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Summary/Conclusions

• Hard-photon direct recombination continuum alternative paths to “warm” x-ray 
production above 15 keV with pulsed power for next-gen pulsed power facility, NGPP

• A scaling model is needed to confidently predict the radiation yields from NGPP

– Densities and temperatures of radiating plasmas at stagnation need to be confidently
scaled up

• Scaling models are based on the conventional assumption of a uniform radiating 
plasma column, which is plausible for Ar but not for stainless steel

• Most likely, stainless steel emits K-shell from bright spots

• Continuum yield data from Z is consistent with the spectroscopic analysis indicating 
that the dense, hot bright spots containing a small fraction of the load mass radiate 
most of the K-shell x rays

– Dimensions, densities, and temperatures of the bright spots can be inferred

– The mechanism of their creation and energy replenishment is still obscure
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Motivation
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K-line yields on Z are low for high 
atomic numbers 

Continuum & line yields on Z in photon 
energies between 10 and 15 keV
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Scaling: J. Schwarz et al., “A model for K-shell x-ray yield from magnetic 
implosions at Sandia’s Z machine,” submitted to Phys. Plasmas 2022.
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Background
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Argon and stainless steel PRS load designs optimized for K-shell emission
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Argon, 25 shots Stainless steel, 8 shots

• Double-shell 80 mm gas puff

• Most shots w/o central jets

• Line masses ~385/616 mg/cm

• Height 3 cm

• Nested wire array, 70/35 mm, 112/56 wires

• Wire diameter 8.56 mm

• Total mass ~1.533 mg

• Height 2 cm

B. Jones et al., Phys. Plasmas 22, 020706 (2015); A. J. Harvey-Thompson et al.. Phys. Plasmas  23, 101203 
(2016); D. J. Ampleford, et al., Phys. Plasmas 21, 056708 (2014).
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Dimensions and of the K-shell emitting plasma are confidently measured
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Time-integrated, axially 
resolved spectroscopy

Wire mesh Ar He-⍺Ar Ly-⍺

Time-gated multi-layer-
mirror (MLM) x-ray camera

K-shell height Ar

K-shell diameter Ar

t, ns

FWHM
2.6 ns

Z147

X-ray power signal, 
arb. units

K-shell FWHM SS

Height, 
mm

Diameter, 
mm

Volume, 
cm3

FWHM, 
ns

Argon 2.5 to 3.5 1 to 3 0.05 to 0.36 4 to 12

Stainless 2 0.8 0.01 2.5 to 3.5
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Higher-atomic-number materials radiate relatively more in the continuum
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He-like ions are more efficient K-line radiators than H-like by a factor of ~2
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The highest hard-photon continuum fractions we can reasonably expect
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Moderate-ZA argon, accessible now

Z
YH/YHe = 0.6
Ycont/YH = 0.4

=>
Ycont/YK ~ 0.13

DQ
YH/YHe = 0.4
Ycont/YH = 0.3

=>
Ycont/YK ~ 0.08

High-ZA iron or copper on NGPP

If YH/YHe = 0.5

Then Ycont/YH > 1

=>

Ycont/YK > 0.25

A 25% continuum 
efficiency at high ZA is 

possible if we can 
produce an H-like 

population no less than 
He-like 

DQ data from F. C. Young et al., IEEE Trans. Plasma Sci. 34, 2312 (2006). 
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We need high temperatures and densities to ionize Fe to H-like
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CRE equilibrium populations calculated for a 3 mm plasma cylinder with DRACHMA-II
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Ion number density can be inferred from the hard-photon continuum power
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Self-consistent value of the continuum K-shell 
emitting mass, obtained by assuming  the radiating 
plasma to be uniform
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Assumptions for scaling line and continuum K-shell yields to higher currents

• Matched load mass increases as I2. Some options for self-similar scaling:1

– Mass participation and ion density stay constant2

• Efficient K-shell emission, YK  I2, radiating volume increases  m

• Works well for argon above 5 MA

– Mass participation and radiating volume stay constant2

• Inefficient K-shell emission, YK  I4

• Works well for argon3 below 5 MA and for stainless4 up to 20 MA

• Uncertain about stainless above 20 MA – what stays constant, what changes?

