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Vector of parameters p
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Approach conceptualization
Physics-based pROM framework components

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Projection-based reduction via POD

Latin Hypercube Sampling design

on realizations of vector p

Projection on governing equations of motion:

Mass matrix

Response time history

Internal forces 

(nonlinear)
External excitation

Reference system

(real-life)
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Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Latin Hypercube Sampling design

on realizations of vector p

Projection on governing equations of motion:

Projection (Reduced-Order) Basis

Projection-based reduction via POD

Reference system

(real-life)

Approach conceptualization
Physics-based pROM framework components
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Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Latin Hypercube Sampling design

on realizations of vector p

Approximate reduced subspace via the Proper 

Orthogonal Decomposition* on response data

*Proper Orthogonal Decomposition

POD modes

Projection-based reduction via POD

Reference system

(real-life)

Approach conceptualization
Physics-based pROM framework components
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Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Reference system

(real-life)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs Clustering or Interpolation

For each sample, a POD subspace that 

captures local dynamic behavior is assembled

• Clustering of local ROMs based on similarity 

measure & kNN for validation sample

• Interpolation techniques between local ROM 

subspaces to approximate validation basis

Projection-based reduction via POD
Approximate reduced subspace via the Proper 

Orthogonal Decomposition* on response data

Approach conceptualization
Physics-based pROM framework components
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Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Reference system

(real-life)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs Previous work:

MAC-based clustering

For each sample, a POD subspace that 

captures local dynamic behavior is assembled

Projection-based reduction via POD
Approximate reduced subspace via the Proper 

Orthogonal Decomposition* on response data

Approach conceptualization
Physics-based pROM framework components

• Modal Assurance Criterion indirectly relates 

POD modes that capture local effects

• Enables dynamics-based clustering

& adaptive sampling
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Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs
(MAC-based)

Clustering

Projection-based reduction via POD

Reference system

(real-life)

Physics-based parametric 

Reduced Order Model

• A subspace for each sample via Proper Orthogonal 

Decomposition* on response data

• Form clusters on parametric domain based on local 

dynamics => Similarity of POD subspaces 

• Validation sample uses kNN and POD basis of 

assigned cluster for projection & ROM integration

Approach conceptualization
Physics-based pROM framework components



||
Placeholder for organisational unit name / logo

(edit in slide master via “View” > “Slide Master”)
26.04.2022 8Konstantinos Vlachas & Thomas Simpson

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs MAC-based clustering

Projection-based reduction via POD

Reference system

(real-life)

Physics-based parametric 

Reduced Order Model

Virtual representation

( Digital-Twin )

Approach conceptualization
Physics-based pROM framework components
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POD - Projection-based Reduction

Konstantinos Vlachas & Thomas Simpson

Proper Orthogonal Decomposition
Limitations:
➢ POD is a linear operator

Linearization in neighbourhood of stable points 

is assumed to address nonlinearities

➢ Accuracy for new parametric states relies on 

clustering or interpolation between POD bases

Problem Statement
Treatment of parametric dependencies in ROMs

Interpolation-based approaches

- ROM matrices interpolation (linear ROMs)

- POD bases interpolation in proper space

Clustering-based approaches

- Clustering of POD bases with proper metric

- k-NN schemes for validation samplesHowever:

• Multi-parametric dimensionality

• Linearization limitations
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Approach conceptualization
VAE-scheme for parametric ROM treatment

Konstantinos Vlachas & Thomas Simpson

Idea: Employ VAE scheme to estimate validation POD basis

Argumentation: 

ROM performance relies on approximating validation POD bases based on interpolation or kNN-based clustering

between training POD bases

→ Insert dependencies on VAE bases to substitute interpolation/clustering

➢ VAE provides nonlinear and potentially more accurate mapping between POD bases across parameter space

➢ VAE scheme provides uncertainty quantification assessment

➢ Utility by multi-parametric dependencies 

➢ Potential of parametric treatment on the latent space / Inject dependencies on latent space
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✓ Relate global dynamics (or region dynamics) with single realization

To achieve this, we formulate:

• a global projection basis

• a coefficient matrix projecting the single realization dynamics to the cluster

global basis

Then, the VAE is trained on the coefficient matrices!
• Uncoupled of high fidelity, full order dimension => Efficiency

• Reduced dimensionality that captures dynamics due to additional projection

• Orthogonality properties and symmetries retained in mapping

Approach conceptualization
Additional projection level to retain basis properties

• Controls dimensionality

• Defines training complexity and cost

• Can be a large number to capture effects

l
l
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VAE-scheme for parametric ROM treatment
Implementation details

