
Kokkos Kernels Math Library

Luc Berger-Vergiat, S. Rajamanickam, V. Dang,
N. Ellingwood, J. Foucar, E. Harvey, B. Kelley,
K. Liegeois, J. Loe, C. Pearson

ECP Annual Meeting

May 5th 2022

Sandia National Laboratories is a multi-mission laboratory managed and operated by

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-NA0003525.

SAND2020-9315 TR

SAND2022-6041CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

May 5th 2022 2/12

Introducing Kokkos Kernels

The aims of Kokkos Kernels are to:

I deliver portable sparse/dense linear algebra and graph kernels,

I deliver robust software ecosystem for other software
technology projects and applications,

I serve as reference implementation of key kernel needs of
applications,

I partner with libraries, applications and vendors to identify new
opportunities for performance.

Major partners and customers: Trilinos, PETSc, ExaWind, ORNL,
ANL, QMCPACK, Nvidia, Intel, AMD

May 5th 2022 3/12

Online Resources

I https://github.com/kokkos/kokkos-kernels:
I Kokkos Kernels GitHub repository,
I https://github.com/kokkos/kokkos-kernels/wiki,
I The wiki provides API calls, examples and build instructions.

I https://kokkosteam.slack.com:
I Slack workspace for Kokkos, includes a kokkos-kernels channel,
I Please join: fastest way to get your questions answered.

https://github.com/kokkos/kokkos-kernels
https://github.com/kokkos/kokkos-kernels/wiki
https://kokkosteam.slack.com

May 5th 2022 4/12

Outline

A focus on device BLAS and batched BLAS kernels

Learning objectives:

I Motivation for batched functions

I Two namespaces with BLAS and LAPACK functions

I Calling batched functions

May 5th 2022 5/12

Two namespaces with BLAS and LAPACK functions

KokkosBlas namespace

I KokkosBlas: device and functor level functions
I Intended Use Case:

I Caller uses optimal amount of parallelism to work on single
input data

I Multiple Interfaces: Serial, Team, TeamVector, Device
I Device: all levels of nested parallelism are used on whole

device
I TeamVector: two-level nested parallelism is used with

TeamThreadRange and TeamVectorRange
I Team: one-level nested parallelism is used with

TeamThreadRange
I Serial: no nested parallelism is used internally

May 5th 2022 6/12

Two namespaces with BLAS and LAPACK functions

KokkosBatched namespace

I KokkosBatched: functor level functions
I Intended Use Case:

I Caller is within parallel kernel body with a batch of input data

I Multiple Interfaces: Serial, Team, TeamVector
I Serial: no nested parallelism is used internally
I Team: one-level nested parallelism is used with

TeamThreadRange
I TeamVector: two-level nested parallelism is used with

TeamThreadRange and TeamVectorRange

May 5th 2022 7/12

Parallel Batched BLAS/LAPACK Interface

Batched BLAS/LAPACK is simple i.e., BLAS/LAPACK in a
parallel loop

auto A = Kokkos : : View<doub l e∗∗∗>(’ ’A ’ ’ , N, Blk , Blk) ;
Kokkos : : p a r a l l e l f o r (RangePo l i cy (N) , /// u s e r s ’ p a r a l l e l e x e c u t i o n p o l i c y

KOKKOS LAMBDA(i n t &i) {
auto AA = Kokkos : : subv i ew (A, i , ALL , ALL) ;
KokkosBatched : : S e r i a l LU (AA) ; /// func to r−l e v e l i n t e r f a c e

}) ;

Kokkos batched BLAS/LAPACK is made up of following two
components

I Kokkos parallel execution policy with parallel_for

I A functor-level interface to be used in operator()

Hierarchical functor interface is required to match Kokkos’
hierarchical parallelism

May 5th 2022 8/12

Layered Hierarchical Functor-level Interface

Device Interface
I internally uses TeamPolicy

I is used for large input data that occupies an entire device

I can use an execution space instance to launch in a stream

Device with ExecutionSpace

Kokkos : : Cuda e x e c u t i o n s p a c e (myCudaStream) ;
KokkosBlas (e x e c u t i o n s p a c e) ;

May 5th 2022 9/12

Layered Hierarchical Functor-level Interface

TeamVector Interface
I internally uses two nested parallel_for with TeamThreadRange

and ThreadVectorRange

I requires the member (thread communicator) as an input argument

TeamVector with TeamPolicy

p a r a l l e l f o r (TeamPolicy ,
KOKKOS LAMBDA(member type &member){

KokkosBatched : : TeamVectorDoSomething (member) ;
}) ;

May 5th 2022 10/12

Layered Hierarchical Functor-level Interface

Team Interface
I internally uses TeamThreadRange only

I in general is used with SIMD or Ensemble types where vector
parallelism is expressed within the type

I can include ThreadVectorRange

Team without ThreadVectorRange

p a r a l l e l f o r (TeamPolicy ,
KOKKOS LAMBDA(member type &member){
KokkosBatched : : TeamDoThing (member) ;

}) ;

Team with ThreadVectorRange outside

p a r a l l e l f o r (TeamPolicy ,
KOKKOS LAMBDA(member type &member){

p a r a l l e l f o r (ThreadVectorRange) {
KokkosBatched : : TeamDoSomething (

member) ;
}) ; }) ;

May 5th 2022 11/12

Layered Hierarchical Functor-level Interface

Serial Interface
I can be used in a flat parallel_for i.e., Kokkos::RangePolicy

I can be used in the most inner loop of nested parallel_for’s

Serial with RangePolicy

p a r a l l e l f o r (RangePol i cy ,
KOKKOS LAMBDA(i n t &i d x){

KokkosBatched : : Se r i a lDoTh ing () ;
}) ;

Serial in Hierarchical parallel loops

p a r a l l e l f o r (TeamPolicy ,
KOKKOS LAMBDA(member type &member){

p a r a l l e l f o r (TeamThreadRange) {
p a r a l l e l f o r (ThreadVectorRange) {

KokkosBatched : :
Se r i a lDoSometh ing () ;

}) ; }) ; }) ;

May 5th 2022 12/12

Summary

Summary: Batched BLAS/LAPACK
I User composable (batched) BLAS interface: parallel execution

policy + functor-level interface

I Performance on GPUs is tunable:
I Launching light-weight kernels multiple times can cause

overhead
I Fusing too many functor-level BLAS/LAPACK operations is

difficult to do while maintaining optimal performance with a
single team size

