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ABSTRACT

New and novel HPC platforms provide interesting challenges and
opportunities. Analysis of these systems can provide a better un-
derstanding of both the specific platform being studied as well
as large-scale systems in general. Arm is one such architecture
that has been explored in HPC for several years, however little is
still known about its viability for supporting large-scale produc-
tion workloads in terms of system reliability. The Astra system at
Sandia National Laboratories was the first public peta-FLOPS Arm-
based system on the Top500 and has been successfully running
production HPC applications for a couple of years. In this paper,
we analyze memory failure data collected from Astra while the
system was in production running unclassified applications. This
analysis revealed several interesting contributions related to both
the Arm platform and to HPC systems in general. First, we out-
line the number of components replaced due to reliability issues in
standing-up this first-of-its-kind, large-scale HPC system. We show
the distribution differences between correctable DRAM faults and
errors on Astra, showing that, not properly accounting for faults
can lead to erroneous conclusions. Additionally, we characterize
DRAM faults on the system and show contrary to existing work
that memory faults are uniformly distributed across CPU socket,
DRAM column, bank and rack region, but are not uniform across
node, DIMM rank, DIMM slot on the motherboard, and system rack:
some racks, ranks and DIMM slots experience more faults than oth-
ers. Similarly, we show the impact of temperature and power on
DRAM correctable errors. Finally, we make a detailed comparison
of results presented here with the positional affects found in several
previous large-scale reliability studies. The results of this analysis
provide valuable guidance to organizations standing-up first-in-
class platforms in HPC, organizations using Arm in HPC, and the
entire large-scale HPC community in general.
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1 INTRODUCTION

In the continued march of High-Performance Computing (HPC)
toward ever-increasing performance in pursuit of Exascale, many
novel node architectures and technologies are being explored [26,
35]. These new and novel platforms provide interesting challenges
and important opportunities due to their diversity of features. Anal-
ysis of these existing production systems can provide critical un-
derstanding of both the specific platform being studied, as well
as large-scale HPC systems more generally. Arm is one such new
platform currently being investigated for its ability to support HPC
workloads.

The Astra system at Sandia National Laboratories was the first
public peta-FLOPS, Arm-based system on the Top500. At 2592 nodes,
Astra is sufficiently large to enable us to develop an understanding
of the potential risks of deploying and utilizing an exascale Arm-
based system. The scale of this system is believed to adequately
balance cost with the ability to mitigate risk by proving the via-
bility of Department of Energy (DOE) National Nuclear Security
Administration (NNSA) workloads on these systems.

While Astra has demonstrated the viability of the platform and
the Arm processor to support production workloads [24], little is
known about its ability to provide the system reliability necessary
to support large-scale production workloads. This is particularly
relevant given the large number of memory channels found on
Astra. In this paper, we analyze initial failure and environmental
data from Astra that was collected while the system was in produc-
tion running unclassified applications. The analysis in this paper
focuses on memory reliability because this is the primary source
of on-node hardware failure on this and previous large-scale HPC
systems [13-15, 29, 31, 33, 34]. The results of our analysis provide
valuable guidance to organizations standing-up first-in-class plat-
forms in HPC, organizations using Arm in HPC, and the entire
large-scale HPC community in general including the following
contributions:

o To the best of our knowledge, the first memory failure study
for a large-scale HPC Arm system. This is key to evaluating
the performance of Arm as it is becoming more popular in
HPC.

o A detailed tally of the hardware components replaced in
the early hardware stabilization periods (the so-called infant
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mortality period) (§3.1), key in understanding the cost of
standing up a typical first-in-its-class, HPC system.

o A detailed analysis of the distribution differences between
correctable DRAM faults and errors on Astra, showing that
not properly accounting for faults can lead to erroneous
conclusions (§3.2).

o A detailed analysis that shows, contrary to previous studies,
memory faults are fairly uniform across CPU socket, DRAM
column, DRAM bank, and region within a rack but are less
uniform across node, DRAM slot, and cabinet within a sys-
tem (§3.2 and §3.4). This result is important to designing
effective failure mitigation methods.

o The impact of temperature and power on DRAM correctable
errors. Contrary to previous work, we show that there is
not a strong correlation between higher temperatures and
correctable memory error rate (§3.3).

o A detailed comparison of results presented here with the
positional effects found in several previous large-scale reli-
ability studies (§3.4), helping place this work in context to
other analyses.

e The public release of the failure and environmental data
presented here for verification and use in the research com-
munity available at [7].

