How To Leverage New MPI
Features for Exascale Applications

—
\\ EXASCEHEE
) COMPUTING
\ PROSEGSE
S

Matthew G. F. Dosanjh’
W. Pepper Marts’

Jan Ciesko

Howard Pritchard?

'Sandia National Laboratory
’Los Alamos National Lab

Py
VA Y

mwmmmmmmm

g ;,% U.S. DEPARTMENT OF Office of

ENERGY Science

nal Laboratori a multimission laboratory managed and oper: tdbth nal Techn qu&Eq qSIt fS ndia, LLC, a wholly owned

Sandia Natiol bor
subsidia ny waIIt national Inc., for the USDprtmeth rgy's National Nuclear Sec yAdmlntt under contract DE-NA0003535.

Tutorial Outline

Partitioned Communication — Matthew Dosanjh

Insights on Adapting Codes to Fine Grained Communication — Pepper Marts

User Level Threading in Open MPI — Jan Ciesko

MPI Sessions Overview — Howard Prichard

Partitioned
Communication

Matthew Dosanjh
Sandia National Laboratory

Special Thanks:
Ryan Grant, Queens University

EEEEEEEE
EEEEEEEEE
EEEEEEE

Why Partitioned Communication?

 MPI use cases continue to evolve
— CPU design continues to increase the number of cores and hardware threads
— Threading and Tasking models are increasing the number of threads per process
— Accelerator induced communication is the next frontier

» Potentially thousands of MPI processes on a single node (without threading)

e Can we use MPI for concurrent communication?

The Coming Thread Storm

107 ¢
- I 7 pt stencil
| I 27pt stencil

10°

Average Time to Drain Queue (usecs)

Ix1Ix1l 2x1x1 2x2x1 2x2x2 4x2x2 4x4x2 4x4x4 8x4x4d 8x8x4
(1) (2) (4) (8) (16) (32) (56) (104) (184)

Decomposition (Receiving Threads)

—_
ECP =5
C_J

MPI Partitioned Communication Concepts

Many actors (threads) contributing to a larger operation in MPI
— Same number of messages
— No new ranks

Many threads work together to assemble a message
— MPI only manages completion notification
— These are actor/action counts, not thread level collectives

Persistent-type communication
— Init...(Start...test/wait)...free

No heavy MPI thread concurrency handling required
— Leave the placement/management of the data to the user
— Knowledge required: number of workers, which is easily available

No more complicated packing of data, send structures when they become available

New Type of Overlap

 “Early bird communication”
« Early threads can start moving data right away

e Could implement using RDMA to avoid
message matching

R

[Ec¢

Partitioned Send Timeline
///// Thread #4 Data
/'/

-
P87 Thread #1 Data Thread #3 Data
// y 4 Transfer Transfer 4 ,/// Transfer
A E% ¢
2
7

IS

Thread #2 Data
Transfer

Traditional Single Threaded Send Timeline

Thread #1 Data | Thread #2 Data
Transfer Transfer

Thread #3 Data
Transfer

Thread #4 Data
Transfer

A

All threads have joined
and send call is issued

Persistent Partitioned Buffers

e Expose the “ownership” of a buffer as a shared to MPI

e Need to describe the operation to be performed before
contributing segments

 MPI implementation doesn’t have to care about sharing
— Only needs to understand how many times it will be called

e Threads are required to manage their own buffer
ownership such that the buffer is valid
— The same as would be done today for code that has many
threads working on a dataset (that's not a reduction)

e Result: MPI is thread agnostic with a minimal
synchronization overhead (atomic_inc)

— Can alternatively use task model instead of threads, IOVEC
instead of contiguous buffer

Example for Persistence

Like persistent communications, setup the operation
int MP1_Partitioned_send_init(void *buf, int count, MPI_Datatype data_type,
int to_rank, intto_tag, int num_partitions, MPI _Info info, MPI_Comm comm,

MPI1_Request *request);

Start the request
MPI_ Start(request)
Add items to the buffer

#omp parallel for ...

int MPI_Pready(void* buf, int count, MPI_Datatype in_datatype,
int offset_index, MP|_Request *request);

Wait on completion
MPI_Wait(request)
= Optional: Use MPI_Parrived to test individual partition completion

Using Part Comm in an MPI Program

e Things to keep in mind:
— Parallelism data structures can lead to good partitioning
— Balance communication granularity with overlap

» Not too small of message but not too large either

e Current networks suggest 64KiB to 1MiB are good targets for 32-
64 partitions.

e Partition sizes 1KiB to 64KiB
— Application development — a high quality implementation

What is MPI doing to help?

