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Tutorial Outline

• Partitioned Communication – Matthew Dosanjh

• Insights on Adapting Codes to Fine Grained Communication – Pepper Marts

• User Level Threading in Open MPI – Jan Ciesko

• MPI Sessions Overview – Howard Prichard
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• MPI use cases continue to evolve
– CPU design continues to increase the number of cores and hardware threads
– Threading and Tasking models are increasing the number of threads per process
– Accelerator induced communication is the next frontier

• Potentially thousands of MPI processes on a single node (without threading) 

• Can we use MPI for concurrent communication?

Why Partitioned Communication?
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The Coming Thread Storm
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• Many actors (threads) contributing to a larger operation in MPI 
– Same number of messages
– No new ranks

• Many threads work together to assemble a message
– MPI only manages completion notification
– These are actor/action counts, not thread level collectives

• Persistent-type communication 
– Init…(Start…test/wait)…free

• No heavy MPI thread concurrency handling required
– Leave the placement/management of the data to the user
– Knowledge required: number of workers, which is easily available

• No more complicated packing of data, send structures when they become available

MPI Partitioned Communication Concepts
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• “Early bird communication”
• Early threads can start moving data right away
• Could implement using RDMA to avoid 

message matching

New Type of Overlap
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• Expose the “ownership” of a buffer as a shared to MPI
• Need to describe the operation to be performed before 

contributing segments
• MPI implementation doesn’t have to care about sharing

– Only needs to understand how many times it will be called

• Threads are required to manage their own buffer 
ownership such that the buffer is valid

– The same as would be done today for code that has many 
threads working on a dataset (that’s not a reduction)

• Result: MPI is thread agnostic with a minimal 
synchronization overhead (atomic_inc)

– Can alternatively use task model instead of threads, IOVEC 
instead of contiguous buffer

Persistent Partitioned Buffers
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• Like persistent communications, setup the operation
  int MPI_Partitioned_send_init( void *buf, int count, MPI_Datatype data_type,
                                   int to_rank, int to_tag, int num_partitions,  MPI_Info info, MPI_Comm comm,

                  MPI_Request *request);

• Start the request
MPI_ Start(request) 

 Add items to the buffer
#omp parallel for …
int MPI_Pready( void* buf, int count, MPI_Datatype in_datatype,

            int offset_index, MPI_Request *request);

• Wait on completion
MPI_Wait(request)

 Optional: Use MPI_Parrived to test individual partition completion

Example for Persistence



10  

• Things to keep in mind:
– Parallelism data structures can lead to good partitioning
– Balance communication granularity with overlap

• Not too small of message but not too large either
• Current networks suggest 64KiB to 1MiB are good targets for 32-

64 partitions.
• Partition sizes 1KiB to 64KiB 

– Application development – a high quality implementation

Using Part Comm in an MPI Program
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• When designing your application keep in mind 
what MPI may be doing to help

• Think about overlap: send early and often
– Take advantage of “noise” in computation for extra 

overlap

• Consider overheads: Don’t send very small 
partitions (single digit bytes) back to back, 
function call overhead will slow things down

What is MPI doing to help?
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MPI implementations can optimize data transfer under 
the covers:

Opportunities for Optimization

 Subdivide larger buffers and send 
data when ready

 Could be optimized to specific 
networks (MTU size)

 Number of messages will be:
1 < #messages ≤ #threads/tasks
For a partition with 1 part per thread

 Reduces the total number of 
messages sent, decreasing 
matching overheads 
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• External Implementation, leveraging the RMA interface.

Performance Results
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Example Program
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double runBenchmark(int rank, int numIterations, char* sendBuf, char* recvBuf, 

                                         int numThreads, size_t threadPart, double compTime, double noise ) {

MPI_Request myReq; 

double start, extra_time = 0; 

int other = (rank + 1) % 2, TAG = 0x1234, rc = 0;

if ( rank == 0 ) {

    rc = MPI_Psend_init(sendBuf, numThreads, threadPart, MPI_CHAR, other, TAG, 

                                          MPI_COMM_WORLD, &myReq);

} else {

    rc = MPI_Precv_init(recvBuf, numThreads,  threadPart,  MPI_CHAR, other, TAG, 

                                        MPI_COMM_WORLD, &myReq);