Similar to existing works[13, 31, 33, 34], we utilize a well-established

methodology for our reliability study. First, we extract relevant reli-
ability information from the various system logs. Then, we process
these extracted logs to reach the conclusions described in this paper.
This work differs from previous work in several important ways.
First, this is the first public study of a large-scale Arm-based HPC
system. Second, along with the reliability data, we analyze detailed
environmental data collected on Astra. Finally, the reliability and
environmental data discussed in this work will be made publicly
available at [7], following publication.

While we believe this work makes several significant contribu-
tions, a few limitations exist. First, the results in this paper are
for a specific Arm-based HPC platform running a specific set of
workloads that are specific to Sandia National Laboratories. While
we believe this is an appropriate proxy for other Arm-based HPC
systems, results from systems with significantly different usage
patterns and environmental conditions may vary considerably. Ad-
ditionally, the reliability of low-level system components can vary
significantly by manufacturer [34] and date of manufacture. As a
result, extreme care is required when trying to use our to data to
predict the behavior and performance of similar systems.

2 BACKGROUND

In this section, we provide background information on our method-
ology and on the system we used to collect the data that we analyze
in this paper.

2.1 Terminology

In this work, we distinguish between a fault and an error as fol-
lows [1]. A fault is the underlying cause of an error, such as a
stuck-at bit. Faults can be active (leading to errors), or dormant
(not causing errors). An error is incorrect state resulting from an
active fault. Errors may be detected and possibly corrected, called

¥ o |
oo |
r ] 0 3
| Zcavum 2 canum
|
Front of System | THUNDERY 2 THUNDERY 2 Back of System
CPU2 cPur |
) ¥ oo
oo |
o]

Figure 1: Physical layout of DIMM and CPU slots on Astra.
Unlike some older supercomputers (e.g., Cielo), cooling in
Astra flows from front to back rather than bottom to top.

a correctable error (CE)) by mechanisms such as parity or error
correcting codes (ECC). They may also go uncorrected, called a
detected uncorrectable error (DUE). Errors can also be completely
undetected (i.e., silent), but these are beyond the scope of this work.

Similar to prior studies, we identify several unique DRAM fault
modes: single-bit, in which all errors map to a single bit; single-
word, in which all errors map to a single word; single-column, in
which all errors map to a single column; single-row, in which all
errors map to a single row of DRAM; and single-bank, in which all
errors map to a single DRAM bank.

2.2 The Astra Platform Details

Astra [24] consists of 2,592 dual-socket compute nodes totaling
145,152 cores with an aggregate theoretical peak compute perfor-
mance of 2.3 PF/s. Astra consists of 36 racks containing 72 compute
nodes each. Each rack on Astra contains 18 chassis, with each chas-
sis containing 4 nodes. Astra was designed to be well-balanced and
large enough to attract a broad set of users with diverse applica-
tions to the platform. An overarching goal of the project was to
demonstrate the viability of the Arm architecture for supporting
NNSA large-scale HPC modeling and simulation workloads.

Each Astra compute node employs two sockets, each with a 28-
core Marvell CN9975-2000 ThunderX2 processor [19] running at
2.0 GHz. One of the key features of the node architecture is the
inclusion of eight memory channels per socket, versus the typical
six offered by comparable general-purpose processors available at
the time of its procurement. By utilizing 8 GB DDR4-2666 dual-rank
registered DIMMs, one DIMM per memory channel, the resulting
aggregate memory capacity of Astra reaches 332 TB with an aggre-
gate memory bandwidth of 885 TB/s. Unlike many HPC platforms
of its size, Astra does not utilize Chipkill [4] to protect the contents
of its DRAM,; it uses the cheaper and less power-hungry single-
error-correction, double-error-detection (SEC-DED) ECC.

Each compute node of Astra includes six temperature sensors:
one CPU temperature sensor and two DIMM temperature sensors
per socket. The DIMM sensors are each positioned to measure the
temperature for a group of 4 DIMM slots: DIMM slots A, C, E and
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Figure 2: Histogram of sensor values from May 20 to September 19, 2019.

G share one temperature sensor; DIMM slots I, K, M and O share a
sensor; DIMM slots H, F, D and B share a sensor; and DIMM slots J,
L, N and P share a sensor. Each compute node also has a sensor that
measures the DC power consumed by the node. Data from these
sensors are collected once per minute and stored in a back-end
database. The physical layout of the DIMM and CPU slots relative
to how the system is cooled is shown in Figure 1.

The distribution of the data collected from these sensors is shown
in Figure 2. For all of our sensor data, there are instances where the
sensors were either not functioning or were not properly read. For
obvious reasons, we exclude these data points from our analysis.
Additionally, there were several instances where the DC power
sensors recorded values that were clearly identified as invalid. We
also exclude these values from our analysis. In all of our datasets,
the number of excluded sensor samples was significantly less than
1% of the total.

