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‘ Degradation in Li-ion Batteries
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Conductivity Loss (CL) Loss of Lithium Inventory (LLI) Loss of Active Material (LAM)
 Current collector corrosion - Li-plating * Metal dissolution
* Decomposition of binder « SEI layer formation * Phase change of electrode material
* Pulverization of electrode



Unknowns about Cell Degradation Prevent Optimal Use

*Manufacturer spec sheets focus on safe operating limits, not performance
*Unaddressed questions:

- What are optimal cycling conditions for each cell chemistry?

* How do cells behave beyond 80% initial capacity?

- What causes rapid capacity fade in cells at different conditions?

* How does safety change with increased cycling?



Broad Study of Li-ion Cycling
to Understand Performance and Degradation

Approach
1. Cycled 18650 format cells to 80% initial capacity! and now, to end of life (EOL) of 40% initial
capacity

2. Electrochemical characterization during cycling
3. Materials characterization on selected cells at 80% capacity and EOL

Preger et al. “Degradation of Commercial Lithium-lon Cells as a Function of Chemistry and Cycling Conditions” J. Electrochem. Soc., 2020, 167, 120532.



Broad Study of Li-ion Cycling

to Understand Performance and Degradation

Approach

1. Cycled 18650 format cells to 80% initial capacity’ and now, to end of life (EOL) 40% initial
capacity

2. Electrochemical characterization during cycling
3. Materials characterization on selected cells at 80% capacity and EOL

Battery LFP* NCA NMC
(A123) (Panasonic) (LG NCA NMC
Chem) >

Capacity 1.1 Ah 3.2 Ah 3.0 Ah
Voltage 3.3V 3.6V 3.6V
Max 30A 6 A 20A
Discharge
Current
Operating -30 to 0 to 45°C 0 to 50°C
T 60°C

*LFP cells have not reached 80% and will not be discussed here




7 1 Cycling Conditions and Procedure

*At least 2 cells cycled at each condition

*Capacity check done at beginning and
end of each round of cycling

*Electrochemical Impedance
Spectroscopy (EIS) done after every
3% decrease in capacity

*Cycling done by Arbin Battery cyclers

Cycling Conditions

DOD, Temperature, Discharge Rate*

40-60%, 25°C, 0.5C

0-100%, 15°C, 1C_ [ 0-100%, 15°C, 2C

40-60%, 25°C, 3C

20-80%, 25°C, 0.5C

0-100%, 25°C, 1C [ 0-100%, 25°C, 2C

20-80%, 25°C, 3C

0-100%, 25°C, 0.5C

0-100%, 35°C, 1C [ 0-100%, 35°C, 2C

0-100%, 25°C, 3C

*0.5C charge rate for all



Characterization Work Flow

Prior to

Disassembly

Electrochemical Incremental X-Ray Computed
Tomography

Impedance Capacity Analysis (XCT) At 0% SOC
Spectroscopy (EIS) (ICA)

During Cycling
Cell Disassembly

0 and 100% SOC
(1 full cycle at

Every 3% Decline in Every Round of
Capacity Cycling

Post Mortem
Energy

Dispersive Inductively
Spectroscopy Coupled Plasma
(EDS) Optical Emission
Powder Scrapped : Spectroscopy
from Current MIELSITE @ G Mapping and Semi (ICP)

Collector (CC) Sl DA ol -Quantitative

X-Ray Diffraction
(XRD)

Scanning Electron
Microscopy (SEM)




Correlating Materials and Electrochemical Changes to
9 Understand Variations in Capacity Fade

Capacity Fade
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10

Topline Conclusion: Loss of Lithium Inventory in Cells
Dominates Capacity Fade During Cycling to 80% Capacity

*Trends in capacity fade data correlate well with electrochemical and materials
degradation trends

*LLI generally dominates degradation to 80% capacity
* Mechanism of LLI changes for NMC cells but not NCA cells