* When designing your application keep in mind
what MPI may be doing to help

e Think about overlap: send early and often

— Take advantage of “noise” in computation for extra
overlap

» Consider overheads: Don’t send very small
partitions (single digit bytes) back to back,
function call overhead will slow things down

Opportunities for Optimization

MPI| implementations can optimize data transfer under
the covers:

= Subdivide larger buffers and send
data when ready

Thread ID# 15 places Thread ID#37 places
data to index 15 data toindex 37

Concurrently

Crigin
Shared

= Could be optimized to specific
networks (MTU size)

= Number of messages will be: |
Sl_,lbsegment_ c_>f the message is complete
1 < #messages < #threads/tasks m;g;gg;ggggnﬁfig:g;r'“dex#15= so
For a partition with 1 part per thread

= Reduces the total number of
messages sent, decreasing
matching overheads

Memory
Buffer

S Target

Shared
NN Memory

Buffer

Message is partially completed on
the target side

Bandwidth (MiB/s)

Performance Results

o External Implementation, leveraging the RMA interface.

KNL O0ms Compute 0% Noise

10000 ‘ ‘ ‘ . ‘ ‘
—=— 32 threads Finepoints \
- *- 32 threads Multi Send
8000 - --e - 32threads Single Send .

6000

4000

2000

Total Buffer Size

P
\ EXASCALE
) COMPUTING
\ PROJECT

Bandwidth (MiB/s)

20000

15000

10000

5000

KNL 100ms Compute 1% Noise

T
—

- K-
-- @ -

32 threads. Fineboints‘
32 threads Multi Send
32 threads Single Send

Total Buffer Size (Bytes)

Bandwidth (MiB/s)

KNL 100ms Compute 10% Noise

120000
100000 -
80000 -
60000 r
40000
20000

—+— B4 threads Fiﬁepoiﬁts
- *- 64 threads Multi Send
-- e - 64 threads Single Send

L ®
NIy

®

o
D

“o ® -0-9- 0 © -
1 | |

S @@i&@

Example Program

double runBenchmark(int rank, int numlterations, char* sendBuf, char* recvBuf,
int numThreads, size_t threadPart, double compTime, double noise) {
MPI_Request myReq;
double start, extra_time = 0;
int other = (rank + 1) % 2, TAG = 0x1234, rc = 0;
if (rank ==0) {
rc = MPI_Psend_init(sendBuf, numThreads, threadPart, MPl_CHAR, other, TAG,
MPI_COMM_WORLD, &myReq);
} else {
rc = MPI_Precv_init(recvBuf, numThreads, threadPart, MPlI_CHAR, other, TAG,
MPI_COMM_WORLD, &myReq);
}
start = MPI_Wtime();
srand(time(NULL));
long sleep = compTime * 1000000000;

#pragma omp parallel
shared(rank,numlterations,sendBuf,recvBuf,threadPart,myReq,sleep,sleepPlus)
num_threads(numThreads)

{
int tid = omp_get thread _num(), iteration = O;
struct timespec req,rem; req.tv_sec = 0;
if (numThreads > 1 && tid == numThreads - 1) req.tv_nsec = sleepPlus;
else req.tv_nsec = sleep;
for (iteration = O; iteration < numlterations; iteration++) {
#pragma omp master
{
rc = MPI_Start(&myReq);
MPI1_Barrier(MPI_COMM_WORLD);
}