2.3 Error Logging

Correctable errors are logged internally, with space for a limited
number of errors. Once logging space is full, further CEs may be
dropped. This logging space is read periodically by the operating
system via a polling mechanism that runs every few seconds. Once
read, the details of the CE are written to the syslog. Uncorrectable
errors are recorded via a machine check and logged to the syslog
or serial console depending on the severity. This typically means
that uncorrectable errors are seldom lost, unlike correctable errors.

Unless otherwise noted, our failure analysis spans an interval
of time from January 20, 2019 to September 14, 2019 when the sys-
tem was moved to a closed network. During this time, Astra was
undergoing a production stabilization period where users were en-
couraged to stress the machine to shake out hardware and software
issues.

2.4 Open Source Data for Astra

As stated previously, both the memory error and associated envi-
ronmental data used in this work will be available upon publication.
Specifically, we will provide text files containing both the mem-
ory failure telemetry information extracted from the system logs
and the environmental sensor data extracted from the baseboard
management controller (BMC) log files. The failure data includes a

Table 1: Astra component replacements from Feb 17, 2019 to
Sep 17, 2019.

Component Number Replaced Percent of Total
Processors 836 16.1% of 5184
Motherboards 46 1.8% of 2592
DIMMS 1515 3.7% of 41472

timestamp, node ID, socket, type of failure, DIMM slot, row, rank,
bank, bit position, physical address and vendor-specific syndrome
data. For environmental data, we include per-node power draw and
temperature readings for 6 sensors located on each node, see Sec-
tion 2.2 for details on the available temperature sensors. Data was
collected from each sensor once per minute and a timestamp was
included for each reading. The total volume of the data analyzed in
this paper is approximately 8 GiB. These data will be made available
at [7].

3 RESULTS
3.1 Hardware Replacement due to Reliability

We first look at the hardware replacements on Astra to get an idea of
initial reliability and hardware infant mortality. We believe that this
data is not indicative of low quality parts or poor quality control,
but is typical of a first-in-class architecture like Astra constructed
from current technology parts [24]. Our experiences suggests these
one-of-a-kind designs are largely field-tested at scale where ad-
ditional engineering issues arise. Table 1 and Figure 3 show the
major component hardware replacement numbers from Feb 17,
2019 to Sep 17, 2019 when system stabilization was underway on
the system and before the system was relocated to a closed net-
work. Component replacements were detected by analyzing the
site’s daily inventory scan logs. These are components that were
deemed defective and impacting system performance/reliability.
The possibly surprising result is the volume of processors in need
of replacement. While we have little external data to compare to as
this type of data is rarely publicly released, the belief in the field is
likely the DIMMs are more frequently replaced than processors. For
Astra, the number of processor replacements was elevated due to a
memory controller speed upgrade that was performed in the field.
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Figure 3: Distribution of hardware replacements by day. For each of these components, a significant number of replacements
were performed during the initial bring-up period (i.e., infant mortality). Subsequent spikes in replacements occurred as

component-specific issues were identified.

Not all of the processors were able to support the increased speed
and thus required replacement. We believe the public release of this
aggregate data is important to system designers and data-centers
to get an idea of the total cost involved in standing up new and
novel systems.

Figures 3a to 3c show the daily count of hardware replacements
from our inventory tracking system for processors, motherboard,
and DIMMs, respectively. For the motherboard and processor re-
placement data, we note two periods of heavy replacement that are
not coincident in time. The first for both was the beginning of our
tracking period which coincides with the commencement of the
stabilization period and can be viewed as the initial hardware infant
mortality. The second uptick occurred after several months of heavy
use in both cases. For processors, the second uptick in replacements
occurred due to the memory controller speed upgrades outlined
previously. For motherboards, this second uptick in replacements
occurred after several months of sustained use.

For the DIMM replacement data in Figure 3c, trends are not
so easily described. First, we do see an increased infant mortality
replacement rate with the first month of this testing period. Also,
the daily replacement rates are quite high in the middle of this
testing interval, likely due to several cooling issues that were ad-
dressed during this period. Lastly, we see a constant and consistent
replacement trend in the later section of our testing period which
we believe is due to normal aging of some memory parts under
heavy use. For all figures, the replacements that occurred at the
end of our testing period correspond to a time when vendor repre-
sentatives were on-site to address hardware issues and were done
in preparation of the system being moved to a closed network.

