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Why Partitioned Communication?

 MPI use cases continue to evolve
— CPU design continues to increase the number of cores and hardware threads
— Threading and Tasking models are increasing the number of threads per process
— Accelerator induced communication is the next frontier

» Potentially thousands of MPI processes on a single node (without threading)

e Can we use MPI for concurrent communication?



The Coming Thread Storm
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MPI Partitioned Communication Concepts

Many actors (threads) contributing to a larger operation in MPI
— Same number of messages
— No new ranks

Many threads work together to assemble a message
— MPI only manages completion notification
— These are actor/action counts, not thread level collectives

Persistent-type communication
— Init...(Start...test/wait)...free

No heavy MPI thread concurrency handling required
— Leave the placement/management of the data to the user
— Knowledge required: number of workers, which is easily available

No more complicated packing of data, send structures when they become available



New Type of Overlap

 “Early bird communication”
« Early threads can start moving data right away

e Could implement using RDMA to avoid
message matching

R

[ Ec¢

Partitioned Send Timeline
///// Thread #4 Data
/'/

-
P87 Thread #1 Data Thread #3 Data
// y 4 Transfer Transfer 4 ,/// Transfer
A E% ¢
2
7

IS

Thread #2 Data
Transfer

Traditional Single Threaded Send Timeline

Thread #1 Data | Thread #2 Data
Transfer Transfer

Thread #3 Data
Transfer

Thread #4 Data
Transfer

A

All threads have joined
and send call is issued




Persistent Partitioned Buffers

e Expose the “ownership” of a buffer as a shared to MPI

e Need to describe the operation to be performed before
contributing segments

 MPI implementation doesn’t have to care about sharing
— Only needs to understand how many times it will be called

e Threads are required to manage their own buffer
ownership such that the buffer is valid
— The same as would be done today for code that has many
threads working on a dataset (that's not a reduction)

e Result: MPI is thread agnostic with a minimal
synchronization overhead (atomic_inc)

— Can alternatively use task model instead of threads, IOVEC
instead of contiguous buffer



Example for Persistence

Like persistent communications, setup the operation
int MP1_Partitioned_send_init( void *buf, int count, MPI_Datatype data_type,
int to_rank, intto_tag, int num_partitions, MPI _Info info, MPI_Comm comm,

MPI1_Request *request);

Start the request
MPI_ Start(request)
Add items to the buffer

#omp parallel for ...

int MPI_Pready( void* buf, int count, MPI_Datatype in_datatype,
int offset_index, MP|_Request *request);

Wait on completion
MPI_Wait(request)
= Optional: Use MPI_Parrived to test individual partition completion



Using Part Comm in an MPI Program

e Things to keep in mind:
— Parallelism data structures can lead to good partitioning
— Balance communication granularity with overlap

» Not too small of message but not too large either

e Current networks suggest 64KiB to 1MiB are good targets for 32-
64 partitions.

e Partition sizes 1KiB to 64KiB
— Application development — a high quality implementation



What is MPI doing to help?

* When designing your application keep in mind
what MPI may be doing to help

e Think about overlap: send early and often

— Take advantage of “noise” in computation for extra
overlap

» Consider overheads: Don’t send very small
partitions (single digit bytes) back to back,
function call overhead will slow things down



Opportunities for Optimization

MPI| implementations can optimize data transfer under
the covers:

= Subdivide larger buffers and send
data when ready
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Bandwidth (MiB/s)

Performance Results

o External Implementation, leveraging the RMA interface.
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Example Program



double runBenchmark(int rank, int numlterations, char* sendBuf, char* recvBuf,
int numThreads, size_t threadPart, double compTime, double noise ) {
MPI_Request myReq;
double start, extra_time = 0;
int other = (rank + 1) % 2, TAG = 0x1234, rc = 0;
if (rank ==0) {
rc = MPI_Psend_init(sendBuf, numThreads, threadPart, MPl_CHAR, other, TAG,
MPI_COMM_WORLD, &myReq);
} else {
rc = MPI_Precv_init(recvBuf, numThreads, threadPart, MPlI_CHAR, other, TAG,
MPI_COMM_WORLD, &myReq);
}
start = MPI_Wtime();
srand(time(NULL));
long sleep = compTime * 1000000000;