#pragma omp barrier

double duration = MPI_Wtime() - start;;
MPI_Barrier(MPI_COMM_WORLD);
if (numThreads > 1) duration -= sleepPlus / 1000000000.0 * numlterations;
else duration -= sleep / 1000000000.0 * numlterations;
if(1 ==rank)
printf("RECV_STATS %d %ld %f %f\n", numThreads, threadPart * numThreads,
duration, extra_time);
MPI_Request_free(&myReq);

return duration;

Takeaways

 Partitioned communication useful for concurrent programming models
e Send data close to computation, not a Bulk Synchronous model

» Accelerators/GPUs support targeted for a future MPI release

Usage model - Kernel communication triggering

Host (CPU) side
MPI_Psend_init(..., &request);
for (...) {
MPI_Start(&request);
MPI_Pbuf_prepare
kernel<<<...>>>(..., request);
MPI_Wait(&request);

3
MPI_Request_free(&request);

_I

Kernel:

__device__ kernel(..., MPI_Request request)
{
int i = my_partition[my_id];

/* Compute and fill partition i then mark
ready: */

MPI_Pready(i, request);
3

Note: CPU does communication setup and completion steps for MPI. Setup
commands on NIC and poll for completion of entire operation. Kernel just indicates
when NIC/MPI can send data. Ideally want to trigger communication from GPU to
fire off when data is ready without communication setup/completion in kernel

Pbuf prepare Example

MPI_PSEND INIT

MPI_START

MPI_PBUF_ PREPARE (blocking/non-local)
MPI_...(nonblocking)

MPI_WAIT (completing)

MPI1_START, MPI_PSYNC
MPI_PREADY...MPI_PREADY
MPI_WAIT

MPI_PRECV _INIT

MPI_START

MPI_PBUF_PREPARE (blocking/non-local)
Optional — MPI_PARRIVED (nonblocking)
MPI_WAIT (completing)

MPI_START, MPI_PSYNC
MPI_PARRIVED...MPI_PARRIVED
MPI_WAIT

Fine Grained Communication:
Insights for Applications

W. Pepper Marts
Sandia National Laboratory

Introduction

How do we implement fine grained
communication in new and existing
applications?

Let’s explore my experience working with miniFE

What Is Needed

There are three major tasks to complete:
= Mapping data elements to communicated partitions
= Packing and marking ready from a threaded context
= Tuning the partitioning for best performance

Mapping Work to Partition

Partitioning ease depends on workload:

= Easy if there is strong coupling of thread to partition
= Not possible for the halo communication in miniFE
= \We had to separate send buffers into partitions

= Maintain a map from computed element to partition

ad B
B
B

Mapping Work to Partition

A[X][y]l[z] = B[X][y] * C[z];//work complete
Exam ple Data- //allow most iterations to skip entirely

Stru ctu res: If(data.isSent(x,y,z){

sr = data.sendRank(x,y,z);

= |s an element sent? loc = data.sendLoc(x,y,z);
a T h is it t,? buffer[sr][loc] = A[X][y][z];//pack early
O Wnom IS Itsents .- oc/ PART SIZE://find partition

= \Where is it paCked? data.count[sr][part]++;//count elements
= [n what partition”?

o //lonly send if completed
= How full is it? if(data.count[sr][part] == PART_SIZE){
MPI_Pready(request[sr],part);

O\ o J
ECP ==)

Packing and Readying

There is a performance impact to thread safe concurrent access
to any data structure or hardware resource:

L1111 _B

—>

Packing and Readying

Packing and Readying:
= Pack at completion, potentially element by element
= Threaded apps require thread-safe structures

= Quick access to data structures, low cache impact, and
few atomic operations are key.

Reference miniFE Example

template<typename VectorType>
void waxpby([...])

{
typedef typename VectorType::ScalarType ScalarType;

int n = x.coefs.size();
const ScalarType* xcoefs = &x.coefs[0];
const ScalarType* ycoefs = &y.coefs[0];
ScalarType* wcoefs = &w.coefs[0];

for(int i=0; i<n; ++i) {
wcoefs[i] = alpha*xcoefs[i] + beta*ycoefs]i];
}
}

—_—
\ EXASCALE
) COMPUTING
\ PROJECT

Modified miniFE Example

template<typename VectorType, typename MatrixType>

void waxpby_send([...])

