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2 Crash Course in Optimal Transport

Density µ ∈ X

<latexit sha1_base64="U6dZj3kWh8fcU0WhKBnbjWNoDSQ=">AAACCXicbZC7SgNBFIZn4y3G26qlzWAQkibsiqiNELWxjJAbZJcwO5lNhszOLnNRw5LWxlexsVDE1jew822cJFto4g8DH/85hzPnDxJGpXKcbyu3tLyyupZfL2xsbm3v2Lt7TRlrgUkDxywW7QBJwignDUUVI+1EEBQFjLSC4fWk3rojQtKY19UoIX6E+pyGFCNlrK4NvQdB+wOFhIjvU4/rUr10WS7DC+hF2tC4axedijMVXAQ3gyLIVOvaX14vxjoiXGGGpOy4TqL8FAlFMSPjgqclSRAeoj7pGOQoItJPp5eM4ZFxejCMhXlcwan7eyJFkZSjKDCdEVIDOV+bmP/VOlqF535KeaIV4Xi2KNQMqhhOYoE9KghWbGQAYUHNXyEeIIGwMuEVTAju/MmL0DyuuKcV9/akWL3K4siDA3AISsAFZ6AKbkANNAAGj+AZvII368l6sd6tj1lrzspm9sEfWZ8/UqGYyQ==</latexit>

⌫(T (A))=µ(A)���������!

Density ν ∈ Y

Take away: Obtain the map that transport mass from the source to target with
minimal cost.
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3

Relating Optimal Transport to the Monge-Ampère equation

Recall the optimal transport map φ(µ0) = µ1, find the solution φ to the optimal transport
problem:

min
φ(x)

∫
Ω

µ0|φ(x)− x|2dx ,

such that c(φ(x)) =det(∇φ(x))µ1(φ(x))− µ0(x) = 0,

where µ0 ∈ X, µ1 ∈ Y are the source and target densities.

Assumption that the map φ is the gradient of a convex function u, φ = ∇u

Recover the Monge-Ampère equation with a transport boundary condition:

det(H(u)) = uxxuyy − u2
xy =

µ0

µ1
, u ∈ X, ∇u(X) = Y, u ∈ ∂X.

We focus solving the Monge-Ampère equation to generate a dynamic, optimally
transported adaptive mesh.

Kelsey DiPietro MAE



3

Relating Optimal Transport to the Monge-Ampère equation

Recall the optimal transport map φ(µ0) = µ1, find the solution φ to the optimal transport
problem:

min
φ(x)

∫
Ω

µ0|φ(x)− x|2dx ,

such that c(φ(x)) =det(∇φ(x))µ1(φ(x))− µ0(x) = 0,

where µ0 ∈ X, µ1 ∈ Y are the source and target densities.

Assumption that the map φ is the gradient of a convex function u, φ = ∇u

Recover the Monge-Ampère equation with a transport boundary condition:

det(H(u)) = uxxuyy − u2
xy =

µ0

µ1
, u ∈ X, ∇u(X) = Y, u ∈ ∂X.

We focus solving the Monge-Ampère equation to generate a dynamic, optimally
transported adaptive mesh.

Kelsey DiPietro MAE



3

Relating Optimal Transport to the Monge-Ampère equation

Recall the optimal transport map φ(µ0) = µ1, find the solution φ to the optimal transport
problem:

min
φ(x)

∫
Ω

µ0|φ(x)− x|2dx ,

such that c(φ(x)) =det(∇φ(x))µ1(φ(x))− µ0(x) = 0,

where µ0 ∈ X, µ1 ∈ Y are the source and target densities.

Assumption that the map φ is the gradient of a convex function u, φ = ∇u

Recover the Monge-Ampère equation with a transport boundary condition:

det(H(u)) = uxxuyy − u2
xy =

µ0

µ1
, u ∈ X, ∇u(X) = Y, u ∈ ∂X.

