This paper describes obijective technical results and analysis. Any subjective views or opinions that might be.expressedJln_5873C
the paper do not necessarily, reiresent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories

Uncertainty Quantification in Computational Modeling
of Plasma-Surface Interactions

Pieterjan Robbe, Tiernan Casey, Khachik Sargsyan, Habib Najm

May 5, 2022

Sandia National Laboratories is @ multimission laboratory managed and operated by National Technology

dialNationallLaboratoriesjis| a‘multlmlsswn Iaboratorvlmanaqed and operatedib\ﬁlNatlona JTechnoqu 8 EnqmeennqlSqutlonsIo Sandia, LLC,la

subsidiaryjof][HoneywelliinternationalInc. iforithe{U.S./Departmentjof]Energy'siNationaliNuclear]SecurityiAdministrationjundericontractiDE-NA0003525.




Plasma-surface interactions @

¢ Modeling and simulation of the interaction between the boundary plasma and the material
surface in a fusion device

e Challenges are addressed in the PSI2 SciDAC project

o SOLPS computation of plasma background conditions
o hPIC sheath plasma computation and lon Energy-Angle Distribution (IEAD)
o GITR macroscopic global impurity transport computations
o F-Tridyn ion-solid interaction particle-based simulations
o Xolotl material surface evolution
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¢ Code coupling within the Integrated Plasma Simulation (IPS) framework I
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Plasma-surface interaction atomistic model

e Tungsten (@) lattice irradiated by helium atoms (@)
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Simulation of plasma-surface interactions

¢ Multi-physics coupled code simulates material evolution in plasma-surface interactions
o F-Tridyn: Monte Carlo Binary Collision Approximation particle code for simulating ion
interactions with rough surfaces
o Xolotl: spatially-dependent cluster dynamics code for simulating the PDEs that
describe the evolution of tungsten under irradiation

* sputtering yields W / He
F-Tridyn « reflection yields W / He
« implantation profile

» material composition
* material roughness Xolotl
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F-Tridyn—Xolotl interaction
F-Tridyn
¢ Simulate ion-solid interactions by tracking the trajectories of energetic helium ions through a
tungsten target
¢ Monte Carlo approach simulates individual particles (~ 100,000)
¢ Quantities of interest are sputtering and reflection coefficients and implantation profile
Xolotl
¢ Tungsten material represented by the concentration of He clusters at each spatial grid point
¢ Reaction-diffusion equation for the evolution of the cluster concentrations

dC
9 o p —V3(—=DVC+uC) —Q(C)
incoming He flux reaction term
solved using finite difference approach in PETSc , parallelized using MPI

¢ Quantities of interest are He retention and surface growth as a function of time
¢ Surface evolution influenced by trap mutation (+), sputtering () and redeposition (+)
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Polynomial chaos expansions

¢ A polynomial chaos expansion (PCE) surrogate model for the system response P(x) can be
written as
Px) = cuth,(é)
uel
where ¢y is a coefficient, 1, is a multivariate orthogonal polynomial in terms of the random
variables £ = (€1, &2, ..., &) € X C RY, and u € NY is a multi-index

* Usually, the basis functions 1 ,(£§) are orthonormal with respect to a weight function w(§),
ie.,

/X W(END,, (E)by, (E)E = 6, &

where 5,75 is the Kronecker delta and u, and ug are two multi-indices
» When the random variables £ are i.i.d., we can express the basis functions as

d
Y, (&) = [[¥u(&)
=1
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Bayesian compressive sensing

* Given ranges [&;, bj] for the parameters x;, j = 1,2, ..., d, we assume the linear relation
ai+b b — g
X = G5 Y j a9 I
2 2
and the 1),(§) are multivariate Legendre polynomials I

« Given a set of input-output measurements {(x,, P(x)) N n1- the coefficients of the PCE can
be found using, e.g., least-squares regression

e For a high number of dimensions d and a reasonably high polynomial order, the problem of
obtaining the coefficients ¢ = {cy }ye7 is underdetermined