{
typedef typename VectorType::ScalarType ScalarType;
typedef typename MatrixType::LocalOrdinalType LocalOrdinal;
typedef typename MatrixType::GlobalOrdinalType GlobalOrdinal;

int n = x.coefs.size();

const ScalarType* xcoefs = &x.coefs[0];

const ScalarType* ycoefs = &y.coefs[0];
ScalarType* wcoefs = &w.coefs[0];

for(int i=0; i<n; ++i) {

wcoefs[i] = alpha * xcoefs][i] + beta * ycoefs]i];

if (1A.is_sent[i]) continue; //shortcut if possible

for(int s = 0; s < A.is_sent[i]; ++s){
ints_num = A.is_sent_to_id[i][s];
int s_dir = A.is_sent_to_dir[i][s];
int local = A.is_sent_to_index[i][s];
A.gran_send_bufs[s_dir][local] = wcoefs]i]; /lpack at completion
int part = local/A.part_elems][s_dir];
A.part_ready[s_dir][part]++; //atomic increment
if(A.part_ready[s_dir][part] == A.part_elems[s_dir]){ //atomic fetch

gran_stencil_ready(A.gran_req, s_dir, part); //send from threaded context

}

}
’;\K\ EXASCALE
E\(E [S5

Granularity

Fine grained application performance is sensitive to variation in
the aggregation of partitions/bins sent over the network:

11— [
L [1—> [L

Key Takeaway

Messages too big— No early bird perceived bandwidth bump
= Reduced time between first and last partition completion

Messages too small — Lower bandwidth/hardware utilization
= Not saturating the network
= Higher call overheads

The tuning of message granularity is necessary to leverage
fine grained communication in applications.

Questions?

Email: wmarts@sandia.gov

User-Level Threading
Support in Open MPI

Jan Ciesko
Sandia National Laboratory

User-level Threading in Open MPI

« Open MPI 4.x and MPICH 3.4.x have ULT* support
» Easy to use with configure options
e The use of ULTs can be beneficial for performance

e Hybrid applications require ULT support in the MPI
implementation for correctness (progress guarantees)

Configure options: Open MPI

——with-threads=TYPE Specify thread TYPE to use. default:pthreads. Other
options are gthreads and argobots.
—with-argobots=DIR Specify location of argobots installation. Error if

argobots support cannot be found.
——with-argobots-1libdir=DIR

Search for argobots libraries in DIR
——with-qthreads=DIR Specify location of gthreads installation. Error if

qthreads support cannot be found.
——with—-gthreads-1ibdir=DIR

Search for qthreads libraries in DIR

—_—
\ EXASCALE
) COMPUTING
\ PROJECT

*Note: User-level Threading (ULT)
refers to any threading implementation
where the operating system is not aware
of such threads. Such threads or ‘tasks”
are light-weight but require cooperative
behavior for progress guarantees
(cooperative multithreading)

MPICH

—wlth-thread-package=package
——with-argobots=[PATH]
—with-argobots-include=PATH
—with-argobots-1ib=PATH

Note: Use ompi _info --
config to see your MPI
configuration

User-level Threading in Open MPI

Experiment With “MPI Partixu H sandialabs | MPI-Partix <2 EditPins + Unwatch 2 ~ % Fork 0 % Star 0 -
* Appllcatlloln teSt Surte f.or .user-level threadlng <» Code (*) Issues 11 Pull requests (*) Actions fH Projects 00 wiki

and partitioned communication.
e Contains APl examples, benchmarks and 1 main - Gotofle Addfile- About @

correctness tests
« Works with different threading backends

@ janciesko Initial commit .. 4 minutes ago) 2

apps Initial commit 4 minutes ago
Example Code modules Initial commit 4 minutes ago
scripts Initial commit 4 minutes ago
src Initial commit 4 minutes ago
threading Initial commit 4 minutes ago
task(part ix_taSk_a rg s-t +a rg s) { () ; } B CMakeLists.txt Initial commit 4 minutes ago
main(argc, argv([]) { [LICENSE Initial commit 4 minutes ago
partix_con fig—t conf; [README.md Initial cammit 4 minutes ago
partix_init(argc, argv, &conf);
pa rt i){_l ibra ry_in it (:, : [config.sh Initial commit 4 minutes ago
partix_context_t ctx;
(i ; 1 < conf.num_tasks; i) {
partix_task(&task , , bctx);

}
partix_taskwait(&ctx);
partix_library_finalize();

Application test suite for user-
level threading (ULT) and
partitioned communication (PC)
in MPI.

