
»Er undergoes a phase transformation from a

hexagonal to a fcc structure under hydriding, forming surface flaking th I"Ollgh bubble
linkage and crack growth

ErH,

> Tritium B-decays to 3He, which models predict to
remain in the tetrahedral site. Diffusion may occur
through the octahedral site

»>3He in ErT, tends to form platelet structures instead of
bubbles

rEer usuaIIy contains some oxide, Er,0,




'%;Mu;tilayered Er composites to limit He bubble impacts

+ Er/Mo multilayered samples fabricated via e-beam 2) etore implantation i siorerem p @)W
deposition == " -

+ Deuterated without formation of intermetallic phases
* He implantation to investigate He bubble nucleation

o,

Er/Mo multilayered composites
show He bubble accumulation
at interfaces

10 keV He in situ implantation

ndia National Laboratories 5
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D/T and He accumulation changes mechanical
properties of metals

Days after hydriding
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_ Rapid Evaluation of Helium in Materials using Sandia’s
IFTEM

= In-situ implantation only takes a few hours — tritium Quantitative Mechanical Testing

aging takes several months and rad work

. . “«
= In-situ annealing with the Gatan DT Heating stage or 1064 Minimal control over displacement and no “out

nm laser used to quickly assess the stability of bubbles of-box” force information
= Hysitron PI-95 Picolndenter In-situ TEM nanomechanical *  Sub nanometer displacement resolution
testing

* Quantitative force information with uN

resolution
Ex-situ .
Implant Bending Beamline to
" Chamber Magnet Colutron

1) Indentation
2) Tension
, 3) Fatigue
Colut?
Be.?m(l;ne 2 4) Creep
c Tt° et ed /| Tandem 5) Compression
ryo Trap
JEOL 2100 TEM e 6) Bend
System
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-Utilizing in-situ TEM push-to-pull device for tensile
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e
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bars for TEM testing
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500 nm
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controlled
test, 20 nm/s

i

Sandia National Laboratories 8



In-situ TEM tension tests resulted in brittle failure

t = 275SRIIONUN
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Similar moduli for ErD, and ErT,,
though lower stress needed for
failure of ErT,

No necking observed, brittle failure
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Nanopillar compression likely more elucidating for
brittle material like ErD,

1 1.5 2.5x10"
2 1.8 1.2x10’
3 1.6 0.5x10?
4 1.3 -
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6 1.5 1.0x10’
T 15002 : EEEEE% Testing the nanoscale

mechanical properties of
. ErD, as an analogue to ErT,

= Thanks to Nan Li for
04 assistance with experiments

Strain




-Nanopillar compression likely more elucidating for
| brittle material

In-situ TEM nanopillar
compression tests
Hysitron PI-95 indenter 1 um flat tip
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FIB-milled nanopillars of Er on Mo substrate

120 keV He implantation profile shows He peak in center of
pillar

Peak He concentration: ~5 at.%

Utilizing in situ TEM nanopillar

compression of EI’DZ and He- Displacement controlled test
implanted ErD, thin film L2 0 nmat sgmis
Unload: 100-0 nm at 2nm/s ﬂ-' Sandia National Laboratories 10




He implantation affects pillar response, leading to
softening, no strain hardening
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Aged ErT,:
He concentration of
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From
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Increasing strain rate increases the measured strength
of He-implanted ErD, pillars
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Nanoindentation can be used to test effects of He
implantation on accelerated-aged ErD,, scalable to ErT,

Compliance of
device needs to be
accounted for in
future

Increased strain
rate increases
strength observed
in other material
systems
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Further testing to decipher impacts of D and He
loading

= He implantation to 1x10'7 He fluence slightly softens nanopillars
- Change in yield strength: 1.59 vs. 1.35 GPa
- Intermediate He implantation concentrations

= Will test ErT, pillars different aging times (days after loading)

= Micro-cantilevers fabricated for in-situ SEM fracture tests
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Micro-cantilevers of He-implanted ErD,
for in-situ SEM testing

Utilizing in situ TEM mechanical testing to qualify the accelerated aging
techniques in Er
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In-situ TEM techniques to elucidate helium effects on
metals and metal hydrides

m Tritiated metals have mechanical properties that change as they age
= Can we simulate their aging through ion implantation?

= He implantation of deuterated metals used to simulate aging of
tritiated metals

= In-situ TEM tensile and compression tests important for determining
mechanical properties of aged and implanted hydrides

Preliminary results show accelerated aging useful to qualifying
mechanical properties of aged films
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Sandia’s Concurrent /In situ lon Irradiation TEM
(I3TEM) Facility to study material evolution

10 kV Colutron - 200 kV TEM - 6 MV Tandem
Direct real time observation of ion

irradiation, Capabilities
ion implantation, or bo_th with nanometer = 200 kV LaB, TEM
resolution

= lon beams considered:
= Range of Sputtered lons

Effect of He implantation on tensile = 10 keV D*
| straining behavior of Nb and W = 10 keV He*

= All beams hit same location

Rapid heating of He-implanted NC metals = Nanosecond time resolution
‘ to examine grain growth (DTEM)
= Procession scanning (EBSD in
TEM)
Rapid heating of He-implanted NC metals = In situ PL, CL, and IBIL

‘ to examine bubble growth « In situ vapor phase stage

= In situ liquid mixing stage
= In situ heating
= Tomography stage (2x)

Environmental heating to examine effect
| of atmospheric exposure on grain growth
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w i 2 .
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o b0, : species implantation and
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Sandia’s USER Capabilities
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ErD, Pillars
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He-implanted ErD, Pillars
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