Thislpaperldescribeslobiectiveftechnicallresultsland analy5|s Anvisubiectivelviewsforfopinionsithatimightibeiexpressed in|
hejpaperjdojnotnecessarilyjrepresentith flthejU.S JDepartmentloflEnergyjorfthejUnitedgStatesgGovernment.

Kokkos Kernels Math Library

Luc Berger-Vergiat, S. Rajamanickam, V. Dang,
N. Ellingwood, J. Foucar, E. Harvey, B. Kelley,
K. Liegeois, J. Loe, C. Pearson

ECP Annual Meeting
May 5th 2022

Sandia National Laboratories is a multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525.

SAND2020-9315 TR

Introducing Kokkos Kernels

The aims of Kokkos Kernels are to:
» deliver portable sparse/dense linear algebra and graph kernels,

» deliver robust software ecosystem for other software
technology projects and applications,

> serve as reference implementation of key kernel needs of
applications,

» partner with libraries, applications and vendors to identify new
opportunities for performance.

Major partners and customers: Trilinos, PETSc, ExaWind, ORNL,
ANL, QMCPACK, Nvidia, Intel, AMD

Online Resources

» https://github.com/kokkos/kokkos-kernels:

» Kokkos Kernels GitHub repository,

» https://github.com/kokkos/kokkos-kernels/wiki,

» The wiki provides API calls, examples and build instructions.
» https://kokkosteam.slack.com:

» Slack workspace for Kokkos, includes a kokkos-kernels channel,
> Please join: fastest way to get your questions answered.

https://github.com/kokkos/kokkos-kernels
https://github.com/kokkos/kokkos-kernels/wiki
https://kokkosteam.slack.com

A focus on device BLAS and batched BLAS kernels

Learning objectives:
» Motivation for batched functions
» Two namespaces with BLAS and LAPACK functions
» Calling batched functions

May 5th 2022

Two namespaces with BLAS and LAPACK functions

KokkosBlas namespace

» KokkosBlas: device and functor level functions
» Intended Use Case:

> Caller uses optimal amount of parallelism to work on single

input data

» Multiple Interfaces: Serial, Team, TeamVector, Device

>

Device: all levels of nested parallelism are used on whole
device

TeamVector: two-level nested parallelism is used with
TeamThreadRange and TeamVectorRange

Team: one-level nested parallelism is used with
TeamThreadRange

Serial: no nested parallelism is used internally

Two namespaces with BLAS and LAPACK functions

KokkosBatched namespace

» KokkosBatched: functor level functions
» Intended Use Case:

> Caller is within parallel kernel body with a batch of input data
» Multiple Interfaces: Serial, Team, TeamVector
> Serial: no nested parallelism is used internally
» Team: one-level nested parallelism is used with
TeamThreadRange
» TeamVector: two-level nested parallelism is used with
TeamThreadRange and TeamVectorRange

May 5th 2022

Parallel Batched BLAS/LAPACK Interface

Batched BLAS/LAPACK is simple i.e., BLAS/LAPACK in a
parallel loop

auto A = Kokkos::View<doublexxx>("'A"', N, Blk, Blk);

Kokkos:: parallel_for(RangePolicy(N), /// users’ parallel execution policy
KOKKOS.LAMBDA(int &i) {
auto AA = Kokkos::subview (A, i, ALL, ALL);

KokkosBatched :: SerialLU (AA); /// functor—level interface

})i

Kokkos batched BLAS/LAPACK is made up of following two
components

> Kokkos parallel execution policy with parallel_for

> A functor-level interface to be used in operator ()

Hierarchical functor interface is required to match Kokkos'’
hierarchical parallelism

Layered Hierarchical Functor-level Interface

Device Interface
> internally uses TeamPolicy
> is used for large input data that occupies an entire device

> can use an execution space instance to launch in a stream

Device with ExecutionSpace

Kokkos :: Cuda execution_space(myCudaStream);
KokkosBlas(execution_space);

Layered Hierarchical Functor-level Interface

TeamVector Interface

> internally uses two nested parallel_for with TeamThreadRange
and ThreadVectorRange

> requires the member (thread communicator) as an input argument

TeamVector with TeamPolicy

parallel_for(TeamPolicy,
KOKKOS_LAMBDA(member_type &member){
KokkosBatched :: TeamVectorDoSomething(member) g

1

Layered Hierarchical Functor-level Interface

Team Interface

> internally uses TeamThreadRange only

> in general is used with SIMD or Ensemble types where vector
parallelism is expressed within the type

> can include ThreadVectorRange

Team without ThreadVectorRange

Team with ThreadVectorRange outside

parallel_for(TeamPolicy ,
KOKKOS_LAMBDA(member_type &member){
KokkosBatched :: TeamDoThing(member) ;

1)

May 5th 2022

parallel_for(TeamPolicy,
KOKKOS_LAMBDA(member_type &member){
parallel_for(ThreadVectorRange) {
KokkosBatched :: TeamDoSomething (

member) ;
IR O

Layered Hierarchical Functor-level Interface

Serial Interface

> can be used in a flat parallel_for i.e., Kokkos: :RangePolicy

> can be used in the most inner loop of nested parallel_for's

Serial with RangePolicy

Serial in Hierarchical parallel loops

parallel_for (RangePolicy,
KOKKOSLAMBDA(int &idx){
KokkosBatched :: SerialDoThing () ;

3

parallel_for(TeamPolicy,
KOKKOS_LAMBDA(member_type &member){
parallel_for(TeamThreadRange) {
parallel_for(ThreadVectorRange) {
KokkosBatched ::
SerialDoSomething () ;
IR OREN Ok

Summary: Batched BLAS/LAPACK
> User composable (batched) BLAS interface: parallel execution
policy + functor-level interface
> Performance on GPUs is tunable:
> Launching light-weight kernels multiple times can cause

overhead
» Fusing too many functor-level BLAS/LAPACK operations is

difficult to do while maintaining optimal performance with a
single team size

May 5th 2022