3.2 Correctable DRAM Faults and Errors

In this section we examine correctable DRAM faults and errors (see
Section 2.1 for details) found on Astra. First we examine the total
number of faults and errors on the system in this interval in time.

Astra DRAM Fault Modes. Figure 4a shows a breakdown of DRAM
fault modes experienced in the Astra system. Similar to other stud-
ies in this area, we identify several unique DRAM fault modes:
single-bit, in which all errors map to a single bit in the DRAM

device; single-word, in which all errors map to a single word in
the device; single-column, in which all errors map to a single col-
umn; and single-bank, in which all errors map to a single bank.
Other studies also investigated single-row, multiple rank and mul-
tiple bank faults, but analysis for these rare errors is not possible
on our system. For single-row, in this interval of time the system
does not provide proper row information in the correctable error
record passed to the syslog, so this analysis was not possible. For
multiple-rank and multiple-bank errors, in our SEC-DED protected
memory these errors would manifest as uncorrectable memory
errors because of the number of corrupted bits.

Overall from this figure we see the system experienced over
4,369, 731 total correctable DRAM errors, or around six per node per
day, on average. Of those errors, 1,412, 738 of them were single-bit
faults, 31, 055 were single word faults, 54, 126 were single-column
fault, and 7, 658 were single-bank faults. One other property to
note is that in this interval of time when the Astra system was in
a production environment, the number of faults show a slightly
downward trend as time progresses. This demonstrates that good
system administrative practices and advanced system software fea-
tures, like page retirement [36], are effective at helping to maintain
system reliability.

Figure 4b is a violin plot that gives an idea on the density of
errors per fault for this period of time. From the figure we make
two observations: 1) The vast majority of the correctable faults
resulted in only one error, and 2) The maximum number of errors
for a particular fault resulted in over 91, 000 errors.

The results of these two plots are significant and important to
the field for a number of reasons. First, they demonstrate the vast
majority of faults result in very few errors on current systems,
this is in contrast to several previous works. This is significant
as correctable errors, while still allowing the application to make
further progress, can have significant performance implications [18,
24]. Second, the majority of the DRAM fault modes experienced
on Astra have a small memory footprint. Mitigation methods like
page-retirement [36] can easily map out small-footprint faults like
single-bit and single-word faults without significant penalty to
available system memory. However, single-bank errors can require
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significant portions of memory address space to be mapped out,
causing significant impacts.

Per-node Errors and Faults. Using the previous fault analysis, in
the remainder of this section we analyze how correctable DRAM
faults are distributed both on a macro-scale, throughout nodes on
the entire system, and at a micro-scale, across individual DRAM
cells.

Figure 5 shows the number of correctable faults and errors per
node in this interval. From this figure we see that not all nodes
experienced DRAM correctable errors, only 1013 nodes experienced
at least one error. Similar to other work, we also see that the number
of both faults and errors can vary dramatically from node to node.
In order to better understand this correctable fault distribution, we
will reorganize the data slightly differently.

In Figure 5a the x-axis is the number of observed faults on a
particular node and the y-axis is the number of nodes in our dataset
that experienced that number of correctable faults. From the figure
we see that the vast majority of the nodes saw zero or one cor-
rectable faults. This also shows that the distribution of faults per
node closely resembles a power law distribution [3].

Figure 5b shows the empirical CDF of CEs by node. For each
point (x,y) on the curve, the x nodes with most CEs represent a y
fraction of the total CEs. These data show that a small fraction of
nodes account for the overwhelming majority of the total number
of CEs. For example, more than 60% of nodes experienced no CEs.
The 8 nodes with the most CEs account for more than 50% of the
overall total. The top 2% of nodes account for approximately 90%
of the overall total number of CEs.

These results are significant to the study of failures for several
reasons. First, the frequency and distribution shape is critical to
modeling failures. Second, the relatively small number of faults per
node suggest again that lightweight mechanisms for fault mitiga-
tion like page retirement and an exclude list for the small number
of nodes experiencing large numbers of faults.

Per-socket, per-bank, and per-column Faults and Errors. To get a
better understanding of correctable failures we will now look at
how failures are distributed inside a node. Figures 6a to 6f show the
distribution of correctable errors and faults across the sockets on

a node, the memory banks on a DIMM, and the memory columns,
respectively. If we just look at memory errors and not faults as many
previous works do, we see we would get an inaccurate picture of
how failures are distributed about a node. These data show that
memory faults in these structures are fairly uniformly distributed
and that variation can be explained by statistical noise. This result
is consistent with the analysis by Sridharan et al. [34] of DRAM
fault data collected on Cielo and Jaguar. In contrast, Hwang et
al. [12] found that memory errors are more likely to occur on
some columns and rows of memory than others. However, they
only examine memory errors; they do not consider the associated
memory faults. Our data shows a similar concentration of memory
errors on some columns and banks but the phenomenon disappears
if we examine memory faults instead.

