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Chemistry tabulation facilitates practical simulation of combustion at engineering scales

_ _ Example simulation
100s-1000s of transport PDEs with many time/length scales

Y SIERRA/Fuego
scale-resolving simulations are impractical update ¢ .
Tabulate properties ,
re-compute (temperature, fluid properties CFD:
P NP — P ‘ Prop ‘ transport reduced
chemistry soot source terms...) :
. coordinates
over reduced set of coordinates
— —> o — \_/ —
& ¢ =\F () T
update 7
A
Memory
N ’ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII -
[Interpolantsj = Recent methods localize regression to =
store data (exponential growth with dimensionality) increase accuracy of ANNs

guaranteed to return training data o .
1. Classification

2. Regression

ANNs | sereesmenaes , | Partition of Unity Networks
S (POUnets) : Classification can be done using

- physical intuition
- machine learning
(e.g., mixture of experts)

store architecture ANN-like memory
global regression interpolant-like accuracy

>

Accuracy We propose using POUnets to

achieve this desired accuracy



Partition of Unity Networks (POUnets) provide localized polynomial approximations

Classification Regression

provides a mesh-free partition of space approximates property data

polynomial basis
multiplied by each neuron >
creates local approximations

single-layer RBF network
with normalized neuron outputs
creates a POU

Sum to
compute output

—

Inputs ——

number of partitions polynomial degree

Hyper parameters:

Example:
5-partitions, degree 1

— 20 trainable parameters

RBF parameters basis parameters _
= partition locations & shapes polynomial coefficients :

Trainable parameters:

Training Algorithm: U A
EECL TR TP L L PP E PRV CT PRI CEPIVIERE : \ [ 0 g
E 1. Initialize trainable parameters 0.8 \‘ " \ '
g \
2 Single Gradient Descent Step 0.6- il | 0.6
: Update RBF parameters . v INITIALIZED ,'NlTlA“ZED
1 ! tributions f h
(Hold basis parameters constant) - I| partition of unity contributions trom eac
: 0.4 ! il r - 0.4 partition*basis
= 3. Least Squares Regression n I " |
: Update basis parameters I I\ I \ \
(Hold RBF parameters constant) 0.2 " “ I\ " \ \ 0.21== \ P \/( \
\ \
: _ : I ) ! \
: 4. Repeat 2-3 until converged 0.0l= 2 — \t N _\-_ 0.0l 3 \ .
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Partition of Unity Networks (POUnets) provide localized polynomial approximations |

Classification Regression I
provides a mesh-free partition of space approximates property data
single-layer RBF network polynomial basis Sum to
Inputs — with normalized neuron outputs — multiplied by each neuron >

creates a POU creates local approximations CErpLE OUgpLIE

Hyper parameters: number of partitions polynomial degree I
............................................................................... : Examp[e:
. " _ . i
Trainable parameters: : | !-'{BF para.meters basis .paramet.ers : 5 partltl.ons, degree 1
= partition locations & shapes polynomial coefficients E — 20 trainable parameters
o . 0.8 1.2
f ---------------------------------------- E COntribUtiOnS from eaCh ‘ 1.0 : predlcted
= 1. Initialize trainable parameters E 0.6 partition*basis I : |
E : I 0.8 8 f
: 2. Single Gradient Descent Step | -~ ;
:  Update RBF parameters : \ 4" = 06 P
(Hold basis parameters constant) = 0-4'I .7 / o : // 0
: : ’ / Qa "
= 3. Least Squares Regression : : PR // 0.4-: '," I
Update basis parameters : 0.2y ,’ 7 i ",¢‘
" ’ 7 ' "
: (Hold RBF parameters constant) : | o~ _;ﬁ — - 0.2 “/
4. Repeat 2-3 until converged : 0 02;// ______ 0.0
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POUnets offer interpolant-like accuracy with ANN-like memory

POUnets... offer flexibility in reaching high accuracy (number of partitions, basis degree)

2D model errors
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POUnets offer interpolant-like accuracy with ANN-like memory

POUnets... offer flexibility in reaching high accuracy (number of partitions, basis degree)

show interpolant-levels of accuracy with significant memory compression:

*without needing the training data to be structured (rectangular)

2D model errors
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POUnets offer interpolant-like accuracy with ANN-like memory

POUnets... offer flexibility in reaching high accuracy (number of partitions, basis degree)

show interpolant-levels of accuracy with significant memory compression:

consistently exhibits faster convergence to lower errors than traditional ANNs

*without needing the training data to be structured (rectangular)

2D model errors
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POUnets offer interpolant-like accuracy with ANN-like memory

POUnets... offer flexibility in reaching high accuracy (number of partitions, basis degree)

show interpolant-levels of accuracy with significant memory compression: 40-50X fewer parameters in 2D
*without needing the training data to be structured (rectangular)

consistently exhibits faster convergence to lower errors than traditional ANNs

show promise in application to higher dimensional tabulation

2D model errors 3D model errors
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POUnets offer interpolant-like accuracy with ANN-like memory

POUnets... offer flexibility in reaching high accuracy (number of partitions, basis degree)

show interpolant-levels of accuracy with significant memory compression:

consistently exhibits faster convergence to lower errors than traditional ANNs

*without needing the training data to be structured (rectangular)

show promise in application to higher dimensional tabulation

2D model errors

40-50X fewer parameters in 2D

100X fewer parameters in 3D

—POUnets grow with dimensionality

3D model errors
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Conclusions

Chemistry tabulation facilitates practical simulation of combustion at engineering scales

We present POUnets as a tabulation strategy with interpolant-like accuracy and ANN-like memory

POUnets create localized polynomial approximations through combining classification and regression techniques

POUnets offer flexibility (number of partitions, basis degree, data structure) for reliably reaching high accuracy

POUnets show promise in application to higher dimensional tabulation

Future Work

Continue studying POUnet application to higher dimensions / more complex physics

Potential improvements to training (regularization, parameters, etc.)
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2D contributions after training

constant basis
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