
How To Leverage New MPI
Features for Exascale Applications

Matthew G. F. Dosanjh1

W. Pepper Marts1

Jan Ciesko1

Howard Pritchard2

1Sandia National Laboratory
2Los Alamos National Lab

SAND2022-6026CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2

Tutorial Outline

• Partitioned Communication – Matthew Dosanjh

• Insights on Adapting Codes to Fine Grained Communication – Pepper Marts

• User Level Threading in Open MPI – Jan Ciesko

• MPI Sessions Overview – Howard Prichard

Partitioned
Communication

Matthew Dosanjh
Sandia National Laboratory

Special Thanks:
Ryan Grant, Queens University

4

• MPI use cases continue to evolve
– CPU design continues to increase the number of cores and hardware threads
– Threading and Tasking models are increasing the number of threads per process
– Accelerator induced communication is the next frontier

• Potentially thousands of MPI processes on a single node (without threading)

• Can we use MPI for concurrent communication?

Why Partitioned Communication?

5

The Coming Thread Storm

6

• Many actors (threads) contributing to a larger operation in MPI
– Same number of messages
– No new ranks

• Many threads work together to assemble a message
– MPI only manages completion notification
– These are actor/action counts, not thread level collectives

• Persistent-type communication
– Init…(Start…test/wait)…free

• No heavy MPI thread concurrency handling required
– Leave the placement/management of the data to the user
– Knowledge required: number of workers, which is easily available

• No more complicated packing of data, send structures when they become available

MPI Partitioned Communication Concepts

7

• “Early bird communication”
• Early threads can start moving data right away
• Could implement using RDMA to avoid

message matching

New Type of Overlap

8

• Expose the “ownership” of a buffer as a shared to MPI
• Need to describe the operation to be performed before

contributing segments
• MPI implementation doesn’t have to care about sharing

– Only needs to understand how many times it will be called

• Threads are required to manage their own buffer
ownership such that the buffer is valid

– The same as would be done today for code that has many
threads working on a dataset (that’s not a reduction)

• Result: MPI is thread agnostic with a minimal
synchronization overhead (atomic_inc)

– Can alternatively use task model instead of threads, IOVEC
instead of contiguous buffer

Persistent Partitioned Buffers

9

• Like persistent communications, setup the operation
 int MPI_Partitioned_send_init(void *buf, int count, MPI_Datatype data_type,
 int to_rank, int to_tag, int num_partitions, MPI_Info info, MPI_Comm comm,

 MPI_Request *request);

• Start the request
MPI_ Start(request)

 Add items to the buffer
#omp parallel for …
int MPI_Pready(void* buf, int count, MPI_Datatype in_datatype,

 int offset_index, MPI_Request *request);

• Wait on completion
MPI_Wait(request)

 Optional: Use MPI_Parrived to test individual partition completion

Example for Persistence

10

• Things to keep in mind:
– Parallelism data structures can lead to good partitioning
– Balance communication granularity with overlap

• Not too small of message but not too large either
• Current networks suggest 64KiB to 1MiB are good targets for 32-

64 partitions.
• Partition sizes 1KiB to 64KiB

– Application development – a high quality implementation

Using Part Comm in an MPI Program

11

• When designing your application keep in mind
what MPI may be doing to help

• Think about overlap: send early and often
– Take advantage of “noise” in computation for extra

overlap

• Consider overheads: Don’t send very small
partitions (single digit bytes) back to back,
function call overhead will slow things down

What is MPI doing to help?

12

MPI implementations can optimize data transfer under
the covers:

Opportunities for Optimization

 Subdivide larger buffers and send
data when ready

 Could be optimized to specific
networks (MTU size)

 Number of messages will be:
1 < #messages ≤ #threads/tasks
For a partition with 1 part per thread

 Reduces the total number of
messages sent, decreasing
matching overheads

13

• External Implementation, leveraging the RMA interface.