Per-rank and per-DIMM Slot Faults and Errors. While faults are
uniformly distributed across several structures within a node, there
are a few structures inside a node where the failure distribution
is more irregular. Figures 7a to 7d show the number of errors and
faults per rank on a node and per DIMM slot (see Section 2 for
a description of slot layout). For Figures 7a and 7b, the relative
occurrence of faults and errors is the same and rank zero seems
to experience more faults (and errors). On Astra’s DIMMs, a rank
corresponds to all of the DRAM devices on one side of the DIMM.
One possible reason one side of the DIMMs is experiencing higher
error rates is differences in temperature (we will analyze the impact
of temperature and failure in the next section). The physical layout
of cooling on a node may make one side of the DIMM hotter than the
other. For Figures 7c and 7d, we again see differences on the number
of failures experienced per DIMM slot. Once again, this figure shows
the importance of analyzing faults rather than errors. Additionally,
we again see very different fault counts per slot, with DIMM slots
J, E, I, P experiencing the greatest number of faults and DIMM
slots A, K, L, M, and N experiencing the lowest number of faults.
We theorize this difference may be due to potential temperature
difference of the slots.

Per-bit Position Faults and Errors. Finally, we will look at the fail-
ure distributions of the bit position in a cache line that failed and
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the physical address of faults.! For brevity, we will only display the
histograms of the fault counts per bit position and physical address.
Figures 8a and 8b show the counts per bit position and physical
address, respectively. We make two important observations. First,
once again we see that for each bit position and physical address,
the vast majority of locations see very few faults, similar to what
we observed before. Also similar to before, these distributions ap-
pear to follow a power law, with the vast majority of locations
being dominated by low fault counts. Again these observations
are important for both modeling failures and mitigation method
analysis.

3.3 Correlating Temperature and Correctable
Error Rate

In the previous section, we showed that correctable errors and
faults were distributed uniformly through some memory structures
but not others. We speculated the reason for this may be due to
the influence of temperature (higher temperature leading to more
errors and faults). In this section, we examine the validity of that
speculation.

For this analysis we will look at the interval of time from May 20,
2019 to September, 19, 2019. Note this interval of time is a subset
of the data presented previously due to environmental data being
missing from the previous interval. However, like before this is
a period of time where the system was in production and being
actively used.

To analyze the impact of temperature on correctable errors we
will do the following. For each correctable error, we used data
from the DIMM sensor assigned to the DIMM on which the error
occurred to calculate the mean temperature over the time interval
immediately before the error is logged. We vary the duration of the
interval over which the mean temperature is calculated from one
hour to one month. The objective is to determine whether there is
a temporal correlation between higher temperature and memory
€errors.

I The bit position portion of the CE record passed to the kernel seemed to encode
additional data besides the actual failed bit position. While we could not decipher this

additional encoded data, the encoding was consistent and therefore we believe does
not impact our analysis

Figure 9 shows the correctable error counts for four different
intervals prior to the error as a function of mean DIMM temperature.
We computed the mean temperature of the affected DIMM over the
interval immediately preceding the occurrence of the error. This
figure shows results for intervals between one hour and one month.
To examine the impact of temperature errors, we fit a line to the
data points and observe the slope: a positive slope suggests higher
temperatures prior to a correctable error lead to more frequent
errors and a negative slope the opposite. Overall, the data in these
figures show that increases in temperature is not strongly correlated
with more frequent errors.

Schroeder et al. [28, 30] examined the relationship between tem-
perature and correctable error rates (see e.g., sections 4.1 and 4.2,
and Figure 3 of Schroeder et al. [30]). They begin by plotting the
monthly average temperature of each platform, in deciles versus
the monthly correctable error rate within each decile. The tempera-
ture data available to them was collected every ten minutes from a
single sensor on each motherboard in the system. Their data show
that increasing the average temperature by 20°C is correlated with
at least a doubling in the rate of correctable errors. Because of the
correlation of temperature with utilization, they also divide the data
into low temperature samples and high temperature samples and
examine the relationship between CPU utilization and correctable
error rate. Based on this data, they conclude that the increase cor-
rectable error rate can be explained by CPU utilization because the
correctable error rate as a function of CPU utilization exhibits very
similar behavior for the low temperature and high temperature
datasets. The authors of these papers also consider the relationship
of memory utilization on correctable error rate.

