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The detonation of explosive charges results in a 
powerful shock and fireball.
• The explosive charge is converted to hot, 

dense detonation product gases.
• Post-detonation afterburning of product 

gases can produce over half of the 
chemical energy released.

• Experiments observe that chemical 
reactions freeze.

• Our goal is to understand the chemical 
reaction processes in the post-detonation 
flow.

High-speed video record for the detonation of a 12.3 cm 
charge of 1,000 g of sensitized nitromethane*.

*Goroshin, Samuel, et al. An International Journal Dealing with Scientific and 
Technological Aspects of Energetic Materials 31.3 (2006): 169-181.
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We use numerical simulations that fully couple an 
explosive detonation model to detailed gas phase 
chemical reactions in the expanding flow.
• A hemispherical C5H8N4O12  (PETN) 

charge is modeled in ambient air.
• 12 mm diameter 1.6 g/cc 
• 2D axisymmetric coordinates

• A novel explosive burn algorithm is 
used to model the detonation
• The detonation converts solid explosive 

into gaseous products that can react: CO2, 
H2O, CO, etc. 

• Detailed chemistry with 59 species 
and 368 reactions captures:
• Air dissociation by Mach 20+ shock
• Equilibration in the fireball
• Afterburning of the detonation products 

and air
• The BKW real-gas EoS is used

Geometrical setup in 2D.
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We use an in-house code called HyBurn that has been 
verified for an extensive list of test problems.
• Fully couples compressible reactive 

gases to granular flow
• Eulerian and Lagrangian particles

• Combustion with detailed and 
simplified chemical kinetics

• Ideal and non-ideal (JWL, BKW) EoS 
models

• Massively parallel with adaptive 
meshing using the AMReX library

• High-order numerical methods – Up 
to 7th order
• 5th order MUSCL with HLLC is used 

here
• Complex geometry using Immersed 

Boundary Methods
• Thermal radiation using filtered 

spherical harmonics

Combustion of TNT-dispersed Al particles.

Blast in an open room. Explosive Al particle dispersal.
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The numerical results compare well to experimental 
data and blast structures measured at Sandia.

Experiment Simulation
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The blast structure shows regions where the flow is 
purely gas dynamic with no mixing and other regions 
where mixing is important due to RT and RM 
instabilities.
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The tracer gauge results shows that the temperature 
inside the fireball decreases to ~100 K during the 
expansion.

Tracer gauge temperature 
inside of the fireball.



8

The tracer gauge results show the chemical composition 
inside the fireball is constant during expansion. 
Assuming full chemical equilibrium is highly inaccurate.
• Experimental results* 

have shown that the 
composition inside the 
fireball chemically 
“freezes out”.

• The results show that 
assuming equilibrium 
(dashed lines) deviates 
significantly from full 
chemistry (solid lines) at 
large expansion ratios.

*D. L. Ornellas, J. H. Carpenter, S. R. Gunn, Rev. Sci. Instrum. 37 (7) (1966) 907–912.
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Analysis of gas dynamic and chemical time scales during 
expansion allows us to define a Damköhler number and 
determine if the chemistry is frozen or in equilibrium.
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An Arrhenius fit of the data allows us to correlate the 
Damköhler number with local temperature in the 
fireball and to estimate the freeze-out temperature.
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The chemical reaction time scales are many orders of 
magnitude higher than the gas-dynamic time scales, 
which are scale invariant with time and space. This 
allows us to estimate the effects of length scales.
• Estimated freeze-out temperatures for larger charges are:

• 1757 K for 120 mm
• 1574 K for 1200 mm

• We can now use the Lagrangian tracer gauges on larger simulations to validate 
this influence of scaling.



12

In conclusion, the close agreement of the blast 
structures, freeze-out composition, and freeze-out 
temperature with literature values validates our 
proposed modeling approach for explosive afterburning.
• On going work is exploring 3D 

simulations with realistic 
turbulence
• The bulk structures are nearly 

identical between 2D and 3D
• We are analyzing mixing layer 

thicknesses of species and 
temperature

• We are developing a simplified 
approach to incorporate soot 
chemistry and radiation

Questions???

3D

2D
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Spare
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Slice plots in 3D show a substantial increase in 
mixing compared to 2D.

2D 3D