We focus solving the Monge-Ampère equation to generate a dynamic, optimally
transported adaptive mesh.
Kelsey DiPietro MAE



4 Links to Mesh Adaptation

If u is a convex solution to the Monge-Ampere equation, then (x , y) = ∇u gives an adaptive
mesh in the physical space.
Mesh adaptation is determined through a monitor function based on the solution to PDE being
solved.
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5 Improving Numerical Methods for the MAE

Desire efficient and robust finite element solvers
for the Monge-Ampère equation

The faster the solution the easier it is to integrate
r-adapting meshing into a toolbox.

Want a solver interface that fits well into existing
Sandia architectures.

Use the Trilinos package Intrepid for the finite
element discretization.
Utilize the Intrelab interface to run real time
examples using Matlab.

Need low-order approximations in order to exploit
parallel solution methods.
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6 Mixed Finite Element Method for the MAE
Recall the MAE:

det(D2u) = f in Ω, ∇u(X) = Y on ∂Ω.

Boundary condition is approximated with a signed distance function. Discretize using a
mixed finite element method.

〈H[U],Φ〉 = −
∫

Ω

∇U ⊗∇Φ +

∫
∂Ω

∇⊗ nΦ, ∀Φ ∈ V,

〈F(H[U]),Φ〉 = 〈f ,Φ〉, ∀Φ ∈ V.

The discretization imposes an O(h) error near the boundary, uniqueness needs to be imposed
with a mean value constraint.

E =


M 0 0 0 −C1,1 0
0 M 0 0 −C1,2 0
0 0 M 0 −C2,1 0
0 0 0 M −C2,2 0

B1,1 B1,2 B2,1 B2,2 0 〈1,ΦT〉
0 0 0 0 〈Φ, 1〉 0

 , v =


h1,1

h1,2

h2,1

h2,2

u
λ

 , b =


〈Ψ∗(n),ΦT〉

0
0

〈Ψ∗(n),ΦT〉
f
0

 ,

C1,1 = −〈∂1Φ, ∂1ΦT〉+ 〈Φn2, ∂2ΦT〉∂Ω ∈ RN×N ,C2,2 = −〈∂2Φ, ∂2ΦT〉+ 〈Φn1, ∂1ΦT〉∂Ω ∈ RN×N
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7 Can the Mixed Method be used with P1 Elements?

Much of the literature claims the above methods cannot converge for P1 elements.

Show that Newton’s and damped Newton’s methods cannot converge unless:

1 It is discretized with higher order elements (such as P2).†

2 Additional gradient variables are used.††

These restrictions hinder the use of fast solution algorithms.

If solving the Monge-Ampère is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.

Objective: Can we find a low order finite element approximation for the
Monge-Ampère Equation?

Kelsey DiPietro MAE



7 Can the Mixed Method be used with P1 Elements?

Much of the literature claims the above methods cannot converge for P1 elements.

Show that Newton’s and damped Newton’s methods cannot converge unless:
1 It is discretized with higher order elements (such as P2).†

2 Additional gradient variables are used.††

These restrictions hinder the use of fast solution algorithms.

If solving the Monge-Ampère is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.

Objective: Can we find a low order finite element approximation for the
Monge-Ampère Equation?

Kelsey DiPietro MAE



7 Can the Mixed Method be used with P1 Elements?

Much of the literature claims the above methods cannot converge for P1 elements.

Show that Newton’s and damped Newton’s methods cannot converge unless:
1 It is discretized with higher order elements (such as P2).†

2 Additional gradient variables are used.††

These restrictions hinder the use of fast solution algorithms.

If solving the Monge-Ampère is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.

Objective: Can we find a low order finite element approximation for the
Monge-Ampère Equation?

Kelsey DiPietro MAE



7 Can the Mixed Method be used with P1 Elements?

Much of the literature claims the above methods cannot converge for P1 elements.

Show that Newton’s and damped Newton’s methods cannot converge unless:
1 It is discretized with higher order elements (such as P2).†

2 Additional gradient variables are used.††

These restrictions hinder the use of fast solution algorithms.

If solving the Monge-Ampère is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.

Objective: Can we find a low order finite element approximation for the
Monge-Ampère Equation?

Kelsey DiPietro MAE



7 Can the Mixed Method be used with P1 Elements?

Much of the literature claims the above methods cannot converge for P1 elements.