We performed the same analysis on our data to enable a direct
comparison with the conclusions reached by Schroeder et al. Our
dataset differs from the data in their papers in several important
ways. First, we have much more detailed temperature information.
Our data is collected once per minute from six total sensors per
compute node: a CPU sensor and two DIMM sensors for each
socket. Second, we do not have data that directly captures CPU
utilization. As a proxy for CPU utilization, we used data collected
from the compute node’s DC power sensor which is also sampled
once per minute. Third, we also do not have data that captures
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hour, one day, one week, and one month). The trends in these data show that higher temperatures are not strongly correlated

with more frequent errors.

memory utilization. Therefore, we have no way of examining the
relationship between memory utilization and correctable error rate.

Figures 13a and 13b show the relationship between the tempera-
ture of each CPU and its DIMMs, respectively, and the correctable
error rate. For each point (x, y) in these figures, x represents the
maximum sample value within a decile and y represents the aver-
age monthly CE rate over the decile. As shown in Figure 1, cold air
passes over the second socket (CPU2 and its DIMMs) before passing
over the first socket (CPU1 and its DIMMs). Therefore, as shown in
this figure, the temperature values collected from the first socket
are generally higher than the temperature values collected from the
second socket. These data suggest that the operating temperature
on Astra was much more tightly controlled than on the systems
examined by Schroeder et al. Schroeder et al. observed that the
temperature difference between the first and ninth deciles was ap-
proximately 20°C for three of the systems and approximately 10°C
for the fourth system. In contrast, our data shows the difference
between the first and ninth deciles in our data is approximately 7°C
for the CPUs and approximately 4°C for the DIMMs. However, be-
cause Schroeder et al. reports normalized temperatures, we cannot
directly compare the absolute temperature recorded on Astra with
the temperatures on the machines that they studied. In contrast to
the conclusions reached by Schroeder et al., there is no discernible
trend as the temperature increases; several of the lower tempera-
ture deciles have the highest observed correctable error rates. As a
result, our data does not support Schroeder et al’s conclusion that
higher temperatures are correlated with more frequent correctable
errors.

Figure 14 shows the relationship between utilization and cor-
rectable error rate. Each subfigure shows the utilization data divided
in two and plotted independently. The utilization data in each sub-
figure is divided based on whether the associated temperature from
the specified sensor is “high” (above the median temperature value
for the specified sensor) or “low” (below the median temperature
value for the specified sensor). Schroeder et al. used similar figures
to isolate the impact of temperature from the impact of utilization.
The basic idea is that by plotting the data this way they could
compare the correctable error rate for samples that have the same
utilization but different temperatures. As discussed above, our data
does not include direct measurement of the CPU utilization on the
nodes of Astra. However, we do have measurements of the input DC

power for each node. We believe that these power measurements
are a good proxy for CPU utilization: the more work that the CPU
and other hardware components on the node do, the more power
they require. As a result, we use input DC power to approximate
utilization in the system. The data in Figure 14 shows that there is
not a strong relationship between power use and correctable error
rates: higher utilization does not correlate with more frequent cor-
rectable errors. These figures also show that there is a relationship
between power use and temperature. This phenomenon is particu-
larly evident in the data from the CPU sensors: the samples from
the hot dataset have generally higher power usage (are shifted to
the right relative to the data from the cold dataset). A similar, but
less pronounced, effect is also present in the data collected from the
DIMM sensors. Overall, this figure shows that, for the same power
usage, hot samples frequently correspond to higher error rates than
cold samples. However, this trend is far from universal and there
are several cases where the reverse is true. Unlike the data relied
on by Schroeder et al., the data in this figure do not support the
conclusion that the impact of temperature on correctable errors is
significantly smaller than the impact of CPU utilization.
Collectively, the data in Figures 13 and 14 show that, contrary to
the data examined by Schroeder et al., there is not a strong relation-
ship between temperature or power usage and correctable memory
errors in our data. Although we cannot definitely determine why
this difference exists, it is possible that it is due in part to the fact that
the temperature on Astra was maintained within a much narrower
range than on the systems analyzed by Schroeder et al. Moreover,
we know that the absolute temperatures on Astra were maintained
such that the temperature was never close to the devices’ thermal
limits. Unfortunately, we cannot make a direct comparison with
the data analyzed by Schroeder et al. because they were unable to
disclose any specific temperature data.? Similarly, El-Sayed et al. [6]
examined uncorrectable DRAM errors and DRAM-related problems
(i.e., node outages and hardware replacements) and concluded that
the frequency of these events were not strongly correlated with
temperature. Hsu et al. [11] reach a different conclusion; in their
data, they find that compute node failures roughly double with
2Although we cannot make a direct comparison, the fact that there is a much wider
temperature range in the data from Schroeder et al., more than 40°C between the first
decile and the tenth decile (the maximum value) of their data compared to no more

than 25°C between the first and tenth deciles in our data, suggests that their data
contain higher overall temperature measurements.



each 10°C increase in temperature. However, because their analysis
considers all causes of node unavailability, it is possible that this
trend is due to other components in the system.

