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Plasma-surface interactions

Modeling and simulation of the interaction between the boundary plasma and the material
surface in a fusion device

Challenges are addressed in the PSI2 SciDAC project [Wirth et al., 2022]

SOLPS computation of plasma background conditions
hPIC sheath plasma computation and Ion Energy-Angle Distribution (IEAD)
GITR macroscopic global impurity transport computations
F-Tridyn ion-solid interaction particle-based simulations
Xolotl material surface evolution

Code coupling within the Integrated Plasma Simulation (IPS) framework [Elwasif et al., 2010]
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Plasma-surface interaction atomistic model
Tungsten ( ) lattice irradiated by helium atoms ( )

sputtering

vacancy

trapped He

redeposition

He bubbleW interstitial
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Simulation of plasma-surface interactions

Multi-physics coupled code simulates material evolution in plasma-surface interactions

F-Tridyn: Monte Carlo Binary Collision Approximation particle code for simulating ion
interactions with rough surfaces [Drobny et al., 2017]
Xolotl: spatially-dependent cluster dynamics code for simulating the PDEs that
describe the evolution of tungsten under irradiation [Blondel et al., 2017]

F-Tridyn

Xolotl

• sputtering yields W / He
• reflection yields W / He
• implantation profile

• material composition
• material roughness
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F-Tridyn–Xolotl interaction
F-Tridyn

Simulate ion-solid interactions by tracking the trajectories of energetic helium ions through a
tungsten target

Monte Carlo approach simulates individual particles (~ 100,000)

Quantities of interest are sputtering and reflection coefficients and implantation profile

Xolotl
Tungsten material represented by the concentration of He clusters at each spatial grid point

Reaction-diffusion equation for the evolution of the cluster concentrations

dC

dt
= φ · ρ

incoming He flux

−∇2(−D∇C + uC)

diffusion & drift

−Q(C)

reaction term

solved using finite difference approach in PETSc [Balay et al., 2022], parallelized using MPI

Quantities of interest are He retention and surface growth as a function of time

Surface evolution influenced by trap mutation (+), sputtering (–) and redeposition (+)
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Polynomial chaos expansions
A polynomial chaos expansion (PCE) surrogate model for the system response P(x) can be
written as

P(x) :=
∑
u∈I

cuψu(ξ)

where cu is a coefficient, ψu is a multivariate orthogonal polynomial in terms of the random
variables ξ = (ξ1, ξ2, . . . , ξd ) ∈ X ⊆ Rd

0 , and u ∈ Nd
0 is a multi-index [Xiu and Karniadakis,

2002] [Ghanem and Spanos, 2003]
Usually, the basis functions ψu(ξ) are orthonormal with respect to a weight function w(ξ),
i.e., ∫

X
w(ξ)ψur

(ξ)ψus
(ξ)dξ = δr ,s

where δr ,s is the Kronecker delta and ur and us are two multi-indices
When the random variables ξ are i.i.d., we can express the basis functions as

ψu(ξ) =
d∏

j=1

ψuj (ξj )
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Bayesian compressive sensing
Given ranges [aj , bj ] for the parameters xj , j = 1, 2, . . . , d , we assume the linear relation

xj =
aj + bj

2
+

bj − aj

2
ξj

and the ψu(ξ) are multivariate Legendre polynomials

Given a set of input-output measurements {(xn,P(xn))}N
n=1, the coefficients of the PCE can

be found using, e.g., least-squares regression

For a high number of dimensions d and a reasonably high polynomial order, the problem of
obtaining the coefficients c = {cu}u∈I is underdetermined

In Bayesian compressive sensing (BCS), we solve the regularized optimization
problem [Sargsyan et al., 2014]

argmax
c
{logLD(c)− α‖c‖1}

To further avoid overfitting, we use an iterative approach that gradually increases the index
set size and take the common basis terms from a number of different tries
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Global sensitivity analysis with polynomial chaos expansions

The mean and variance of the PCE can be computed directly from the coefficients

E
[
P(x)

]
= c0 and V

[
P(x)

]
=
∑
u∈I
u=/0

c2
u

In variance-based sensitivity analysis, we compute Sobol’ indices that express what amount
of the total output variance can be attributed to which (set of) parameters [Sobol, 2001]

The total-effect Sobol’ sensitivity indices can be extracted as

Stotal
j =

(
V
[
P(x)

])−1 ·
∑
u∈Jj

c2
u

where Jj = {u ∈ I|uj > 0} for j = 1, 2, . . . , d [Sudret, 2008] [Crestaux et al., 2009]
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Multifidelity polynomial chaos expansion (1/2)

Assume we have two models that predict the system response at two different fidelity levels
Phigh(x) and P low(x), then trivially

Phigh(x) = P low(x) + (Phigh(x)− P low(x)) = P low(x) + Pcorr(x)

Constructing a PCE for both terms in the right-hand side, we obtain the multifidelity
polynomial chaos expansion (MF-PCE) [Ng and Eldred, 2012]

Pmf(x) :=
∑

u∈I low

c low
u ψu(ξ) +

∑
u∈Icorr

ccorr
u ψu(ξ)

where c low
u and I low, and ccorr

u and Icorr are the coefficients and index sets of the low-fidelity
and the correction term respectively