#pragma omp parallel
shared(rank,numlterations,sendBuf,recvBuf,threadPart,myReq,sleep,sleepPlus)
num_threads(numThreads)

{
int tid = omp_get thread _num(), iteration = O;
struct timespec req,rem; req.tv_sec = 0;
if (numThreads > 1 && tid == numThreads - 1 ) req.tv_nsec = sleepPlus;
else req.tv_nsec = sleep;
for ( iteration = O; iteration < numlterations; iteration++ ) {
#pragma omp master
{
rc = MPI_Start(&myReq);
MPI1_Barrier( MPI_COMM_WORLD );
}

#pragma omp barrier




double duration = MPI_Wtime() - start;;
MPI_Barrier(MPI_COMM_WORLD);
if ( numThreads > 1) duration -= sleepPlus / 1000000000.0 * numlterations;
else duration -= sleep / 1000000000.0 * numlterations;
if( 1 ==rank)
printf("RECV_STATS %d %ld %f %f\n", numThreads, threadPart * numThreads,
duration, extra_time);
MPI_Request_free(&myReq);

return duration;




Takeaways

 Partitioned communication useful for concurrent programming models
e Send data close to computation, not a Bulk Synchronous model

» Accelerators/GPUs support targeted for a future MPI release



Usage model - Kernel communication triggering

Host (CPU) side
MPI_Psend_init(..., &request);
for (...) {
MPI_Start(&request);
MPI_Pbuf_prepare
kernel<<<...>>>(..., request);
MPI_Wait(&request);

3
MPI_Request_free(&request);

_I

Kernel:

__device__ kernel(..., MPI_Request request)
{
int i = my_partition[my_id];

/* Compute and fill partition i then mark
ready: */

MPI_Pready(i, request);
3

Note: CPU does communication setup and completion steps for MPI. Setup
commands on NIC and poll for completion of entire operation. Kernel just indicates
when NIC/MPI can send data. Ideally want to trigger communication from GPU to
fire off when data is ready without communication setup/completion in kernel




Pbuf prepare Example

MPI_PSEND INIT

MPI_START

MPI_PBUF_ PREPARE (blocking/non-local)
MPI_...(nonblocking)

MPI_WAIT (completing)

MPI1_START, MPI_PSYNC
MPI_PREADY...MPI_PREADY
MPI_WAIT

MPI_PRECV _INIT

MPI_START

MPI_PBUF_PREPARE (blocking/non-local)
Optional — MPI_PARRIVED (nonblocking)
MPI_WAIT (completing)

MPI_START, MPI_PSYNC
MPI_PARRIVED...MPI_PARRIVED
MPI_WAIT
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Introduction

How do we implement fine grained
communication in new and existing
applications?

Let’s explore my experience working with miniFE



What Is Needed

There are three major tasks to complete:
= Mapping data elements to communicated partitions
= Packing and marking ready from a threaded context
= Tuning the partitioning for best performance



Mapping Work to Partition

Partitioning ease depends on workload:

= Easy if there is strong coupling of thread to partition
= Not possible for the halo communication in miniFE
= \We had to separate send buffers into partitions

= Maintain a map from computed element to partition
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Mapping Work to Partition

A[X][y]l[z] = B[X][y] * C[z];//work complete
Exam ple Data- //allow most iterations to skip entirely

Stru ctu res: If(data.isSent(x,y,z){

sr = data.sendRank(x,y,z);

= |s an element sent? loc = data.sendLoc(x,y,z);
a T h is it t,? buffer[sr][loc] = A[X][y][z];//pack early
O Wnom IS Itsents .- oc/ PART SIZE://find partition

= \Where is it paCked? data.count[sr][part]++;//count elements
= [n what partition”?

o //lonly send if completed
= How full is it? if(data.count[sr][part] == PART_SIZE){
MPI_Pready(request[sr],part);

O\ o J
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Packing and Readying

There is a performance impact to thread safe concurrent access
to any data structure or hardware resource:
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Packing and Readying

Packing and Readying:
= Pack at completion, potentially element by element
= Threaded apps require thread-safe structures

= Quick access to data structures, low cache impact, and
few atomic operations are key.