Performance Results

14

Example Program

15

double runBenchmark(int rank, int numIterations, char* sendBuf, char* recvBuf,

 int numThreads, size_t threadPart, double compTime, double noise) {

MPI_Request myReq;

double start, extra_time = 0;

int other = (rank + 1) % 2, TAG = 0x1234, rc = 0;

if (rank == 0) {

 rc = MPI_Psend_init(sendBuf, numThreads, threadPart, MPI_CHAR, other, TAG,

 MPI_COMM_WORLD, &myReq);

} else {

 rc = MPI_Precv_init(recvBuf, numThreads, threadPart, MPI_CHAR, other, TAG,

 MPI_COMM_WORLD, &myReq);

}

start = MPI_Wtime();

 srand(time(NULL));

 long sleep = compTime * 1000000000;

 long sleepPlus = (compTime + (compTime * noise)) * 1000000000 ;

16

#pragma omp parallel
shared(rank,numIterations,sendBuf,recvBuf,threadPart,myReq,sleep,sleepPlus)
num_threads(numThreads)

{

 int tid = omp_get_thread_num(), iteration = 0;

 struct timespec req,rem; req.tv_sec = 0;

 if (numThreads > 1 && tid == numThreads - 1) req.tv_nsec = sleepPlus;

 else req.tv_nsec = sleep;

 for (iteration = 0; iteration < numIterations; iteration++) {

#pragma omp master

 {

 rc = MPI_Start(&myReq);

 MPI_Barrier(MPI_COMM_WORLD);

 }

#pragma omp barrier

17

 double duration = MPI_Wtime() - start;;

 MPI_Barrier(MPI_COMM_WORLD);

 if (numThreads > 1) duration -= sleepPlus / 1000000000.0 * numIterations;

 else duration -= sleep / 1000000000.0 * numIterations;

 if(1 == rank)

 printf("RECV_STATS %d %ld %f %f\n", numThreads, threadPart * numThreads,

 duration, extra_time);

 MPI_Request_free(&myReq);

 return duration;

}

18

• Partitioned communication useful for concurrent programming models

• Send data close to computation, not a Bulk Synchronous model

• Accelerators/GPUs support targeted for a future MPI release

Takeaways

19

Host (CPU) side

MPI_Psend_init(..., &request);

for (...) {

 MPI_Start(&request);

 MPI_Pbuf_prepare

 kernel<<<...>>>(..., request);

 MPI_Wait(&request);

}

MPI_Request_free(&request);

Usage model - Kernel communication triggering
Kernel:

__device__ kernel(..., MPI_Request request)
{

 int i = my_partition[my_id];

 /* Compute and fill partition i then mark
ready: */

 MPI_Pready(i, request);

}

Note: CPU does communication setup and completion steps for MPI. Setup
commands on NIC and poll for completion of entire operation. Kernel just indicates
when NIC/MPI can send data. Ideally want to trigger communication from GPU to
fire off when data is ready without communication setup/completion in kernel

20

Pbuf_prepare Example

MPI_PRECV_INIT

MPI_START

MPI_PBUF_PREPARE (blocking/non-local)

Optional – MPI_PARRIVED (nonblocking)

MPI_WAIT (completing)

MPI_START, MPI_PSYNC

MPI_PARRIVED...MPI_PARRIVED

MPI_WAIT

MPI_PSEND_INIT

MPI_START

MPI_PBUF_PREPARE (blocking/non-local)

MPI_…(nonblocking)

MPI_WAIT (completing)

MPI_START, MPI_PSYNC

MPI_PREADY...MPI_PREADY

MPI_WAIT

Fine Grained Communication:
Insights for Applications

W. Pepper Marts
Sandia National Laboratory

22

Introduction

How do we implement fine grained
communication in new and existing
applications?

Let’s explore my experience working with miniFE

23

What Is Needed

There are three major tasks to complete:
Mapping data elements to communicated partitions
Packing and marking ready from a threaded context
Tuning the partitioning for best performance

24

Mapping Work to Partition

Partitioning ease depends on workload:
Easy if there is strong coupling of thread to partition
Not possible for the halo communication in miniFE
We had to separate send buffers into partitions
Maintain a map from computed element to partition

25

Mapping Work to Partition

A[x][y][z] = B[x][y] * C[z];//work complete
//allow most iterations to skip entirely
If(data.isSent(x,y,z){
 sr = data.sendRank(x,y,z);
 loc = data.sendLoc(x,y,z);
 buffer[sr][loc] = A[x][y][z];//pack early
 part = loc / PART_SIZE;//find partition
 data.count[sr][part]++;//count elements

 //only send if completed
 if(data.count[sr][part] == PART_SIZE){
 MPI_Pready(request[sr],part);
 }
}

Example Data-
Structures:
 Is an element sent?
 To whom is it sent?
 Where is it packed?
 In what partition?
 How full is it?

26

Packing and Readying

There is a performance impact to thread safe concurrent access
to any data structure or hardware resource:

27

Packing and Readying

Packing and Readying:
Pack at completion, potentially element by element
Threaded apps require thread-safe structures
Quick access to data structures, low cache impact, and

few atomic operations are key.