• High dimensional data → Generative model → Deep latent variable model

• This problem involves maximising the following likelihood for the chosen 

prior over the latent variables 𝑝𝜙 𝑋 = 𝑝𝜙׬ 𝑋 𝑍 𝑝(𝑍)

• VAE’s give an efficient model by parameterizing:

(a) an encoding to the latent space and (b) a decoding from the latent space

using deep NNs
(Widely used for deep latent variable modelling for many purposes e.g., NLP and computer vision)

• Interesting in our case as a flexible generative model capable of learning

nonlinear dependencies with relatively high dimensionality.
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Traditional autoencoder + ‘regularisation’ 
(in the form of encouraging the latent space to resemble a prior distribution)

Cost Function

The first term is the reconstruction error 

The second term is the KL divergence between the true and approximate posterior on the latent space.

ℒ 𝜃, 𝜙, 𝑋 = 𝔼𝑞𝜃(𝑍|𝑋)[log 𝑝𝜙 𝑋 𝑍 − 𝒟𝐾𝐿(𝑞𝜃(𝑍|𝑋)||𝑝 𝑍 )

VAE-scheme for parametric ROM treatment
Implementation details
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In our case → Explicitly treat parametric dependencies → Conditional VAE

(The parametric dependencies are injected both at the input and at the latent space during training)

VAE-scheme for parametric ROM treatment
Conditional Variational AutoEncoder
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Generating new bases

VAE is simplified to just the prior distribution of the latent space and the decoder

➢ Samples are drawn from the prior

➢ They are concatenated with the parameter vector

=> New bases are generated by passing this concatenated vector through the decoder.

VAE-scheme for parametric ROM treatment
Generating from the conditional VAE
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Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs VAE scheme

Projection-based reduction via POD

Reference system

(real-life)

Physics-based VAE-boosted pROM

Virtual representation

( Digital-Twin )

Approach conceptualization
Variational AutoEncoder (VAE) boosted pROM
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Numerical Validation Benchmark
Two-Story Frame with Hysteretic Links

Hysteretic links response model

➢ Total restoring force:

➢ Bouc-Wen equation with degradation/deterioration effects:

Characteristics of the Bouc-Wen links:
: Smoothness and shape of hysteresis curve
: Degradation/Deterioration effects
: Linear/Hysteretic contribution weighting

Benchmark example featured in:
• Vlachas K. et al. "A local basis approximation approach for nonlinear parametric model order

reduction." Journal of Sound and Vibration 502 (2021): 116055.

• Simpson, Thomas, Nikolaos Dervilis, and Eleni Chatzi. "Machine learning approach to model order

reduction of nonlinear systems via autoencoder and LSTM networks." Journal of Engineering

Mechanics 147.10 (2021): 04021061.

Earthquake ground motion excitation
Parametric dependencies: Angle of ground motion & Amplitude factor
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Hysteretic Bouc-Wen links

➢ Total restoring force:

➢ Bouc-Wen equation with degradation/deterioration effects:

Characteristics of the Bouc-Wen links:

: Control smoothness and shape of hysteresis

: Degradation/Deterioration effects

: Linear/Hysteretic contribution weighting

Scenario A:

• Dependencies on excitation traits

• Simplified case study (2 parameters) as proof-of-concept

Scenario B:

• Multi-parametric dependency (7 parameters) on excitation 

characteristics, system traits and properties of the links

• White noise excitation passed through low-pass filter (ROM 

dependencies on Amplitude & Frequency content)

• Elastic Young’s modulus as a material parameter with input uncertainty

• Additional weighting coefficient on linear spring to represent damage

• Varying beta coefficient to induce bifurcation-like behavior

Earthquake ground motion excitation
Parametric dependencies: Angle of ground motion & Amplitude factor

Numerical Validation Benchmark
Two-Story Frame with Hysteretic Links
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Numerical Validation Benchmark
Accuracy performance of the framework (Scenario B)

Average Displacement 

Norm Error

99 % 

percentile

Average Restoring 

Forces Norm Error

99 % 

percentile

Reference Threshold 0.35 % 0.68% 1.14% 1.31%

EpROM 6.35 % 16.64% 2.62% 10.21%

MACpROM 6.29 % 16.17% 2.57% 9.19%

VpROM 4.29 % 10.01% 2.17% 7.60%

pROM Notation Explanation of setup

Reference Threshold
Reference accuracy performance obtained assuming the POD 

basis of each validation sample is approximated perfectly.