Show that Newton’s and damped Newton’s methods cannot converge unless:
1 It is discretized with higher order elements (such as P2).†

2 Additional gradient variables are used.††

These restrictions hinder the use of fast solution algorithms.

If solving the Monge-Ampère is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.

Objective: Can we find a low order finite element approximation for the
Monge-Ampère Equation?

Kelsey DiPietro MAE



7 Can the Mixed Method be used with P1 Elements?

Much of the literature claims the above methods cannot converge for P1 elements.

Show that Newton’s and damped Newton’s methods cannot converge unless:
1 It is discretized with higher order elements (such as P2).†

2 Additional gradient variables are used.††

These restrictions hinder the use of fast solution algorithms.

If solving the Monge-Ampère is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.

Objective: Can we find a low order finite element approximation for the
Monge-Ampère Equation?

Kelsey DiPietro MAE



8 Implementing for Low Order Elements

Using low-order finite elements is crucial for creating highly efficient solvers for the
Monge-Ampère equation.
Our improved method uses an optimization-based nonlinear solver.

Combine auxiliary and primal variables into x = (h1,1,h1,2,h2,1,h2,2,u). We solve the
nonlinear equation:

c(x) = 0,

where c is the nonlinear residual function, c : X → C.

We have verified that Newton’s method and damped Newton’s method do not converge
for P1 finite element discretizations of NVFEM.

Our sequential quadratic programming (SQP) solver, where we solve the problem as

min 0

subject to c(x) = 0,

converges without exception for a variety of MAE examples, using P1 elements.

Kelsey DiPietro MAE



8 Implementing for Low Order Elements

Using low-order finite elements is crucial for creating highly efficient solvers for the
Monge-Ampère equation.
Our improved method uses an optimization-based nonlinear solver.

Combine auxiliary and primal variables into x = (h1,1,h1,2,h2,1,h2,2,u). We solve the
nonlinear equation:

c(x) = 0,

where c is the nonlinear residual function, c : X → C.

We have verified that Newton’s method and damped Newton’s method do not converge
for P1 finite element discretizations of NVFEM.

Our sequential quadratic programming (SQP) solver, where we solve the problem as

min 0

subject to c(x) = 0,

converges without exception for a variety of MAE examples, using P1 elements.

Kelsey DiPietro MAE



8 Implementing for Low Order Elements

Using low-order finite elements is crucial for creating highly efficient solvers for the
Monge-Ampère equation.
Our improved method uses an optimization-based nonlinear solver.

Combine auxiliary and primal variables into x = (h1,1,h1,2,h2,1,h2,2,u). We solve the
nonlinear equation:

c(x) = 0,

where c is the nonlinear residual function, c : X → C.

We have verified that Newton’s method and damped Newton’s method do not converge
for P1 finite element discretizations of NVFEM.

Our sequential quadratic programming (SQP) solver, where we solve the problem as

min 0

subject to c(x) = 0,

converges without exception for a variety of MAE examples, using P1 elements.

Kelsey DiPietro MAE



9 An Optimization-based Nonlinear Solver
The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

At every nonlinear iteration k, the feasibility step or normal step n solves the trust-region
subproblem:

min ‖c ′(xk)n + c(xk)‖2
C

subject to ‖n‖X ≤ ∆k ,

where c ′(xk) is the MAE Jacobian at iterate xk and c(xk) is the residual.

Minimization of linearized residual with trust regions for global convergence.

Significantly more robust than damped Newton.

Our low order discretization allows for mass lumping and a faster sparse solve.

Can solve a smooth problem to machine precision on a 256× 256 mesh in about 24
seconds.

Crucial for providing optimal transport based mesh adaptation for large scale
problems.

Kelsey DiPietro MAE



9 An Optimization-based Nonlinear Solver
The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

At every nonlinear iteration k , the feasibility step or normal step n solves the trust-region
subproblem:

min ‖c ′(xk)n + c(xk)‖2
C

subject to ‖n‖X ≤ ∆k ,

where c ′(xk) is the MAE Jacobian at iterate xk and c(xk) is the residual.