Reference miniFE Example

template<typename VectorType>
void waxpby([...])

{
typedef typename VectorType::ScalarType ScalarType;

int n = x.coefs.size();
const ScalarType* xcoefs = &x.coefs[0];
const ScalarType* ycoefs = &y.coefs[0];
ScalarType* wcoefs = &w.coefs[0];

for(int i=0; i<n; ++i) {
wcoefs[i] = alpha*xcoefs[i] + beta*ycoefs]i];
}
}
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Modified miniFE Example

template<typename VectorType, typename MatrixType>

void waxpby_send([...])

{
typedef typename VectorType::ScalarType ScalarType;
typedef typename MatrixType::LocalOrdinalType LocalOrdinal;
typedef typename MatrixType::GlobalOrdinalType GlobalOrdinal;

int n = x.coefs.size();

const ScalarType* xcoefs = &x.coefs[0];

const ScalarType* ycoefs = &y.coefs[0];
ScalarType* wcoefs = &w.coefs[0];

for(int i=0; i<n; ++i) {

wcoefs[i] = alpha * xcoefs][i] + beta * ycoefs]i];

if (1A.is_sent[i]) continue; //shortcut if possible

for(int s = 0; s < A.is_sent[i]; ++s){
ints_num = A.is_sent_to_id[i][s];
int s_dir = A.is_sent_to_dir[i][s];
int local = A.is_sent_to_index[i][s];
A.gran_send_bufs[s_dir][local] = wcoefs]i]; /lpack at completion
int part = local/A.part_elems][s_dir];
A.part_ready[s_dir][part]++; //atomic increment
if(A.part_ready[s_dir][part] == A.part_elems[s_dir]){ //atomic fetch

gran_stencil_ready(A.gran_req, s_dir, part); //send from threaded context

}

}
’;\K\ EXASCALE
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Granularity

Fine grained application performance is sensitive to variation in
the aggregation of partitions/bins sent over the network:
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Key Takeaway

Messages too big— No early bird perceived bandwidth bump
= Reduced time between first and last partition completion

Messages too small — Lower bandwidth/hardware utilization
= Not saturating the network
= Higher call overheads

The tuning of message granularity is necessary to leverage
fine grained communication in applications.



Questions?

Email: wmarts@sandia.gov
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User-level Threading in Open MPI

« Open MPI 4.x and MPICH 3.4.x have ULT* support
» Easy to use with configure options
e The use of ULTs can be beneficial for performance

e Hybrid applications require ULT support in the MPI
implementation for correctness (progress guarantees)

Configure options: Open MPI

——with-threads=TYPE Specify thread TYPE to use. default:pthreads. Other
options are gthreads and argobots.
—with-argobots=DIR Specify location of argobots installation. Error if

argobots support cannot be found.
——with-argobots-1libdir=DIR

Search for argobots libraries in DIR
——with-qthreads=DIR Specify location of gthreads installation. Error if

qthreads support cannot be found.
——with—-gthreads-1ibdir=DIR

Search for qthreads libraries in DIR
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*Note: User-level Threading (ULT)
refers to any threading implementation
where the operating system is not aware
of such threads. Such threads or ‘tasks”
are light-weight but require cooperative
behavior for progress  guarantees
(cooperative multithreading)

MPICH

—wlth-thread-package=package
——with-argobots=[PATH]
—with-argobots-include=PATH
—with-argobots-1ib=PATH

