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2l Crash Course in Optimal Transport

Source Probability Measure Target Probability Measure

V(T(A)=p(A)_

Density p € X Density v € Y
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Crash Course in Optimal Transport

Source Probability Measure Target Probability Measure

V(T(A)=p(A)_

Density € X Density v € Y

Take away: Obtain the map that transport mass from the source to target with
minimal cost.
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Relating Optimal Transport to the Monge-Ampére equation

Recall the optimal transport map ¢(uo) = 1, find the solution ¢ to the optimal transport
problem:

min | olo(x) = xai

b(x)
such that c(¢(x)) =det(V(x))u1(4(x)) — po(x) =0,

where pg € X, 1 € Y are the source and target densities.
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Relating Optimal Transport to the Monge-Ampére equation

Recall the optimal transport map ¢(uo) = 1, find the solution ¢ to the optimal transport
problem:

min / 1ol (x) — x[2dx,

b(x)
such that c(¢(x)) =det(V(x))u1(4(x)) — po(x) =0,

where g € X, 1 € Y are the source and target densities.
Assumption that the map ¢ is the gradient of a convex function u, ¢ = Vu
Recover the Monge-Ampere equation with a transport boundary condition:

det(H(u)) = uxu —u2:@, veX, VulX)=Y, ueoX
yy
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Relating Optimal Transport to the Monge-Ampére equation

Recall the optimal transport map ¢(uo) = 1, find the solution ¢ to the optimal transport
problem:

;p('xn/ pold(x) — x[*dx,
such that c(¢(x)) =det(V(x))u1((x)) — po(x) = 0,

where g € X, 1 € Y are the source and target densities.
Assumption that the map ¢ is the gradient of a convex function u, ¢ = Vu

Recover the Monge-Ampere equation with a transport boundary condition:

det(H(u)) = tttyy — u2, = @, veX, VulX)=Y, uecdX

xy 1
We focus solving the Monge-Ampére equation to generate a dynamic, optimally

transported adaptive mesh.
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sl Links to Mesh Adaptation

If uis a convex solution to the Monge-Ampere equation, then (x,y) = Vu gives an adaptive
mesh in the physical space.

Mesh adaptation is determined through a monitor function based on the solution to PDE being
solved.
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st Improving Numerical Methods for the MAE

@ Desire efficient and robust finite element solvers
for the Monge-Ampére equation
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5. Improving Numerical Methods for the MAE

@ Desire efficient and robust finite element solvers
for the Monge-Ampére equation
o The faster the solution the easier it is to integrate
r-adapting meshing into a toolbox.

@ Want a solver interface that fits well into existing
Sandia architectures.
o Use the Trilinos package Intrepid for the finite
element discretization.
o Utilize the Intrelab interface to run real time
examples using Matlab.
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sl lmproving Numerical Methods for the MAE @ l

@ Desire efficient and robust finite element solvers
for the Monge-Ampére equation
o The faster the solution the easier it is to integrate
r-adapting meshing into a toolbox.

@ Want a solver interface that fits well into existing
Sandia architectures.
o Use the Trilinos package Intrepid for the finite
element discretization.
o Utilize the Intrelab interface to run real time
examples using Matlab.

@ Need low-order approximations in order to exploit
parallel solution methods.
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6ol Mixed Finite Element Method for the MAE

Recall the MAE:
det(D?u) =f inQ, Vu(X)=Y ondQ.
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Mixed Finite Element Method for the MAE

Recall the MAE:
det(D?u) =f inQ, Vu(X)=Y ondQ.

Boundary condition is approximated with a signed distance function.  Discretize using a
mixed finite element method.

<H[U]v¢>:*/QVU®V¢+/mV®n¢, Vo €V,
(F(H[U)). ®) = (f,®), V®eV.

The discretization imposes an O(h) error near the boundary, uniqueness needs to be imposed
with a mean value constraint.
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6ol Mixed Finite Element Method for the MAE

Recall the MAE:
det(D?u) =f inQ, Vu(X)=Y ondQ.

Boundary condition is approximated with a signed distance function.  Discretize using a
mixed finite element method.

<HWL®:>:éVU®v¢+[;V®nq Vo eV
(F(H[U)). ®) = (f,®), V®eV.