[0 Readme

View license

2 watching

L]
¥r 0 stars
@
k4

0 forks

Releases

Mo releases published

Create a new release

‘ https://github.com/sandialabs/MPI-Partix

EXASCALE
COMPUTING
PROJECT

) }
ECP

https://github.com/sandialabs/MPI-Partix

User-level Threading in Open MPI

Cooperative multithreading requires support in MPl implementations

« MPI Partix; “ULTCorrectness1”

partix_context_t ctx;

(omP)
omp parallel num_threads(conf.num_threads)
omp single

(i ; 1 < conf.num_tasks; i) {
(i) {
partix_task(&task_recv, &task_args, &ctx);
partix_task(&task_send, &task_args, &ctx);
} {
partix_task(&task_send, &task_args, &ctx);
partix_task(&task_recv, &task_args, &ctx);
}
}

partix_taskwait(&ctx);

assert(reduction_var DEFAULT_VALUE * conf.num_tasks);

Supported for Argobots and Qthreads.

OpenMP tasking requires MPI Continuations here.

ECP e

task_send(partix_task_args_t =*args) {
ret;
MPI_Request request;
task_args_t +#task_args=(task_args_t =*)args->user_task_args;

MPI_Isend(&task_args—>some_data, 1, MPI_INT, task_args—>target,
, comm, &request);
MPI_Wait(&request, MPI_STATUS_IGNORE);

partix_mutex_enter(&mutex);
reduction_var task_args—->some_data;
partix_mutex_exit(&mutex);

task_recv(partix_task_args_t *args) {
ret, tmp;
MPI_Request request;
task_args_t *task_args=(task_args_t *)args—>user_task_args;

MPI_Irecv(&tmp, 1, MPI_INT, task_args—->target, @,
comm, &request);
MPI_Wait(&request, MPI_STATUS_IGNORE);

partix_mutex_enter(&mutex);

reduction_var tmp;
partix_mutex_exit(&imutex);

https://github.com/sandialabs/MPI-Partix

https://github.com/sandialabs/MPI-Partix

Bandwidth(MB/s)

User-level Threading in Open MPI

User-level threading (ULT) + Partitioned Communication (Basic)
 MPI Partix: “Bench1”, 16KB-2GB buffer size, 1:1 partitions to task mapping

You milage may vary ©

10000 = 10000 1 T T T T TTT T T T ae——) I e i — Sy
W 5) 10000 <)
4 4 A
A00Y a] 8 8000 &
16 n 16 0 16
L R ;i % 000 ;i % BO0D gi
— 128 2 — 128 2 — 128
4000 N % wnd o5 E a0 4 —— 256
i m i
0 —“—'-""'"H’i_‘_‘q_-___hh_'_'—'_\ | ___.___._____._.#_-—-—-—H-_.__._ o —_— —
0.00 0.00 .'mréuﬂer Si;enEKB] 0,10 1.00 . aoo o L';juﬁerslzﬁ:mm A0 100 I|El-z 000 oo nlnnBuﬁp,-S,zn;:rKB} Cow 1m0 1::'
Blake, x86, UCX, OMPI 5.0.X, Blake, x86, UCX, OMPI 5.0.X, Blake, x86, UCX, OMPI 5.0.X,
Pthreads, 1-128 partitions, 1:1 Qthreads, 1-256 partitions, 1:1 OMP Task*, 1-256 partitions, 1:1
POT P2T P2T

More benchmarks included. Feel free to experiment and report back!

\ = exmecme https://github.com/sandialabs/MPI-Partix
E\(C\)F’ ST *gcc/10.2.0

https://github.com/sandialabs/MPI-Partix