¢ In Bayesian compressive sensing (BCS), we solve the regularized optimization
problem

argmax{log Lp(¢c) — o ¢|[1}
c

» To further avoid overfitting, we use an iterative approach that gradually increases the index
set size and take the common basis terms from a number of different tries I
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Global sensitivity analysis with polynomial chaos expansions

e The mean and variance of the PCE can be computed directly from the coefficients

E[P(x)] =¢c and V[P Zc

uel
u#0

¢ In variance-based sensitivity analysis, we compute Sobol’ indices that express what amount
of the total output variance can be attributed to which (set of) parameters

¢ The total-effect Sobol’ sensitivity indices can be extracted as

s = (V[Pw) ' Y o

ucJ;

where J; = {u € Z|y; > 0} forj=1,2,...,d
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Multifidelity polynomial chaos expansion (1/2)

¢ Assume we have two models that predict the system response at two different fidelity levels
P"9"(x) and P'°"(x), then trivially

Phigh(x) _ Plow(x) + (Phigh(x) _ Plow(x)) _ Plow(x) ¥ Pcorr(x)

¢ Constructing a PCE for both terms in the right-hand side, we obtain the multifidelity
polynomial chaos expansion (MF-PCE)

PYx) = Y aMu@+ D el u(é)

ueIlow ucIeor

where ¢ and Z'°", and ¢£°" and Z°°" are the coefficients and index sets of the low-fidelity
and the correction term respectively

« We require Z%" C T'°" so that (ideally) we require less expensive model evaluations to

compose the correction term PCE compared to the number of cheap model evaluations
required to compose the low-fidelity PCE
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Multifidelity polynomial chaos expansion (2/2)

e The MF-PCE can be rewritten as

PYx)= > (e +cMu€)+ D cvu(&)

ueZeor UEIIOW \_’Z‘corr

so that Sobol’ sensitivity indices can be extracted in the usual way
¢ The MF-PCE construction is more efficient if
The correction term is less complex than the high-fidelity model, resulting in a faster
decay of the PCE coefficients
The initial stochastic error (variance) for the correction term is lower, which is the result
if the low- and high-fidelity model are strongly correlated

e The variance of the correction term is
V[Pcorr(x)] - V[Phigh(x) _ PIOW(X)]
V[P (x)] + V[P (x)] — 2 cov(P"¥"(x), P"(x))
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Numerical experiments setup

e PISCES-A linear plasma device used to study scenarios relevant to divertor design in fusion

within each time step

* lon Energy-Angle Distribution (IEAD)
« cutoff energies of W and He
« surface binding energy W

« lattice parameter

* He radius
« sputtering yields W / He « interstitial bias factor
« reflection yields W / He = vacancy concentration

« implantation profile 8 migration energies
F-Tridyn

» material composition
« surface roughness

devices I
e 1D geometry with 256 grid cells, 1s of exposure, perform F-Tridyn and Xolotl in turn

* He retention
« surface growth

[ Xolotl
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PCE surrogate construction for F-Tridyn

e Construct surrogate model for F-Tridyn prediction of sputtering yield of tungsten

¢ PCE coefficients obtained using iterative BCS with 1000 training samples and 100 validation
samples, ~25 minutes per sample on 2 nodes (136 cores) on Cori

e Comparison of actual model output and PCE prediction shows good agreement

relative training error = 0.0288 /"
0.40f ) - e
relative validation error = 0.0311 e
> .
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e
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F-Tridyn output
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Global sensitivity analysis of F-Tridyn @

¢ Convergence of the total-effect Sobol’ sensitivity indices as a function of the number of
training samples I

¢ Values of the sensitivity indices stabilize after ~100 samples
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Multifidelity setup for F-Tridyn