3.4 Positional Effects on Error Frequency

Sridharan et al. [34] examine how the physical location of compute
nodes in Cielo and Jaguar may have affected the rate at which they
experienced correctable SRAM errors. The compute nodes in each
rack of Cielo were grouped into 3 chassis, arranged vertically. Their
analysis revealed that the compute nodes in the chassis at the top of
arack experienced a higher rate of SRAM faults than compute nodes
in the chassis at the bottom of the rate: approximately 20% more
faults in the top chassis than in the bottom chassis. The authors
hypothesize that one possible cause of this trend is the temperature
differential within the rack. Cielo’s cooling system was designed
such that cool air entered the racks at the bottom through the floor
of the machine room. Although the authors lacked detailed tem-
perature logs to provide a detailed analysis of temperature trends
within the rack, they did provide anecdotal evidence to support the
claim that the chassis at the top of the rack generally were hotter
than chassis at the bottom of the rack. They also speculated that
there may be alternative explanations (e.g., cosmic rays) for the
larger numbers of errors at the top of the racks. Similarly, Gupta et
al. [10] found that node failures (from all causes) are more generally
more likely for compute nodes in “cages” that are closer to the top
of the rack.

In contrast to Cielo and Jaguar (the two systems studied by Srid-
haran et al.), Astra’s cooling system was designed so that cool air
enters from the front of the rack and hot air is exhausted out of the
back of the rack. The physical arrangement of Astra differs from
those two systems (its racks contain 18 chassis stacked vertically
rather than 3). Therefore, to facilitate a direct comparison with
Sridharan et al’s data, we divided each rack of Astra into three
regions, each containing 6 chassis: top, middle, and bottom. We
examined the temperature data collected on Astra averaged across
the entire system for each of the three regions and for each of
the six temperature sensors (data not included here due to space
constraints). These data show that Astra did not exhibit the same
temperature gradient within a rack as was observed in Cielo and
Jaguar. In fact, these data show that the mean temperature is very
consistent throughout the rack; there is no meaningful increase
in temperature based on region (differences per region are signifi-
cantly less than 1°C). Because the mean temperature is so uniform
throughout the rack, we can largely exclude it as a factor in any
trends in memory errors within a rack.

Figures 10a and 10b shows the number of errors and faults,
respectively, in each of the three regions within a rack. Note the
difference again between the number and distribution of errors
and faults. In the case of errors, the nodes at the bottom of the
rack experienced the highest number of errors. The nodes at the
top of the rack experience the second greatest number of memory
errors. For faults that scenario is reversed, compute nodes near
the top of the rack experience more frequent faults. However, the
difference in the number of faults in each region is smaller than

3Based on the description of their system (Blue Waters), a cage is equivalent to a
chassis in Cielo or Astra.
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the difference in the number of errors in each region. Figure 11
provides a more detailed look at this data; it shows the fraction of
faults in each rack that occurred in each region of the rack. These
data show that faults are not significantly more likely to occur near
the top of the rack than near the bottom of the rack. Broadly, we
would expect the impact of cosmic rays to decrease more or less
uniformly from the top of the rack to the bottom (i.e., the bottom
of the rack is shielded by the top of the rack and by neighboring
racks). As a result, although we cannot completely explain how a
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compute node’s memory errors are affected by its position in the
rack, our data does suggest that neither temperature nor cosmic
rays adequately explain the relationship between which region of
a rack a compute belongs to and the number of errors and faults
that it experiences.

Sridharan et al. also observed that lower-numbered racks ex-
perienced more frequent errors than other racks in the system.
Figures 12a and 12b shows the number of errors and faults, respec-
tively experienced by each rack of Astra. There are several spikes in
the error counts, e.g., Rack 31 experienced more than twice as many
errors as any other rack. However, these spikes are not present in
the fault data because large numbers of errors were caused by a
relatively small number of faults. Figure 12b shows that there are
no significant trends in the number of faults experienced by each
rack. Similarly, El-Sayed et al. [6] found that rack position is not
strongly correlated with uncorrectable memory errors.