28

Reference miniFE Example

template<typename VectorType>
void waxpby([...])
{
 typedef typename VectorType::ScalarType ScalarType;

 int n = x.coefs.size();
 const ScalarType* xcoefs = &x.coefs[0];
 const ScalarType* ycoefs = &y.coefs[0];
 ScalarType* wcoefs = &w.coefs[0];

 for(int i=0; i<n; ++i) {
 wcoefs[i] = alpha*xcoefs[i] + beta*ycoefs[i];
 }
}

29

Modified miniFE Example

template<typename VectorType, typename MatrixType>
void waxpby_send([...])
{
 typedef typename VectorType::ScalarType ScalarType;
 typedef typename MatrixType::LocalOrdinalType LocalOrdinal;
 typedef typename MatrixType::GlobalOrdinalType GlobalOrdinal;

 int n = x.coefs.size();
 const ScalarType* xcoefs = &x.coefs[0];
 const ScalarType* ycoefs = &y.coefs[0];
 ScalarType* wcoefs = &w.coefs[0];

 for(int i=0; i<n; ++i) {
 wcoefs[i] = alpha * xcoefs[i] + beta * ycoefs[i];
 if (!A.is_sent[i]) continue; //shortcut if possible
 for(int s = 0; s < A.is_sent[i]; ++s){
 int s_num = A.is_sent_to_id[i][s];
 int s_dir = A.is_sent_to_dir[i][s];
 int local = A.is_sent_to_index[i][s];
 A.gran_send_bufs[s_dir][local] = wcoefs[i]; //pack at completion
 int part = local/A.part_elems[s_dir];
 A.part_ready[s_dir][part]++; //atomic increment
 if(A.part_ready[s_dir][part] == A.part_elems[s_dir]){ //atomic fetch
 gran_stencil_ready(A.gran_req, s_dir, part); //send from threaded context
 }
 }
 }
}

30

Granularity

Fine grained application performance is sensitive to variation in
the aggregation of partitions/bins sent over the network:

31

Key Takeaway

Messages too big→ No early bird perceived bandwidth bump
 Reduced time between first and last partition completion

Messages too small → Lower bandwidth/hardware utilization
 Not saturating the network
 Higher call overheads

The tuning of message granularity is necessary to leverage
fine grained communication in applications.

32

Questions?

Email: wmarts@sandia.gov

User-Level Threading
Support in Open MPI

Jan Ciesko
Sandia National Laboratory

34

User-level Threading in Open MPI
• Open MPI 4.x and MPICH 3.4.x have ULT* support
• Easy to use with configure options

• The use of ULTs can be beneficial for performance

• Hybrid applications require ULT support in the MPI
implementation for correctness (progress guarantees)

Configure options:

Note: Use ompi_info --
config to see your MPI
configuration

*Note: User-level Threading (ULT)
refers to any threading implementation
where the operating system is not aware
of such threads. Such threads or “tasks”
are light-weight but require cooperative
behavior for progress guarantees
(cooperative multithreading)

Open MPI MPICH

35

User-level Threading in Open MPI

https://github.com/sandialabs/MPI-Partix

Experiment with “MPI Partix”
• Application test suite for user-level threading

and partitioned communication.
• Contains API examples, benchmarks and

correctness tests
• Works with different threading backends

Example code:

https://github.com/sandialabs/MPI-Partix

36

User-level Threading in Open MPI
Cooperative multithreading requires support in MPI implementations
• MPI Partix: “ULTCorrectness1”

https://github.com/sandialabs/MPI-Partix

Supported for Argobots and Qthreads.
OpenMP tasking requires MPI Continuations here.

https://github.com/sandialabs/MPI-Partix

37

User-level Threading in Open MPI

https://github.com/sandialabs/MPI-Partix

User-level threading (ULT) + Partitioned Communication (Basic)
• MPI Partix: “Bench1”, 16KB-2GB buffer size, 1:1 partitions to task mapping

Blake, x86, UCX, OMPI 5.0.X,
Pthreads, 1-128 partitions, 1:1
P2T

Blake, x86, UCX, OMPI 5.0.X,
Qthreads, 1-256 partitions, 1:1
P2T

Blake, x86, UCX, OMPI 5.0.X,
OMP Task*, 1-256 partitions, 1:1
P2T

You milage may vary 

More benchmarks included. Feel free to experiment and report back!

*gcc/10.2.0

https://github.com/sandialabs/MPI-Partix