The discretization imposes an O(h) error near the boundary, uniqueness needs to be imposed
with a mean value constraint.
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71 Can the Mixed Method be used with P! Elements?

@ Much of the literature claims the above methods cannot converge for P! elements.
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If solving the Monge-Ampeére is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.
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71 Can the Mixed Method be used with P! Elements?

@ Much of the literature claims the above methods cannot converge for P! elements.

@ Show that Newton's and damped Newton's methods cannot converge unless:

© It is discretized with higher order elements (such as P?)."
@ Additional gradient variables are used.’"

@ These restrictions hinder the use of fast solution algorithms.

If solving the Monge-Ampeére is too computationally expensive, providing adaptivity
through the MAE could be cost prohibitive for large scale problems.

Objective: Can we find a low order finite element approximation for the
Monge-Ampeére Equation?
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sl Implementing for Low Order Elements

Using low-order finite elements is crucial for creating highly efficient solvers for the
Monge-Ampeére equation.
Our improved method uses an optimization-based nonlinear solver.

@ Combine auxiliary and primal variables into x = (hy 1, hi12,h2 1, h22,u). We solve the
nonlinear equation:

where ¢ is the nonlinear residual function, ¢ : X — C.
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where ¢ is the nonlinear residual function, ¢ : X — C.

@ We have verified that Newton's method and damped Newton's method do not converge
for P! finite element discretizations of NVFEM.
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sl Implementing for Low Order Elements

Using low-order finite elements is crucial for creating highly efficient solvers for the
Monge-Ampeére equation.
Our improved method uses an optimization-based nonlinear solver.

@ Combine auxiliary and primal variables into x = (hy 1, hi12,h2 1, h22,u). We solve the
nonlinear equation:

where ¢ is the nonlinear residual function, ¢ : X — C.

@ We have verified that Newton's method and damped Newton's method do not converge
for P! finite element discretizations of NVFEM.

@ Our sequential quadratic programming (SQP) solver, where we solve the problem as
min 0
subject to ¢(x) =0,

converges without exception for a variety of MAE examples, using P! elements.
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of An Optimization-based Nonlinear Solver

@ The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.
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of An Optimization-based Nonlinear Solver

@ The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

@ At every nonlinear iteration k, the feasibility step or normal step n solves the trust-region
subproblem:

min ¢/ (x)n + (%012
subject to ||n|lx < Ag,

where ¢’(xx) is the MAE Jacobian at iterate xx and c(xk) is the residual.
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of An Optimization-based Nonlinear Solver

@ The SQP solver is a composite-step method that coordinates two steps: a step toward
optimality and a step toward feasibility.

@ At every nonlinear iteration k, the feasibility step or normal step n solves the trust-region
subproblem:

min - [|c’Gac)n + c(xe) |2
subject to ||n|lx < Ag,
where ¢’(xx) is the MAE Jacobian at iterate xx and c(xk) is the residual.
@ Minimization of linearized residual with trust regions for global convergence.
@ Significantly more robust than damped Newton.
@ Our low order discretization allows for mass lumping and a faster sparse solve.

@ Can solve a smooth problem to machine precision on a 256 x 256 mesh in about 24
seconds.

@ Crucial for providing optimal transport based mesh adaptation for large scale
problems.
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10l Results — Sine Wave
Right hand side density of the Monge-Ampére equation:
Fo 1
0.65 + 10exp(—50(y — 0.5 — 0.25sin(27x))?)"
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11

Results — Bitmap Adaptation

Meshing to a bitmap, density for black pixels = 1, density for white pixels = 0.
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121 Conclusions

@ Fast, low order finite element approximations for the
Monge-Ampeére equation.

@ Utilizes P! finite elements to efficient solve the
MAE.

@ Accurately solves the MAE for various solution

z

types seen in the literature. Grid Size | Comp. Time
@ Plan to use for mesh adaptivity in convex domains 2> x 2 42 sec
privity 20 % 26 1.27 sec

where FD methods fail.

27 x 27 4.91 sec
28 x 28 24.5 sec
29 x 29 160.9 sec

Please feel free to contact me at for more information and further discussion
(kdipiet@sandia.gov)
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