We require Icorr ⊆ I low so that (ideally) we require less expensive model evaluations to
compose the correction term PCE compared to the number of cheap model evaluations
required to compose the low-fidelity PCE
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Multifidelity polynomial chaos expansion (2/2)
The MF-PCE can be rewritten as

Pmf(x) =
∑

u∈Icorr

(c low
u + ccorr

u )ψu(ξ) +
∑

u∈I low\Icorr

c low
u ψu(ξ)

so that Sobol’ sensitivity indices can be extracted in the usual way

The MF-PCE construction is more efficient if

1 The correction term is less complex than the high-fidelity model, resulting in a faster
decay of the PCE coefficients

2 The initial stochastic error (variance) for the correction term is lower, which is the result
if the low- and high-fidelity model are strongly correlated

The variance of the correction term is

V
[
Pcorr(x)

]
= V

[
Phigh(x)− P low(x)

]
= V

[
Phigh(x)

]
+ V
[
P low(x)

]
− 2 cov(Phigh(x),P low(x))
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Numerical experiments setup
PISCES-A linear plasma device used to study scenarios relevant to divertor design in fusion
devices

1D geometry with 256 grid cells, 1s of exposure, perform F-Tridyn and Xolotl in turn
within each time step

F-Tridyn

Xolotl

• sputtering yields W / He
• reflection yields W / He
• implantation profile

• material composition
• surface roughness

• Ion Energy-Angle Distribution (IEAD)
• cutoff energies of W and He
• surface binding energy W

• lattice parameter
• He radius
• interstitial bias factor
• vacancy concentration
• 8 migration energies

• He retention
• surface growth
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PCE surrogate construction for F-Tridyn
Construct surrogate model for F-Tridyn prediction of sputtering yield of tungsten
PCE coefficients obtained using iterative BCS with 1000 training samples and 100 validation
samples, ~25 minutes per sample on 2 nodes (136 cores) on Cori
Comparison of actual model output and PCE prediction shows good agreement
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Global sensitivity analysis of F-Tridyn
Convergence of the total-effect Sobol’ sensitivity indices as a function of the number of
training samples

Values of the sensitivity indices stabilize after ~100 samples
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Multifidelity setup for F-Tridyn
Samples of the high-fidelity model Phigh(x) use 100,000 particles

Consider a low-fidelty model P low(x) that uses only 10,000 particles, ~5 minutes per sample

Correlogram between high-fidelity and low-fidelity model output shows good correlation
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Multifidelity global sensitivity analysis of F-Tridyn (1/2)

Use the multifidelity PCE implementation in Dakota [Adams et al., 2021]

Values of the sensitivity indices stabilize after the equivalent of ~30 high-fidelity samples
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Multifidelity global sensitivity analysis of F-Tridyn (2/2)

Use the multifidelity PCE implementation in Dakota [Adams et al., 2021]

Values of the sensitivity indices stabilize after the equivalent of ~30 high-fidelity samples
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Coupled Xolotl-FTridyn (1/2)
Output quantities of interest are surface growth and He retention as a function of time

Illustration of 25 randomly chosen output samples

Apply moving-average filter to output signal with δt = 0.1s to average over bubble bursts
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Coupled Xolotl-FTridyn (2/2)

Output quantities of interest are surface growth and He retention as a function of time

Illustration of 25 randomly chosen output samples

Apply moving-average filter to output signal with δt = 0.1s to average over bubble bursts
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PCE surrogate construction for coupled F-Tridyn–Xolotl
Construct surrogate models for predictions of surface growth (left) and He retention (right)
PCE coefficients obtained using iterative BCS with 799 training samples and 100 validation
samples, ~96 hours per sample on 2 nodes (136 cores) on Cori
Agreement between model output and PCE prediction
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Global sensitivity analysis of coupled F-Tridyn–Xolotl (1/2)
Evolution of the sensitivity indices for surface growth (left) and He retention (right) as a
function of time
3 parameters (beam energy, tungsten surface binding energy and migration parameter He1)
are sufficient to explain > 99% of the variability in the output
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Global sensitivity analysis of coupled F-Tridyn–Xolotl (2/2)

Convergence of the sensitivity indices for surface growth and He retention

Values of the sensitivity indices stabilize after ~500 samples

17 of 22



Multifidelity global sensitivity analysis of of coupled F-Tridyn–Xolotl
Samples of the high-fidelity model Phigh(x) use He cluster network size of 250
Consider a low-fidelty model that uses a smaller network size (less He clusters to be tracked)
Correlogram between high-fidelity and low-fidelity model output shows reasonable correlation
for surface growth
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Multifidelity global sensitivity analysis of of coupled F-Tridyn–Xolotl
Samples of the high-fidelity model Phigh(x) use He cluster network size of 250
Consider a low-fidelty model that uses a smaller network size (less He clusters to be tracked)
Correlogram between high-fidelity and low-fidelity model output shows poor correlation for
surface growth
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Conclusion and future work

We performed global sensitivity analysis (GSA) of a coupled code used to predict the
material evolution in plasma-surface interactions

Our GSA approach uses polynomial chaos expansion (PCE) surrogate models

We investigated the use of multifidelity PCE methods to alleviate the computational cost, with
mixed success

Multifidelity PCE construction yields computational savings for GSA of F-Tridyn code
in isolation
Only single-level GSA results available for the coupled setting (bubble bursting events?)

Future research will focus on different experimental settings (ITER-He) and the use of other
potential fidelity parameters (e.g., grid spacing)

Thank you
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