}

start = MPI_Wtime();

    srand(time(NULL));

    long sleep = compTime * 1000000000;

    long sleepPlus = (compTime + ( compTime * noise)) * 1000000000 ;
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#pragma omp parallel 
shared(rank,numIterations,sendBuf,recvBuf,threadPart,myReq,sleep,sleepPlus) 
num_threads(numThreads)

{

    int tid = omp_get_thread_num(), iteration = 0;

    struct timespec req,rem; req.tv_sec = 0;

    if ( numThreads > 1 && tid == numThreads - 1 ) req.tv_nsec = sleepPlus;

    else req.tv_nsec = sleep;

    for ( iteration = 0; iteration < numIterations; iteration++ ) {

#pragma omp master 

        {

            rc = MPI_Start(&myReq);

            MPI_Barrier( MPI_COMM_WORLD );

        }

#pragma omp barrier
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  double duration = MPI_Wtime() - start;;

  MPI_Barrier(MPI_COMM_WORLD);

  if ( numThreads > 1 ) duration -=  sleepPlus / 1000000000.0 * numIterations;

  else duration -=  sleep / 1000000000.0 * numIterations;

  if( 1 == rank )

          printf("RECV_STATS %d %ld %f %f\n", numThreads, threadPart * numThreads,                      

                   duration, extra_time); 

  MPI_Request_free(&myReq);

  return duration;

}
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• Partitioned communication useful for concurrent programming models

• Send data close to computation, not a Bulk Synchronous model

• Accelerators/GPUs support targeted for a future MPI release

Takeaways
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Host (CPU) side

MPI_Psend_init(..., &request);

for (...) {

  MPI_Start(&request);

  MPI_Pbuf_prepare

  kernel<<<...>>>(..., request);

  MPI_Wait(&request);

}

MPI_Request_free(&request);

Usage model - Kernel communication triggering
Kernel:

__device__ kernel(..., MPI_Request request) 
{

  int i = my_partition[my_id];

  /* Compute and fill partition i then mark 
ready: */

  MPI_Pready(i, request);

}

Note: CPU does communication setup and completion steps for MPI. Setup 
commands on NIC and poll for completion of entire operation. Kernel just indicates 
when NIC/MPI can send data. Ideally want to trigger communication from GPU to 
fire off when data is ready without communication setup/completion in kernel
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Pbuf_prepare Example

MPI_PRECV_INIT 

MPI_START 

MPI_PBUF_PREPARE (blocking/non-local)

Optional – MPI_PARRIVED (nonblocking)

MPI_WAIT (completing)

MPI_START, MPI_PSYNC

MPI_PARRIVED...MPI_PARRIVED

MPI_WAIT

MPI_PSEND_INIT

MPI_START 

MPI_PBUF_PREPARE (blocking/non-local)

MPI_…(nonblocking)

MPI_WAIT (completing)

MPI_START, MPI_PSYNC

MPI_PREADY...MPI_PREADY

MPI_WAIT



Fine Grained Communication:
Insights for Applications
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Introduction

How do we implement fine grained 
communication in new and existing 
applications?

Let’s explore my experience working with miniFE
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What Is Needed

There are three major tasks to complete:
Mapping data elements to communicated partitions
Packing and marking ready from a threaded context
Tuning the partitioning for best performance
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Mapping Work to Partition

Partitioning ease depends on workload:
Easy if there is strong coupling of thread to partition
Not possible for the halo communication in miniFE
We had to separate send buffers into partitions
Maintain a map from computed element to partition
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Mapping Work to Partition

A[x][y][z] = B[x][y] * C[z];//work complete
//allow most iterations to skip entirely
If(data.isSent(x,y,z){
  sr = data.sendRank(x,y,z);
  loc = data.sendLoc(x,y,z);
  buffer[sr][loc] = A[x][y][z];//pack early
  part = loc / PART_SIZE;//find partition
  data.count[sr][part]++;//count elements

  //only send if completed
  if(data.count[sr][part] == PART_SIZE){
    MPI_Pready(request[sr],part);
  }
}

Example Data-
Structures:
 Is an element sent?
 To whom is it sent?
 Where is it packed?
 In what partition?
 How full is it?
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Packing and Readying

There is a performance impact to thread safe concurrent access 
to any data structure or hardware resource:
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Packing and Readying