*LAM was significant in the most rapid decay conditions
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Topline Conclusion: Loss of Lithium Inventory in Cells
Dominates Capacity Fade During Cycling to 80% Capacity

*Trends in capacity fade data correlate well with electrochemical and materials
degradation trends

*LLI generally dominates degradation to 80% capacity
* Mechanism of LLI changes for NMC cells but not NCA cells

*LAM was significant in the most rapid decay conditions

Will illustrate these trends by looking at NMC cells cycled at different temperatures
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Trends in NMC Cycling

*‘NMC Cells show increased loss of
capacity at lower temperatures
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i3 1 ICA of NNMC Shows LLI Dominates Degradation at
Higher Temperatures.

o

- 25°C

Incremental
Capacity (Ah/V)
nhn o

o

Incremental
Capacity (Ah/V)
n o

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Voltage (V)

T T T T T T T 300 .
LLI LAM

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2.6 2.8 3
Voltage (V) Voltage (V)



14 1 ICA of NMC Cells at 15C Shows that LLI and LAM at the
PE likely Occur

5 15°C
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ICP of NMC NEs Show LLI and LAMpe Increase at Lower

15 I Temperatures

Li Concentration in NE by Temperature

25°C

15°C
Li stranded in the NE increases with decreasing
temperature

*15°C cell Li content is double that of the uncycled
cell

3.5

) I I

0
Uncycled 35°C

- M
[3,] M o w

Li Concentration
(mol/kg)

—

Mn Concentration

Mn Concentration in NE by Temperature

T
25 * 10

1.5

1
0-5 .II
a

Uncycled 35°C 25°C 15°C

{mol/kg)

*Mn diffusion to the NE increases consistently
as temperature decreases
* Mn in the NE more than double from uncycled to
15°C

*15°C cell is only cell analyzed to observe Co
A et amn A N



16 I Semi-quantitative EDS Analysis shows SEI Formation is
Unlikely below 35°C

*Florine and sulfur are elements generally 0000

associated with SEI layer formation 5000

*For the 15 and 25°C cells we see that Fand &

S decrease relative to the uncycled cell §4000
O

F and S only increase at 35°C suggesting >3000 |

that this is the only condition with significant @

SEI formation £ 2000

*May indicate that at lower temperatures Li-
plating is occurring 1000 -

*Suggesting that the mechanism of LLI is 0
temperature dependent as has been Uncycled 15°C 25°C 35°C
observed by Walmann et al previously
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17 I NMC PE Crystallite Size Decreases at Lower

Temperatures
280
270 -
At lower temperatures NMC crystallite size
decreases B 60l
* 15°C cell showing a 11Ang decrease 2
T D
At 35°C the crystallite size actually increases Va{ g 20
by 4Ang &)
. - g 240
*Suggesting that the NMC material is very =

sensitive to temperature

* Lower temperatures will increase the amount of
LAMpe
220

 Higher temperatures may heal LAMpe that Uncycled
occured

230

15°C 25°C 35°C



; ‘ NMC Degradation is Dominated by LLI and LAMpe at

Lower Temperatures

All Cells

ICA 35 °C Cell

N/A

N/A

N/A
ICP- N/A
OES
XCT Increases with Decreased

Temp

All Cells
All Cells
Increases with Decreased
Temp
All Cells
All Cells
Increases with Decreased
Temp
N/A

15 °C Cell
15 °C Cell PE

15 °C Cell PE
N/A
Increases with Decreased
Temp
N/A

!



Materials and Electrochemical Changes can be Correlated to
Understand Degradation Mechanisms

Conclusions

- Capacity fade correlates well with electrochemical and materials
analysis

*LLI is the dominant degradation mode to 80% capacity

* In NMC cells LLI mechanisms is Li-plating at low temperatures and moves
to SEI formation at high temperatures

* Rapid capacity fade appears to be combination of LLI and LAM

Next steps
* Complete cycling study down to end of life

* Repeat characterization work
* Abuse testing of aged cells
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