Analyzing and Manipulating Data with the PyData Stack

This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed.in,
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Growing set of open-source tools in Python

« PyData tools to import and manipulate battery data
*  NumPy: Optimized mathematical functions
* Pandas: Data analysis and manipulations tool
* Matplotlib: easy plotting
* Plotly: plotting library with finer controls
* Jupyter Notebook (JN): Present data and analysis in annotated notebook

« Web tools to visualize, compare and share data
* Redash: Open source web app to visualize data from any source
* Battery Lifecycle Framework: Battery-specific implementation of Redash and Data importers

« Data tools to consolidate and exchange data
* JSON data exchange
* SQL to extract data

« Approaches to compare experimental and model results (more details in the other sessions)
* Degradation simulation packages: PyBaMM
* Synthetic data
* Machine learning tools



Outline

- Example 1: Simple manipulations
- Upload Arbin data
- Visualize key cell data
Export the data and generate additional statistics
« Run degradation simulations with PyBaMM

- Example 2: Compare with synthetic data
«  Why synthetic data
Start from data in the dashboard
- Match cell degradation with synthetic data

. Example 3: Use 3™ party models and data (if time)
- Dataset description: Abuse data
Framework description
« Load and use a machine learning model



Materials and environment

- All the data and materials used in the examples
. https://github.com/battery-data-commons/mrs-sp22-tutorial

.- Battery Life Cycle framework: Open-source packages used in the tutorial
. https://github.com/battery-Icf

- Amplabs: Example of the Battery Life Cycle framework in a hosted environment|

. https://tinyurl.com/mrs-amplab

The slides provide background on the case studies and packages that will be used in the tutorial Python examples.

The full details of implementation are provided in the Jupyter Notebook


https://github.com/battery-data-commons/mrs-sp22-tutorial
https://github.com/battery-lcf
https://tinyurl.com/mrs-amplab

Example 1: Import and visualize the data

The Battery Lifecycle (BLC) Framework is an open-source platform that
provides tools to visualize, analyze, and share battery data through the
technology development cycle, including data from material
characterization, cell testing, manufacturing, and field testing.

L AmplLabs

https://ecsarxiv.org/h7c24/
https://github.com/battery-Icf
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https://github.com/battery-lcf

Example 1: Public data on batteryarchive.org

Another example application of the BLC Framework is
Battery Archive, a public repository of large datasets of
battery data. - ‘

https://www.batteryarchive.org - —
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Cell and test metadata are displayed in a table format Standard battery plots generated automatically ‘
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https://www.batteryarchive.org

Example 1.a: Download and use the data

The snippet below shows how to retrieve data from AmpLabs and manipulate it in a Jupyter Notebook to generate new graphs.

v [147] def get_amplabs_cycledata(user, cell id):
cycle data_url = 'https://www.amplabs.ai/download/cells/cycle data json/'
url = "{}{}".format(cycle data url,cell id)
httprequest = urllib.request.Request|
url, method="GET"

)

httprequest.add_header("Coockie", "userId={}".format(user))
try:
with urllib.request.urlopen(httprequest) as httpresponse:
response = json.loads(httpresponse.read())
return response, 1
except urllib.error.HTTPError as e:
print(e)
return None, 0
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Example 1.a: Jupyter Notebook live demo



Example 1.b: PyBaMM

PyBaMM (Python Battery Mathematical Modelling) is an open source Python library provided by the Faraday Institution that can solve E

physics-based electrochemical DAE models by using state-of-the-art automatic differentiation and numerical solvers (DFN/SPM). The

software was developed by Valentin Sulzer (now at U Chicago) https://github.com/pybamm-team/PyBaMM I
i

Sulzer, V., Marquis, S. G., Timmes, R., Robinson, M., & Chapman, S. J. (2021). Python Battery Mathematical Modelling (PyBaMM). Journal of Open
Research Software, 9(1).

PyBaMM can be set up to run cycling protocols as shown in the Jupyter Notebook example or application profiles as shown in the Figure. In the tutorial,
simulation and experimental results will be compared.

« Tutorial 5 - Run experiments

Current [A] Terminal voltage [V]
. a3
In Tutorial 4 we saw how to change the parameters, including the applied current. However, in some cases we might want to prescribe a given
voltage, a given power or switch between different conditions to simulate experimental setups. We can use the Experiment class for these
simulations. “ .
ipip inetall pybamm -gq # inatall PyBaMM if it is not installed "
import pybamm
Hote: you may need to restart the kernel to use updated packages.
We start defining an experiment, which consists on a set of instructions on how to cycle the battery. For example, we can set the following
experiment: ] ‘I
[ 1 experiment = pybamm.Experiment | (
- . I
' - 14
-4 I
o 200 a0 s00 _ 20 i-l_'ll [10a]
Time [s5] Time [5]
! Tane [s] [T e S —"
A cycle is defined by a tuple of operating instructions. In this case, the experiment consists of a cycle of constant current C/10 discharge, a one
hour rest, a constant current (1 A) constant voltage (4.1 V) and anather one hour rest, all of it repeated three times (notice the * 3) Slmu |ation Of the DFN mOdel USi ng a d rive CyC|e as
Then we can choose our model . t t
INput current. 9
model = pybamm. lithium ilon.DEN({)


https://github.com/pybamm-team/PyBaMM

Example 1.b: Jupyter Notebook live demo



Example 2: Degradation paths

Problem:

* Accurate lithium battery diagnosis and prognosis is complex

« Battery degradation is intricate, nonlinear, and path-dependent

« Data-driven models play a significant role but are limited by the amount of training data available

Synthetic datasets can be orders of magnitude larger than experimental datasets and provide significant opportunity for battery
degradation analysis.

In the tutorial, we will show how Python tools can be used to combine synthetic and experimental degradation data to evaluate the underlying
degradation pathways for the experimental data.
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https://doi.org/10.1016/j.jpowsour.2020.228806
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xample 2: Experimental data

Data for LFP experimental cells at 3 temperatures (15, 25, and 35 °C) for comparison with the synthetic data
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Capacity fade curves can be presented as different combinations of LLI (loss of lithium inventory), LAMpe (loss of active material, positive
electrode), and LAMne (loss of active material, negative electrode).

Example 2: Synthetic data E
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Example 2: Jupyter Notebook live demo



Example 3: Build compatible tools

Data on AmpLabs Models built by ORNL HINND GRS CEIEIElle
model predictions
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Example 3: Mechanical abuse data
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Example 3: Performance of the ML model
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Example 3: Jupyter Notebook live demo



Hands-on session in the afternoon

Download the required code from GitHub to reproduce any of the 3 examples
https://github.com/battery-lcf/mrs-tutorial-05-22

Bring your data: CSV with time, cycle number, voltage, and current
Bring requests for stats, graphs, analysis, or anything else
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