Note: Use ompi _info --
config to see your MPI
configuration




User-level Threading in Open MPI

Experiment With “MPI Partixu H sandialabs | MPI-Partix <2 EditPins +  Unwatch 2 ~ % Fork 0 % Star 0 -
* Appllcatlloln teSt Surte f.or .user-level threadlng <» Code (*) Issues 11 Pull requests (*) Actions fH Projects 00 wiki

and partitioned communication.
e Contains APl examples, benchmarks and 1 main - Gotofle  Addfile- About @

correctness tests
« Works with different threading backends

@ janciesko Initial commit .. 4 minutes ago ) 2

apps Initial commit 4 minutes ago
Example Code modules Initial commit 4 minutes ago
scripts Initial commit 4 minutes ago
src Initial commit 4 minutes ago
threading Initial commit 4 minutes ago
task( part ix_taSk_a rg s-t +a rg s) { ( ) ; } B CMakeLists.txt Initial commit 4 minutes ago
main( argc, argv([]) { [ LICENSE Initial commit 4 minutes ago
partix_con fig—t conf; [ README.md Initial cammit 4 minutes ago
partix_init(argc, argv, &conf);
pa rt i){_l ibra ry_in it ( :, : [ config.sh Initial commit 4 minutes ago
partix_context_t ctx;
( i ; 1 < conf.num_tasks; i) {
partix_task(&task , , bctx);

}
partix_taskwait(&ctx);
partix_library_finalize();

Application test suite for user-
level threading (ULT) and
partitioned communication (PC)
in MPI.

[0 Readme

View license

2 watching

L]
¥r 0 stars
@
k4

0 forks

Releases

Mo releases published

Create a new release

‘ https://github.com/sandialabs/MPI-Partix
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https://github.com/sandialabs/MPI-Partix

User-level Threading in Open MPI

Cooperative multithreading requires support in MPl implementations

« MPI Partix; “ULTCorrectness1”

partix_context_t ctx;

(omP)
omp parallel num_threads(conf.num_threads)
omp single

( i ; 1 < conf.num_tasks; i ) {
(i ) {
partix_task(&task_recv, &task_args, &ctx);
partix_task(&task_send, &task_args, &ctx);
} {
partix_task(&task_send, &task_args, &ctx);
partix_task(&task_recv, &task_args, &ctx);
}
}

partix_taskwait(&ctx);

assert(reduction_var DEFAULT_VALUE * conf.num_tasks);

Supported for Argobots and Qthreads.

OpenMP tasking requires MPI Continuations here.

ECP e

task_send(partix_task_args_t =*args) {
ret;
MPI_Request request;
task_args_t +#task_args=(task_args_t =*)args->user_task_args;

MPI_Isend(&task_args—>some_data, 1, MPI_INT, task_args—>target,
, comm, &request);
MPI_Wait(&request, MPI_STATUS_IGNORE);

partix_mutex_enter(&mutex);
reduction_var task_args—->some_data;
partix_mutex_exit(&mutex);

task_recv(partix_task_args_t *args) {
ret, tmp;
MPI_Request request;
task_args_t *task_args=(task_args_t *)args—>user_task_args;

MPI_Irecv(&tmp, 1, MPI_INT, task_args—->target, @,
comm, &request);
MPI_Wait(&request, MPI_STATUS_IGNORE);

partix_mutex_enter(&mutex);

reduction_var tmp;
partix_mutex_exit(&imutex);

https://github.com/sandialabs/MPI-Partix
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Bandwidth(MB/s)

User-level Threading in Open MPI

User-level threading (ULT) + Partitioned Communication (Basic)
 MPI Partix: “Bench1”, 16KB-2GB buffer size, 1:1 partitions to task mapping

You milage may vary ©
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Pthreads, 1-128 partitions, 1:1 Qthreads, 1-256 partitions, 1:1 OMP Task*, 1-256 partitions, 1:1
POT P2T P2T

More benchmarks included. Feel free to experiment and report back!
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