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Introduction

Long term forecasting Recent work has proposed
the use of deep ensemble echo-state network (D-
EESN) models for long term forecasting with spatio-
temporal data [1][2]. D-EESN models are more com-
putationally efficient than other current statistical
methods for spatio-temporal forecasting. D-EESN
models use reservoir computing, where parameters
are fixed or sampled from a random distribution in-
stead of estimated.

Disadvantage D-EESN models possess a common
disadvantage of machine learning models: model pa-
rameters are not interpretable in the context of the
application.

Explanability We are interested in developing ”ex-
plainability” methods to understand the relationships
in the data used by D-EESN models for prediction.

Climate Application

Climate Security Motivation Climate change is con-
sidered a serious national and global threat and mea-
sures such as solar climate interventions are becom-
ing a real possibility. The development of algorith-
mic methods for understanding the impact of such
events on climate change will help to inform decision
makers.

Mount Pinatubo 1991 eruption of Mount Pinatubo
used as an example climate event to develop algorith-
mic approaches for characterizing climate impacts.
Figure below shows impact of eruption on surface
temperature leading to a decrease for several years
after eruption (ERA5 reanalysis data [3]).

Background

Permutation feature importance (PFI) PFI for Xj is average change in model
performance when Xj is randomly permuted:

Ij = m − 1
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where m is model performance on observed data and mj ,k is model perfor-
mance when Xj is randomly permuted for repetition k ∈ {1, ...,K}
(Quadratic) Echo State Network Single layer version of D-EESN model for a
spatio-temporal data Zt (only V1 and V2 are estimated):

Data stage: Zt ≈ Φαt (empirical orthogonal function decomposition)

Output stage: αt = V1ht + V2h
2
t + ϵt; ϵt ∼ Gaussian(0, σ2

ϵ I)

Hidden stage: ht = gh
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is the embedding vector (τ ∗ is embedding

vector lag and m embedding vector length) and

W = [wi ,l ]i ,l : wi ,l = γwi ,lUnif (−aw , aw) + (1− γwi ,l)δ0
U = [ui ,j]i ,j : ui ,j = γui ,jUnif (−au, au) + (1− γui ,j)δ0
γwi ,l ∼ Bern(πw); γ

u
i ,j ∼ Bern(πu)

Feature Importance with ESN

Objective Determine importance of time t on forecast at time t + c (c > 0)

Current implementation Apply concept of PFI by permuting input observa-
tions at time t and comparing model performance for forecasts at time t + c

Models

▶ Quadratic echo state network for initial development

▶ Response Variable: Temperature at given pressue level

▶ Predictor Variables: Lagged temperatures at given pressure level

▶ Training Data: Monthly observations in 1979-1990

▶ Testing Data: Monthly observations in 1991-1992
▶ Preprocessing: For a given pressure level, let yloc,year ,month be temperature

at a spatial location, year, and month:
▶ None: yloc,year ,month
▶ Centered: yloc,year ,month − ȳloc where ȳloc is average temperature at a spatial location

over all times (years and months)
▶ Climatology: yloc,year ,month − ȳloc,month where ȳloc,month is average temperature at a

spatial location and month over all years

Preliminary Results

Impact of Model Tuning Parameters
▶ Preprocessing: Centered

▶ Pressure Levels: 100,000 Pa

▶ Key result: Feature importance
dependent on embedding vector
lag and length but not forecast
lag

Impact of Data Preprocessing Methods

▶ Preprocessing: None, centered, and
climatology

▶ Pressure Levels: 5,000, 10,000, and 100,000
Pa

▶ Key results: Climatologies have worst
predictive performance; seasonal pattern
appears in centered PFI values; climatologies
have smallest PFI values

Discussion

Take Away PFI results help to understand how ESN makes use of historical temperatures

Future Steps

▶ Account for correlation between variables in feature
importance calculation

▶ Include other predictor variables such as aerosol
optical thickness and visualize feature importance of t
on t + c versus t in context of Mount Pinatubo

▶ Assess feature importance method on synthetic data

▶ Consider applicabilty of method to other deep learning
models that rely on reservoir computing
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