Packing and Readying:
Pack at completion, potentially element by element
Threaded apps require thread-safe structures
Quick access to data structures, low cache impact, and 

few atomic operations are key.
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Reference miniFE Example

template<typename VectorType>
void waxpby([...])
{
  typedef typename VectorType::ScalarType ScalarType;

  int n = x.coefs.size();
  const ScalarType* xcoefs = &x.coefs[0];
  const ScalarType* ycoefs = &y.coefs[0];
        ScalarType* wcoefs = &w.coefs[0];

  for(int i=0; i<n; ++i) {
    wcoefs[i] = alpha*xcoefs[i] + beta*ycoefs[i];
  }
}
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Modified miniFE Example

template<typename VectorType, typename MatrixType>
void waxpby_send([...])
{
  typedef typename VectorType::ScalarType ScalarType;
  typedef typename MatrixType::LocalOrdinalType LocalOrdinal;
  typedef typename MatrixType::GlobalOrdinalType GlobalOrdinal;

  int n = x.coefs.size();
  const ScalarType* xcoefs = &x.coefs[0];
  const ScalarType* ycoefs = &y.coefs[0];
        ScalarType* wcoefs = &w.coefs[0];

  for(int i=0; i<n; ++i) {
    wcoefs[i] = alpha * xcoefs[i] + beta * ycoefs[i];
    if (!A.is_sent[i]) continue;                             //shortcut if possible
    for(int s = 0; s < A.is_sent[i]; ++s){
      int s_num = A.is_sent_to_id[i][s];
      int s_dir = A.is_sent_to_dir[i][s];
      int local = A.is_sent_to_index[i][s];
      A.gran_send_bufs[s_dir][local] = wcoefs[i];           //pack at completion
      int part = local/A.part_elems[s_dir];
      A.part_ready[s_dir][part]++;                           //atomic increment
      if(A.part_ready[s_dir][part] == A.part_elems[s_dir]){ //atomic fetch
        gran_stencil_ready(A.gran_req, s_dir, part);        //send from threaded context
      }
    }
  }
}
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Granularity

Fine grained application performance  is sensitive to variation in 
the aggregation of partitions/bins sent over the network:
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Key Takeaway

Messages too big→ No early bird perceived bandwidth bump
 Reduced time between first and last partition completion

Messages too small → Lower bandwidth/hardware utilization
 Not saturating the network
 Higher call overheads

The tuning of message granularity is necessary to leverage 
fine grained communication in applications.
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Questions?

Email: wmarts@sandia.gov



User-Level Threading 
Support in Open MPI 

Jan Ciesko
Sandia National Laboratory
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User-level Threading in Open MPI
• Open MPI 4.x and MPICH 3.4.x have ULT* support
• Easy to use with configure options

• The use of ULTs can be beneficial for performance 

• Hybrid applications require ULT support in the MPI 
implementation for correctness (progress guarantees)

Configure options: 

Note: Use ompi_info --
config to see your MPI 
configuration

*Note: User-level Threading (ULT) 
refers to any threading implementation 
where the operating system is not aware 
of such threads. Such threads or “tasks” 
are light-weight but require cooperative 
behavior for progress guarantees 
(cooperative multithreading)

Open MPI MPICH
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User-level Threading in Open MPI

https://github.com/sandialabs/MPI-Partix

Experiment with “MPI Partix”
• Application  test  suite  for  user-level  threading 

and partitioned communication. 
• Contains  API  examples,  benchmarks  and 

correctness tests
• Works with different threading backends

Example code:

https://github.com/sandialabs/MPI-Partix
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User-level Threading in Open MPI
Cooperative multithreading requires support in MPI implementations
• MPI Partix: “ULTCorrectness1”

https://github.com/sandialabs/MPI-Partix

Supported for Argobots and Qthreads.
OpenMP tasking requires MPI Continuations here.

https://github.com/sandialabs/MPI-Partix
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User-level Threading in Open MPI

https://github.com/sandialabs/MPI-Partix

User-level threading (ULT) + Partitioned Communication (Basic)
• MPI Partix: “Bench1”, 16KB-2GB buffer size, 1:1 partitions to task mapping 

Blake, x86, UCX, OMPI 5.0.X, 
Pthreads, 1-128 partitions, 1:1 
P2T

Blake, x86, UCX, OMPI 5.0.X, 
Qthreads, 1-256 partitions, 1:1 
P2T

Blake, x86, UCX, OMPI 5.0.X, 
OMP Task*, 1-256 partitions, 1:1 
P2T

You milage may vary 

More benchmarks included. Feel free to experiment and report back!

*gcc/10.2.0

https://github.com/sandialabs/MPI-Partix

