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The detonation of explosive charges results in a

powerful shock and fireball.

* The explosive charge is converted to hot,
dense detonation product gases.

* Post-detonation afterburning of product
gases can produce over half of the
chemical energy released.

* Experiments observe that chemical
reactions freeze.

* Qur goalis to understand the chemical
reaction processes in the post-detonation
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*Goroshin, Samuel, et al. An International Journal Dealing with Scientific and
Technological Aspects of Energetic Materials 31.3 (2006): 169-181.

High-speed video record for the detonation of a 12.3 cm
charge of 1,000 g of sensitized nitromethane*.

h

San_dia UNIVERSITY Of
s UF | FLORIDA



We use numerical simulations that fully couple an
explosive detonation model to detailed gas phase
chemical reactions in the expanding flow.

* A hemispherical CcHgN,O,, (PETN)

charge is modeled in ambient air.  *°
12 mm diameter 1.6 g/cc
« 2D axisymmetric coordinates 24

* A novel explosive burn algorithm is

PETN
used to model the detonation 18 ll

Detonation

€
* The detonation converts solid explosive > s %
into gaseous products that can react: CO,, —
H,0O, CO, etc.
. . . . 6 : 3
* Detailed chemistry with 59 species De”i'tyﬁg/m )
and 368 reactions captures: o 12 1600 2685
e Air dissociation by Mach 20+ shock 0 6 12 18 24 30

e Equilibration in the fireball r [cm]

* Afterburning of the detonation products
and air

e The BKW real-gas EoS is used antl UNIVERSITY o
8 & UF [FLORIDA
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Geometrical setup in 2D.




We use an in-house code called HyBurn that has been
verified for an extensive list of test problems.

* Fully couples compressible reactive t=0.0s 10°cm

gases to granular flow
* Eulerian and Lagrangian particles

* Combustion with detailed and
simplified chemical kinetics

* |deal and non-ideal (JWL, BKW) EoS
models

* Massively parallel with adaptive
meshing using the AMReX library

* High-order numerical methods — Up

to 7th order
» 5th order MUSCL with HLLC is used
here

* Complex geometry using Immersed i
Boundary Methods

* Thermal radiation using filtered
spherical harmonics

= n =
Gas Temperature (K)

in

Combustion of TNT-dispersed Al particles.

Blast in an open room. Explosive Al particle dispersal.
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The numerical results compare well to experimental
data and blast structures measured at Sandia.

Experiment Simulation
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The blast structure shows regions where the flow is
purely gas dynamic with no mixing and other regions
where mixing is important due to RT and RM
instabilities.
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The tracer gauge results shows that the temperature
inside the fireball decreases to ~100 K during the
expansion.

Tracer gauge temperature
inside of the fireball.
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The tracer gauge results show the chemical composition
inside the fireball is constant during expansion.
Assuming full chemical equilibrium is highly inaccurate.

* Experimental results*
have shown that the
composition inside the
fireball chemically
“freezes out”.

* The results show that
assuming equilibrium
(dashed lines) deviates
significantly from full
chemistry (solid lines) at
large expansion ratios.

g *D.L. Ornellas, J. H. Carpenter, S. R. Gunn, Rev. Sci. Instrum. 37 (7) (1966) 907-912.

Table 1: Comparison of computed mole fractions inside the
PETN detonation products to experimental measurements.

Species Real~; v =1 Measured
H,O 0.309 0.329 0.313
CcO, 0.342 0.318 0.318
CO 0.110 0.133 0.142
N, 0.195 0.195 0.181
k CO2 4000
0.41 —
c H20 X,
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Analysis of gas dynamic and chemical time scales during
expansion allows us to define a Damkodhler number and
determine if the chemistry is frozen or in equilibrium.

The timescales are defined by: 1013/
*  Tgas = p/ldp/dt] é , 13000
T nem 1S defined to be the time where [ 104 X v
T(t) = (21.5('1'}F + Teq) in a constant g 101 OOOE
volume reactor initialized from the local o =
€. s 11000
state. = 10
* These time scales allow us to define 0
a Damkohler number 107
_ ‘gas
DEI = 103_
T
chem
10 N oa 3000
- . init i
* The Damkoéhler number gives us ® 105 _2000%
information on how the chemistry =
and flow interact: 107°;
. . . L s 1000
Da > 10 implies chemical equilibrium
Da < 0.1 chemically frozen (inert) 0 2 4 6
0.1 < Da < 10 finite rate chemistry Time [us]
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An Arrhenius fit of the data allows us to correlate the
Damkohler number with local temperature in the
fireball and to estimate the freeze-out temperature.

—Tq
* Afitof the data givesA=3.8x10°and T, =34,000K Da = Ae /T
* A freeze-out temperature can be found by defining a critical Da
Da = Da,. = 0.1
-1
A dpgry
Tfreeze = Tyln (Dac 12 mm

* For the 12 mm charge, T;eeze = 1990 K. This is close to accepted values in the
literature. 104
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The chemical reaction time scales are many orders of
magnitude higher than the gas-dynamic time scales,
which are scale invariant with time and space. This
allows us to estimate the effects of length scales.

* Estimated freeze-out temperatures for larger charges are:
e 1757 Kfor 120 mm
e 1574 K for 1200 mm
* We can now use the Lagrangian tracer gauges on larger simulations to validate
this influence of scaling.
104,
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In conclusion, the close agreement of the blast
structures, freeze-out composition, and freeze-out
temperature with literature values validates our
proposed modeling approach for explosive afterburning.

* On going work is exploring 3D
simulations with realistic

turbulence
The bulk structures are nearly
identical between 2D and 3D
 We are analyzing mixing layer 7
thicknesses of species and ST
temperature a 3[.)]
* We are developing a simplified
approach to incorporate soot

chemistry and radiation
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Slice plots in 3D show a substantial increase in
mixing compared to 2D.
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