Minimization of linearized residual with trust regions for global convergence.

Significantly more robust than damped Newton.

Our low order discretization allows for mass lumping and a faster sparse solve.

Can solve a smooth problem to machine precision on a 256× 256 mesh in about 24
seconds.

Crucial for providing optimal transport based mesh adaptation for large scale
problems.

Kelsey DiPietro MAE



9 An Optimization-based Nonlinear Solver
The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

At every nonlinear iteration k , the feasibility step or normal step n solves the trust-region
subproblem:

min ‖c ′(xk)n + c(xk)‖2
C

subject to ‖n‖X ≤ ∆k ,

where c ′(xk) is the MAE Jacobian at iterate xk and c(xk) is the residual.

Minimization of linearized residual with trust regions for global convergence.

Significantly more robust than damped Newton.

Our low order discretization allows for mass lumping and a faster sparse solve.

Can solve a smooth problem to machine precision on a 256× 256 mesh in about 24
seconds.

Crucial for providing optimal transport based mesh adaptation for large scale
problems.

Kelsey DiPietro MAE



9 An Optimization-based Nonlinear Solver
The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

At every nonlinear iteration k , the feasibility step or normal step n solves the trust-region
subproblem:

min ‖c ′(xk)n + c(xk)‖2
C

subject to ‖n‖X ≤ ∆k ,

where c ′(xk) is the MAE Jacobian at iterate xk and c(xk) is the residual.

Minimization of linearized residual with trust regions for global convergence.

Significantly more robust than damped Newton.

Our low order discretization allows for mass lumping and a faster sparse solve.

Can solve a smooth problem to machine precision on a 256× 256 mesh in about 24
seconds.

Crucial for providing optimal transport based mesh adaptation for large scale
problems.

Kelsey DiPietro MAE



9 An Optimization-based Nonlinear Solver
The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

At every nonlinear iteration k , the feasibility step or normal step n solves the trust-region
subproblem:

min ‖c ′(xk)n + c(xk)‖2
C

subject to ‖n‖X ≤ ∆k ,

where c ′(xk) is the MAE Jacobian at iterate xk and c(xk) is the residual.

Minimization of linearized residual with trust regions for global convergence.

Significantly more robust than damped Newton.

Our low order discretization allows for mass lumping and a faster sparse solve.

Can solve a smooth problem to machine precision on a 256× 256 mesh in about 24
seconds.

Crucial for providing optimal transport based mesh adaptation for large scale
problems.

Kelsey DiPietro MAE



9 An Optimization-based Nonlinear Solver
The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

At every nonlinear iteration k , the feasibility step or normal step n solves the trust-region
subproblem:

min ‖c ′(xk)n + c(xk)‖2
C

subject to ‖n‖X ≤ ∆k ,

where c ′(xk) is the MAE Jacobian at iterate xk and c(xk) is the residual.

Minimization of linearized residual with trust regions for global convergence.

Significantly more robust than damped Newton.

Our low order discretization allows for mass lumping and a faster sparse solve.

Can solve a smooth problem to machine precision on a 256× 256 mesh in about 24
seconds.

Crucial for providing optimal transport based mesh adaptation for large scale
problems.

Kelsey DiPietro MAE



10 Results – Sine Wave
Right hand side density of the Monge-Ampère equation:

f =
1

0.65 + 10exp(−50(y − 0.5− 0.25sin(2πx))2)
.
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11 Results – Bitmap Adaptation

Meshing to a bitmap, density for black pixels = 1, density for white pixels = 0.
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12 Conclusions

Fast, low order finite element approximations for the
Monge-Ampère equation.

Utilizes P1 finite elements to efficient solve the
MAE.

Accurately solves the MAE for various solution
types seen in the literature.

Plan to use for mesh adaptivity in convex domains
where FD methods fail.

Grid Size Comp. Time
25 × 25 .42 sec
26 × 26 1.27 sec
27 × 27 4.91 sec
28 × 28 24.5 sec
29 × 29 160.9 sec

Please feel free to contact me at for more information and further discussion
(kdipiet@sandia.gov)
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