EpROM
The pROM framework employs 3-NN clustering based on

the Euler distance measure.

MACpROM
The pROM framework employs 3-NN clustering based on 

the Modal Assurance Criterion.

VpROM
The pROM framework employs a Variational AutoEncoder

scheme to estimate the POD basis coefficients.
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Numerical Validation Benchmark
Accuracy performance of the framework

MACpROM approximation

(Scenario A)

VpROM approximation

(Scenario A)
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Numerical Validation Benchmark
Accuracy performance of the framework

MACpROM approximation

(Scenario B)

VpROM approximation

(Scenario B)
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Numerical Validation Benchmark
Accuracy performance of the framework (Scenario B)
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Parametric ROM evaluated 40 times using 40 VAE draws → Plot mean and SD at each time step

Uncertainty Quantification 
Confidence bounds of inferred response (Scenario B)
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Concluding remarks
Limitations and outlook

✓ Couples Variational AutoEncoders with ROMs to capture multi-parametric system dependencies or uncertainty on input features

✓ Outperforms and extends performance range of traditional projection-based pROMs

✓ Provides confidence bounds and uncertainty quantification for response estimation

✓ May be adapted as an approximative, online low-cost surrogate for Structural Health Monitoring applications

➢ Performance still bounded from ability of POD bases to capture dynamics

➢ Potential varying size of local POD bases needs additional treatment

The proposed Variational AutoEncoder (VAE) boosted-pROM 

Next steps - extensions:

❖ Generalize implementation – adjust scope:

Train pROM on PEER earthquake database => Estimate performance under any real-case scenario

Incorporate damage for condition monitoring applications

❖ Generalize implementation in large scale example with Hyper Reduced ROM
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Questions
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Appendix

26.04.2022 26Konstantinos Vlachas & Thomas Simpson
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• We carry out 50 training simulations at 50 different points in the parameter space chosen by LHS.

• We train our VAE in Tensorflow optimising the cost function which balances reconstruction and Kullback-

Leibler loss

• It is often important to use an "Annealing" scheme, starting by weighting the KL-divergence loss to zero and 

then increasing it during the training procedure.

Conditional VAE-scheme
Training scheme and implementation details
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Flow of pROM Framework
Overview of algorithmic implementation

POD - Projection-based Reduction

Konstantinos Vlachas & Thomas Simpson

Proper Orthogonal Decomposition

Assemble POD Basis

Limitations:
➢ POD is a linear operator

Linearization in neighbourhood of stable points 

is assumed to address nonlinearities

➢ Accuracy for new parametric states relies on 

clustering or interpolation between POD bases

After training we end up with a pool of (training) local bases.

Each training snapshot leads to a single projection basis.

To address the linearization limitations, we need to decide how to

approximate the projection basis for a new state prior to

integrating in the reduced order domain. There are two

alternatives:

✓ Interpolation
-We perform elementwise or similar interpolation schemes between the

bases in the training pool. The weighting scheme may be simplified

Lagrange polynomials or splines, RBFs, etc.

-A new basis is assembled for every unseen parametric state

✓ Clustering
-We cluster the training samples with a suitable feature that relates local

dynamics. E.g., we can use MAC or the subspace angle to relate POD bases

of training samples and cluster them based on similar local dynamics.

-Every cluster is represented by a single basis, the most suitable one.

Using kNN and Euler distance we assign any new state to a cluster and

use the representative basis.
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Modal Assurance Criterion 

• Measure of consistency between modeshapes Φ

• System Identification: 

A form of confidence factor when evaluating modal 

vectors from different sources.

• Local POD projection bases

=> POD modes capturing localized behavior

• MAC between POD bases

=> Relate manifold eigenvectors 

=> Dynamics-based clustering

=> Define sampling rate adaptively

Konstantinos Vlachas & Thomas Simpson

Previous work
Clustering-based parametric ROM
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Approximation Error (%) MAC values 
( POD Bases – Sampling Seed A )

Reference Basis/Sample

Previous work
Limitations on employing MAC as error indicator

Approximation Error (%) MAC values 
( POD Bases – Sampling Seed B )

Konstantinos Vlachas & Thomas Simpson
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Approximation Error (%) MAC values 

( POD Bases – Seed A )
Approximation Error (%) MAC values 

( POD Bases – Seed B)

Konstantinos Vlachas & Thomas Simpson

Localizes Dynamics
Captures maximum error 

domains

Robustness Issues
Does not lead to 1-1 mapping

Previous work
Limitations on employing MAC as error indicator


