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Introducing Kokkos Kernels

The aims of Kokkos Kernels are to:

I deliver portable sparse/dense linear algebra and graph kernels,

I deliver robust software ecosystem for other software
technology projects and applications,

I serve as reference implementation of key kernel needs of
applications,

I partner with libraries, applications and vendors to identify new
opportunities for performance.

Major partners and customers: Trilinos, PETSc, ExaWind, ORNL,
ANL, QMCPACK, Nvidia, Intel, AMD
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Online Resources

I https://github.com/kokkos/kokkos-kernels:
I Kokkos Kernels GitHub repository,
I https://github.com/kokkos/kokkos-kernels/wiki,
I The wiki provides API calls, examples and build instructions.

I https://kokkosteam.slack.com:
I Slack workspace for Kokkos, includes a kokkos-kernels channel,
I Please join: fastest way to get your questions answered.

https://github.com/kokkos/kokkos-kernels
https://github.com/kokkos/kokkos-kernels/wiki
https://kokkosteam.slack.com


May 5th 2022 4/12

Outline

A focus on device BLAS and batched BLAS kernels

Learning objectives:

I Motivation for batched functions

I Two namespaces with BLAS and LAPACK functions

I Calling batched functions



May 5th 2022 5/12

Two namespaces with BLAS and LAPACK functions

KokkosBlas namespace

I KokkosBlas: device and functor level functions
I Intended Use Case:

I Caller uses optimal amount of parallelism to work on single
input data

I Multiple Interfaces: Serial, Team, TeamVector, Device
I Device: all levels of nested parallelism are used on whole

device
I TeamVector: two-level nested parallelism is used with

TeamThreadRange and TeamVectorRange
I Team: one-level nested parallelism is used with

TeamThreadRange
I Serial: no nested parallelism is used internally
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Two namespaces with BLAS and LAPACK functions

KokkosBatched namespace

I KokkosBatched: functor level functions
I Intended Use Case:

I Caller is within parallel kernel body with a batch of input data

I Multiple Interfaces: Serial, Team, TeamVector
I Serial: no nested parallelism is used internally
I Team: one-level nested parallelism is used with

TeamThreadRange
I TeamVector: two-level nested parallelism is used with

TeamThreadRange and TeamVectorRange
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Parallel Batched BLAS/LAPACK Interface

Batched BLAS/LAPACK is simple i.e., BLAS/LAPACK in a
parallel loop

auto A = Kokkos : : View<doub l e∗∗∗>( ’ ’A ’ ’ , N, Blk , Blk ) ;
Kokkos : : p a r a l l e l f o r ( RangePo l i cy (N) , /// u s e r s ’ p a r a l l e l e x e c u t i o n p o l i c y

KOKKOS LAMBDA( i n t &i ) {
auto AA = Kokkos : : subv i ew (A, i , ALL , ALL ) ;
KokkosBatched : : S e r i a l LU (AA) ; /// func to r−l e v e l i n t e r f a c e

} ) ;

Kokkos batched BLAS/LAPACK is made up of following two
components

I Kokkos parallel execution policy with parallel_for

I A functor-level interface to be used in operator()

Hierarchical functor interface is required to match Kokkos’
hierarchical parallelism
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Layered Hierarchical Functor-level Interface

Device Interface
I internally uses TeamPolicy

I is used for large input data that occupies an entire device

I can use an execution space instance to launch in a stream

Device with ExecutionSpace

Kokkos : : Cuda e x e c u t i o n s p a c e (myCudaStream ) ;
KokkosBlas ( e x e c u t i o n s p a c e ) ;
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Layered Hierarchical Functor-level Interface

TeamVector Interface
I internally uses two nested parallel_for with TeamThreadRange

and ThreadVectorRange

I requires the member (thread communicator) as an input argument

TeamVector with TeamPolicy

p a r a l l e l f o r ( TeamPolicy ,
KOKKOS LAMBDA(member type &member ){

KokkosBatched : : TeamVectorDoSomething (member ) ;
}) ;
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Layered Hierarchical Functor-level Interface

Team Interface
I internally uses TeamThreadRange only

I in general is used with SIMD or Ensemble types where vector
parallelism is expressed within the type

I can include ThreadVectorRange

Team without ThreadVectorRange

p a r a l l e l f o r ( TeamPolicy ,
KOKKOS LAMBDA(member type &member ){
KokkosBatched : : TeamDoThing (member ) ;

}) ;

Team with ThreadVectorRange outside

p a r a l l e l f o r ( TeamPolicy ,
KOKKOS LAMBDA(member type &member ){

p a r a l l e l f o r ( ThreadVectorRange ) {
KokkosBatched : : TeamDoSomething (

member ) ;
}) ; }) ;
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Layered Hierarchical Functor-level Interface

Serial Interface
I can be used in a flat parallel_for i.e., Kokkos::RangePolicy

I can be used in the most inner loop of nested parallel_for’s

Serial with RangePolicy

p a r a l l e l f o r ( RangePol i cy ,
KOKKOS LAMBDA( i n t &i d x ){

KokkosBatched : : Se r i a lDoTh ing ( ) ;
}) ;

Serial in Hierarchical parallel loops

p a r a l l e l f o r ( TeamPolicy ,
KOKKOS LAMBDA(member type &member ){

p a r a l l e l f o r ( TeamThreadRange ) {
p a r a l l e l f o r ( ThreadVectorRange ) {

KokkosBatched : :
Se r i a lDoSometh ing ( ) ;

}) ; }) ; }) ;
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Summary

Summary: Batched BLAS/LAPACK
I User composable (batched) BLAS interface: parallel execution

policy + functor-level interface

I Performance on GPUs is tunable:
I Launching light-weight kernels multiple times can cause

overhead
I Fusing too many functor-level BLAS/LAPACK operations is

difficult to do while maintaining optimal performance with a
single team size