Sridharan et al. also speculated that trends in memory errors per
rack could be caused by temperature variation before concluding
that the trends in their data could be explained by differences in reli-
ability of DRAM devices from different vendors. [10] et al. similarly
speculate that environmental factors, including temperature, may
account for the non-uniform distribution of failures in their data. To

understand the extent to which rack-to-rack temperature variation
existed in Astra, we computed the mean temperature within each
rack for each of the six available compute node temperature sen-
sors. We found that the mean temperature for each sensor varied
very little (less than approximately 4.2°C) across the racks of the
system. The consistent temperature across the racks of Astra may
help explain why the number of memory faults are comparatively
evenly distributed, cf. Figure 12b.

3.5 Uncorrectable Errors

Uncorrectable memory errors occur when the memory controller
is able to use the ECC to determine that an error occurred but
it is unable to recover the correct value. On Astra, uncorrectable
memory errors are recorded in the syslog by the Hardware Event
Tracker (HET). Figure 15 shows the occurrence of all errors recorded
in the syslog by the HET (Figure 15a) and the errors recorded with
a severity of “‘NON-RECOVERABLE” (Figure 15b). No HET errors
were recorded between May 20 and August 23, 2019. We believe
that HET errors started being recorded following a firmware update
in August 2019. Based on the period for which we do have a record
of HET errors, the average number of DUEs per DIMM per year is
0.00948, which yields a FIT per DIMM of approximately 1081.

4 RELATED WORK

The study of failures on HPC systems has been an active research
topic for over a decade [2, 5, 8, 10, 16, 17, 21, 23, 37, 38]. Failures
have been studied in HPC systems [12, 27] and commercial data cen-
ters [6, 15, 20, 29]. The circumstances under which DRAM devices
fail have also been studied [6, 33, 34].

Siddiqua et al. [32] presented a study demonstrating that the
incidence of each DRAM correctable fault mode on the production
HPC system was stable over time. Gupta et al. [9] studied five
vastly different systems of varying sizes and hardware and software
configurations to discover failure trends that are common across
HPC systems. The data set covering the longest period of operation
that they considered was collected on the Jaguar XT4 system from
2008-2011.

Levy et al. [13] examined failures over the entire lifetime of
the Cielo HPC platform and showed there was no evidence of
hardware aging over this interval, as might be expected. Ostrouchov
et al. [22] examined errors and their impact on system operations
for the 18,000 GPUs on the Titan system at ORNL. Lastly, Pedretti
et al. [24] examined the software challenges of bringing up the first
Petascale Arm-based supercomputer and validating its ability to
run production HPC applications.

Hsu et al. [11] conclude, based on unpublished empirical data,
that their data is described by the Arrehenius equation governing
chemical reactions and that each 10 °C increase in temperature
causes the failure rate of compute nodes to double. Sarood et al. [25]
adopt this conclusion and use the Arrehenius equation to predict
how much their approach is able to improve system reliability by
reducing system operating temperature.

Our work is distinct from these existing studies in several im-
portant ways. First, we analyze hardware failure from the first
Petascale Arm system. Second, we break-down the hardware re-
placement numbers during Astra’s production stabilization period.
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We also conduct a detailed analysis of CEs on Astra, detailing the 5 CONCLUSION

failures modes and distribution of these failures across components. In this study we have provided a detailed characterization of memory-
In addition, this work demonstrates the importance of considering related failures on Astra, the first public Petascale, Arm-based HPC
faults when studying the reliability of a system and the incorrect system. Specifically, we have showed the following:

conclusions that can be arrived at when only considering errors.

) o A detailed tally of the hardware components replaced in the
Finally, we analyze uncorrectable DRAM errors.

early hardware stabilization period.

¢ Distinguishing between memory errors and faults on Astra
gives a much clearer picture of the underlying hardware relia-
bility and shows that faults are widely distributed throughout
system-level components.
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Figure 15: Count of errors reported by the Hardware Event Tracker.

e In contrast to the existing research that found that errors
occur more frequently in nodes located in the top of a rack
(see e.g., [10, 34]), we observed no strong correlation on Astra
between a node’s vertical position within a rack and the rate
at which it experiences memory errors.

o Unlike the existing research showing that errors are posi-
tively correlated with temperature and utilization (see e.g., [28,
30]), we observed that there was not a strong correlation
between either temperature or utilization and correctable
IMemory errors.

We believe the data and results of this analysis provide guidance
to organization standing-up first-in-class platforms in HPC, orga-
nizations using Arm, and the entire HPC community in general.
Therefore, the reliability and environmental data discussed in this
work will be made publicly available at [7], following publication.
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