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Background & Motivation

predict material properties and performance.

A comprehensive understanding of material behavior at high pressures and strain rates is needed in order to
validate material models and inform the development of material models that are microstructurally aware to

LENS® microstructure differs dramatically from
wrought 304L microstructure - Highly textured,
Large grain size, High residual stress, Subgrain
structure

Focused laser
beam ___
Powder feed —— 1%, Width

Increase in strength is reduced
(compared to wrought) when tested
Layer Thickness at increasingly high strain rates.

600 - .

o

Scan direction (x)

Velocity (km/s)

-

i LENS3.8kW -
400; ‘;—«////// ////l

. Wrought

300 [

200

Yield strength (MPa)

100 | .
r  Compression

0 %Hw%&mﬂ—&w%ﬂ—wmﬂ—wwﬂ—wﬂ—nqﬂﬂq
10 0.001 0.1 10 1000

Rate, s’

0.36

0.32

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.00

-0.04

Il Wice

Shots SS304L-10G15,11G15,12G15: Free-Surface VISAR Data

T

w

— Commercially Wrought 304L SS

Fra \\ L/ N
=\ AN A
VAN

/ 10G15 \ %—7 \:f :’;% |

\_ 7 \J
\:E."'“‘*EJ/’ DO..

— X-cut AM 304L SS
— Z-cut AM 304L 58

01 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 18 I

t - tye (Microsec)

Spall strength:

X-cut (3.27 — 3.36 GPa) ﬁ
Z-cut (3.71 - 3.91 GPa)
Wrought (2.63 — 2.88 GPa)

3



Measuring Material Strength e

P2+pP1

For A<O (p1>p2)’ can invert Dynamic Interface Instabilities
* Arise at interfaces between dissimilar materials i.e. gases, liquids, solids

* Shear, gravitational and shock instabilities

* Instabilities probe surface tension, viscosity and strength effects of

materials behavior Dimonte et al. (2011). Phys. Rev. Let.
> Kelvin-Helmholtz Instability — shearing Buttler et al. (2012). J. Fluid Mech.
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Velocimetry and Radiography Diagnostics

Photonic Doppler Velocimetry Propagation Based Phase Contrast Imaging

w(FFT)= 2048 —6 ns
1.28 ns sampling.
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Typical RMI Geometries
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* Perturbations specified by non-dimensional geometry with
wavenumber (k) defined by wavelength (A) and amplitude (n,).

* Sinewave Perturbations machined by electro-discharge machining.
» EDM - recast layer and heat affected zone (HAZ).

» Surface effects and contaminates altering surface tension,
viscosity and strength = change material properties!




Dave Adams (SNL, 1832)

Characterization of Brass EDM Surface

Historically...

» Recast layer contain molten metal particles re-deposited on surface.
» HAZ and recast layer can contain microcracks leading to
stress failures.

Observed Here...
» Minimal recast layer (<5 microns)
> Micro-cracks are non-existent

» Slight variation in microstructure 10-20 microns deep.
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R M | EX p e r| me ntS Advanced Photon Source

DCS a user facility (WSU operated) designed to optimally link dynamic

N S "-‘ compression platforms to a dedicated synchrotron beamline. |
/ 1550 PDV \
Probes .
Beam 2D Slit&  garies of 80 ps width I
Splitter Sample/Wihdo Shthters X—ray bunches !
ICCD 1 |] H#’/ X-ray (25 keV)
ICCD 4 I «— Beam

Scintillator f . 153.4 ns apart
= Single- and two-stage gas guns, laser \ PZT J

shock capability, multi-event hutch Projectilef ]
L

= Beam line is optimized to allow for single
pulse (80-ps width) X-ray imaging and
diffraction measurements on many
materials 8 Frame Temporal Resolution at 153.4 ns

Typical Operating Energy ~23 keV

= Focus on time-resolved, in-situ diffraction Beam Size 12.6 x 7.7 microns
and imaging measurements; simultaneous
continuum measurements

FOV of ~1.7-2.2 mm?



What Role Does Microstructure Play?

Wavenumber = 0.63
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* Perturbations on the scale of individual grains = no difference in response

* New geometry incorporates multiple grains at point of instability formation 2>
develop understanding of how grain interactions affect strength.

Parallel to laser

« Mapping of grains in immediate proximity = microstructurally aware models !
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Shock Compression Experiments (~21.1 GPa
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Shock Compression Experiments (~24.5 GPa
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Shock Compression Experiments (~28.5 GPa
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Tim Ruggles (1819), John Mictchell (1444) &

Incorporating Microstructure i srown (1646,

EBSD Materials Characterization SPPARKS AM Microstructure Simulations

Microstructurally Aware ALEGRA Simulations

Mesh of grain-based
material properties does
not work properly for
non-cartesian meshes
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All IPF color maps are given with respect to the z direction
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Work in Progress!
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Modeling the Effect of Microstructure and Failure

Method Stewart Silling (1444)
* 3D meshless peridynamic code Emu?.
* Voronoi cells are mapped into grain shapes representative of AM.
* Grain fracture criteria follow a random distribution.
* Crystal plasticity model? is used with random lattice orientations.
* Includes strain hardening, rate dependence, thermal softening, damage
e Spall Kinetics model is used (but it turns out that spall does not occur significantly near the jets).
* 3 forms of 304-L stainless steel are impacted at 1150m/s:
e X-cut AM, Z-cut AM, Wrought

Artificial microstructures

Wrought

1. S.A.Silling et al., Intl. Journal of Impact Engineering (2017)
2. P.J. Maudlin and S.K. Schiferl, Computer methods in applied mechanics and engineering (1996)



Microstructural Deformation and Stress (X-cut)

Stewart Silling (1444) I

Grains Von Mises (shear) stress Tensile strain ‘
White = 1200MPa White = 300%
i
|
* Shear stress is large as the jets form. ‘
* Tensile strain becomes large within the jets as they grow.



Jet Shape for Different Impact Directions

Wrought

rimpact 1061 ns after impact

Microstructure influences jet shape!

Stewart Silling (1444)




Conclusions

* Phase contrast imaging enables the visualization of distinct jet behavior in RMI experiments
that cannot be observed through traditional velocimetry techniques.

« Material properties such as surface tension, viscosity and strength effects can be probed in
order to calibrate constitutive models.

> Later time failure mechanisms can be accounted for in model using Peridynamics.
» Microstructure does influence constitutive properties

» Further our understanding of how microstructure for AM materials effects material behavior and
properties.
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