« Samples of the high-fidelity model P"9"(x) use 100,000 particles
« Consider a low-fidelty model P°"(x) that uses only 10,000 particles, ~5 minutes per sample
¢ Correlogram between high-fidelity and low-fidelity model output shows good correlation
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Multifidelity global sensitivity analysis of F-Tridyn (1/2)

¢ Use the multifidelity PCE implementation in Dakota

¢ Values of the sensitivity indices stabilize after the equivalent of ~30 high-fidelity samples

total sensitivity index
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Multifidelity global sensitivity analysis of F-Tridyn (2/2)

¢ Use the multifidelity PCE implementation in Dakota

¢ Values of the sensitivity indices stabilize after the equivalent of ~30 high-fidelity samples
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Coupled Xolotl-FTridyn (1/2)

surface growth [nm]

¢ Qutput quantities of interest are surface growth and He retention as a function of time
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Coupled Xolotl-FTridyn (2/2) @ I
¢ Qutput quantities of interest are surface growth and He retention as a function of time
e lllustration of 25 randomly chosen output samples
 Apply moving-average filter to output signal with 5t = 0.1s to average over bubble bursts ‘
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PCE surrogate construction for coupled F-Tridyn-Xolotl

¢ Construct surrogate models for predictions of surface growth (left) and He retention (right)
¢ PCE coefficients obtained using iterative BCS with 799 training samples and 100 validation
samples, ~96 hours per sample on 2 nodes (136 cores) on Cori
¢ Agreement between model output and PCE prediction
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Global sensitivity analysis of coupled F-Tridyn-Xolotl (1/2) @

¢ Evolution of the sensitivity indices for surface growth (left) and He retention (right) as a I
function of time

e 3 parameters (beam energy, tungsten surface binding energy and migration parameter He¢)
are sufficient to explain > 99% of the variability in the output I
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Global sensitivity analysis of coupled F-Tridyn-Xolotl (2/2)

total sensitivity index

¢ Convergence of the sensitivity indices for surface growth and He retention

¢ Values of the sensitivity indices stabilize after ~500 samples
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Multifidelity global sensitivity analysis of of coupled F-Tridyn—Xolotl @

I
« Samples of the high-fidelity model P"9"(x) use He cluster network size of 250 I
¢ Consider a low-fidelty model that uses a smaller network size (less He clusters to be tracked) I
e Correlogram between high-fidelity and low-fidelity model output shows reasonable correlation

for surface growth I
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Multifidelity global sensitivity analysis of of coupled F-Tridyn—Xolotl

« Samples of the high-fidelity model P"9"(x) use He cluster network size of 250 I
¢ Consider a low-fidelty model that uses a smaller network size (less He clusters to be tracked) I

» Correlogram between high-fidelity and low-fidelity model output shows poor correlation for
surface growth
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Conclusion and future work

We performed global sensitivity analysis (GSA) of a coupled code used to predict the
material evolution in plasma-surface interactions

Our GSA approach uses polynomial chaos expansion (PCE) surrogate models

We investigated the use of multifidelity PCE methods to alleviate the computational cost, with
mixed success
o Multifidelity PCE construction yields computational savings for GSA of F-Tridyn code
in isolation
o Only single-level GSA results available for the coupled setting (bubble bursting events?)

Future research will focus on different experimental settings (ITER-He) and the use of other
potential fidelity parameters (e.g., grid spacing)
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Conclusion and future work

We performed global sensitivity analysis (GSA) of a coupled code used to predict the
material evolution in plasma-surface interactions

Our GSA approach uses polynomial chaos expansion (PCE) surrogate models

We investigated the use of multifidelity PCE methods to alleviate the computational cost, with
mixed success
o Multifidelity PCE construction yields computational savings for GSA of F-Tridyn code
in isolation
o Only single-level GSA results available for the coupled setting (bubble bursting events?)
Future research will focus on different experimental settings (ITER-He) and the use of other
potential fidelity parameters (e.g., grid spacing)

Thank you
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