12

( )K-shell mass participationK iY m n  

( )K-shell mass participationK iY m n  
m

Load mass

K
-s

h
e
ll 

y
ie

ld Efficient

Inefficient

2m

m

1P. F. Schmit and D. E. Ruiz, Phys. Plasmas 27, 062707 (2020).
2J. W. Thornhill et al., IEEE Trans. Plasma Sci. 34, 2377 (2006).
3This conference: V. Tangri et al., PO 4.33 “Scaling of efficient Ar K-shell emission from fast gas-puff Z-pinches in 10 to 100 MA current 
range”; A. Esaulov et al., PO 4.37 “Progress in the refining of the K-shell yield scaling model for Z-pinch plasma radiation sources.”
4J. Schwarz et al., “A model for K-shell x-ray yield from magnetic implosions at Sandia’s Z machine,” submitted to Phys. Plasmas 2022.
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For argon, the assumption of uniformity makes sense
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For 1 mg/cm, 3 mm Ar load, the assumption of a ~20% average mass participation in the K-
shell, leads to reasonable estimates of the ion density, 1020 cm−3 and line mass, 0.2 mg/cm.

Uniform hot core 
plasma emits K-
shell photons
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For stainless, the uniformity implies high mass participation, same as in Ar
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For 0.75 mg/cm, 1.4 mm Ar load, the assumption of a ~18% average mass participation in the 
K-shell, leads to estimates of the ion density, ~1020 cm−3 and line mass, 0.14 mg/cm.

Estimated SS 
plasma 
parameters are 
close to argon’s, 
but:
The radius is 
twice smaller 
and the 
temperature is
~40% higher 
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Time-resolved spectroscopy agrees with this early in the K-shell pulse
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t, ns Cylinder 
diameter, 

mm

ni, 
cm−3

Te, 
keV

Mass 
participation, %

-2.7 1.8 3×1019 2 12

-1.8 1.6 5×1019 3 17

Hot 
core

Cool 
halo

Cool halo absorbs 
some K-shell 

photons, affecting 
observed spectra

• Analysis of time-resolved spectroscopy from Z stainless nested wire-array shots done at 
Weizmann in 2014-2016

• The ratios of the FWHMs of resonant lines of Fe, Cr, Ni, and Mn, that are of different 
abundances , are analyzed. It also requires the determination of Doppler broadening for 
each element, and the correction for splitting effects.

• At early time, the spectra are consistent with a hot core surrounded with a cool halo
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Near the K-shell peak, the K-line shapes are consistent with coming from a 
large number of small hot spots: higher density and higher temperature 
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D, 

mm

No. of 
spots

ni, 
cm−3

Mass 
participation, %

Photon 
mfp, mm

50 8900 5×1020 3.1 1.3

100 4200 2.5×1020 5.9 0.68

150 2930 1.67×1020 9.2 0.43

The spot parameters are constrained by the low opacity inferred and the requirement to 
generate the entire K power

D, 

mm

No. of 
spots

ni, 
cm−3

Mass 
participation, %

Photon 
mfp, mm

50 8200 6×1020 3.4 1.4

100 3800 3×1020 6.4 0.76

150 2350 2×1020 9.2 0.54

t=−0.8 ns, Te = 4 keV, Ti (hydro) = 40 keV

t=+0.1 ns, Te = 6 keV, Ti (hydro) = 30 keV

Cool 
halo

Warm 
core

Hot & 
dense 
bright 
spots

Bright spots emit all K-shell 
photons, warm core background 

emits softer photons
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Continuum yield are also consistent with this assumption
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Summary/Conclusions

• Hard-photon direct recombination continuum alternative paths to “warm” x-ray 
production above 15 keV with pulsed power for next-gen pulsed power facility, NGPP

• A scaling model is needed to confidently predict the radiation yields from NGPP

– Densities and temperatures of radiating plasmas at stagnation need to be confidently
scaled up

• Scaling models are based on the conventional assumption of a uniform radiating 
plasma column, which is plausible for Ar but not for stainless steel

• Most likely, stainless steel emits K-shell from bright spots

• Continuum yield data from Z is consistent with the spectroscopic analysis indicating 
that the dense, hot bright spots containing a small fraction of the load mass radiate 
most of the K-shell x rays

– Dimensions, densities, and temperatures of the bright spots can be inferred

– The mechanism of their creation and energy replenishment is still obscure
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