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Motivation and Main Idea
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Digital Twins

« Single asset:

« Corresponding digital twin:




Fleet of Assets

« Similar assets, different (unknown) operating conditions.
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* Fuse information from the fleet to improve each individual
digital twin.
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Individual Digital Twins
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Individual Digital Twins
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Network from the Fleet of Assets




Network from the Fleet of Assets
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Network from the Fleet of Assets
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« We can repeat this procedure for any asset of interest
(Aol) in the fleet.




Specialization to Gaussian Processes
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FA Network of Gaussian Processes
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* Introduce independent GP priors for the peers and a
discrepancy GP.




FA Network of Gaussian Processes
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* Introduce independent GP priors for the peers and a
discrepancy GP.




FA Network of Gaussian Processes

peer
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« Treat Pk polynomial coefficients as hyperparameters and form,,
a sparse prior for the covariance between asset GPs. & |-
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Related Work

« Hierarchical / auto-regressive GPs (Kennedy and O’Hagan,
Le Gratiet and Garnier):

TRTST

* Requires nested training data sets and noiseless
observations for the parent models.
» Hierarchical ordering not appropriate for a fleet of assets.

 MF Nets (Gorodetsky et al.): Our work is an instance of a
peer directed acyclic graph of Gaussian processes.




FA Network of GPs via Co-Kriging

 The covariance matrix has a block structure that is
determined by computing the covariance between the

approximations . (z), k=1,... Nye and mo( Z o (@)my () + () :

K [mkmk] = Ck(Xk,Xk), k = 1, .. -Npeer7

E [momi] = [In, @ pp(Xi)] © Cp(Xo, Xk), k=1,... Nyeer,
Npeer

E [momo] = Co(Xo,X0) + Y _ [pr(Xo) ® p(Xo)] © Ck(Xo, Xo).

« The matrices Ci(X;, X;), k=1,..., Nyer are obtained by
evaluating the kernels for m(x) at all pairs of points in X;, X;.

« Similarly, the matrix Cy (X, X¢) is computed by evaluatlng
the kernel for the discrepancy GP d(x) .




Hyperparameter Estimation

* Negative marginal log-likelihood:

1 1 N
NLL =  log (det C) + 5ch‘—ly + = log (2m)
« Computational bottlenecks:
« Cholesky factorization — O (N?’)

* NLL typically non-convex — multiple optimization runs
from different starting points.

« All-at-once and sequential approaches.




Linear Algebra for the FA Network of GPs

 The block covariance matrix is sparse.

 Efficient linear algebra techniques reduce the overall
complexity of hyperparameter learning to O(max(Nk)?).




Numerical Examples
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Analytical Assets Example

fo(x) = 0.4x — x sin (5%6)

1
fi(x) = 22* — 5 sin (27x 4 0.3)

fo(z) = — o sin () + (@) + fole)

 Analytical functions for the assets that conform to the

additive / multiplicative discrepancy structure.




Nested Samples Analytical DT GP Results

Analytical Example GPs
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* Model 0 is the asset of interest (Aol) in these results.

* Fleet of assets (FA) vs single asset (SA).

* MLE resultsin p1 = 1.0, p2 = 1.08.




Nested Samples Analytical DT GP Results

Model Discrepancy and GP
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The discrepancy GP approximates the discrepancy when the
training data is nested and peer datasets are noiseless#®
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Non-nested Samples Analytical DT GP Results

Analytical Example GPs
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 FA approach still performs better than single asset



Non-nested Samples Analytical DT GP Results

Model Discrepancy and GP
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... the discrepancy GP is doing something different.




Piston Model

« Benchmark problem for surrogate modeling:
https://www.sfu.ca/~ssurjano/piston.html .

M
O(w)_%r\/k—l—SQM&

To V?Z
S \/ FoVo
V=— A? 4+ 4k T,— A
2k ( ity
kEV.
A= PoS+19.62M — ~
M € [30,60] piston weight (kg)
S € [0.005, 0.020] piston surface area (m?)
Vo € 10.002,0.010] initial gas volume (m?)
k € [1000, 5000] spring coefficient (N/m)
Py € [90000,110000] | atmospheric pressure (N/m?)
Tu € (290, 296] ambient temperature (K) S
To € [340, 360] filling gas temperature (K) |

R


https://www.sfu.ca/~ssurjano/piston.html

Piston Model: 1D Problem

« Benchmark problem for surrogate modeling:
https://www.sfu.ca/~ssurjano/piston.html .

M
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A%
Input variable A4 = £o5 + 19.62M — —=
M € [30,60] piston weight (kg)
S € [0.005, 0.020] piston surface area (m?)
Vo € 10.002,0.010 initial gas volume (m?

1000,5000] | spring coefficient (N/m) |

Py € 190000, 110000| | atmospheric pressure (N/m
T, € 290, 296] ambient temperature (K)
To € [340, 360] filling gas temperature (K)



https://www.sfu.ca/~ssurjano/piston.html

Piston Model: 1D Problem

« Benchmark problem for surrogate modeling:
https://www.sfu.ca/~ssurjano/piston.html .
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k€ 11000,5000] | spring coeflicient (N/m) |
o € 190000, 110000] | atmospheric pressure (N/m*) |
1, € 1290, 296 ambient temperature (K
To € [340, 360] filling gas temperature (K)
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Piston Functions

Piston Assets in the Fleet
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Noiseless 1D Piston Results

 All-at-once vs. sequential training of hyperparameters:

All-at-once 1D Piston Gaussian Process Digital Twin Results
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Sequential 1D Piston Gaussian Process Digital Twin Results
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Noise-corrupted 1D Piston Results

 All-at-once vs. sequential training of hyperparameters:

All-at-once 1D Piston Gaussian Process Digital Twin Results
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Piston Model: 2D Problem

« Benchmark problem for surrogate modeling:
https://www.sfu.ca/~ssurjano/piston.html .

v

Input variable A4 = PoS +19.62M — ——
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Piston Model: 2D Problem

2D Piston Functions
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Piston Model: 2D Problem

Line Plots through 2D Piston Functions
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Piston Model: 2D Problem

2D Piston Functions

Asset 0 Asset 1 Asset 2
4000 0.375
(.350
2000 0.325
Asset 3 Asset 4 Asset
[a'ag
TCU 4000 ().40) __
3 .6
5
W]
&2 35 0.5
E_ 2000 0.._}\)
N
Asset B Asset 7 Asset 8
4000
2000
40 B0 40 60
Mass A

Sandia
Naationeal

Laboratories




Piston Model: 2D Problem

2D Piston Functions

Asset 0 Asset 1 Asset 2
4000 0.375
o B (.350
2000 0.325
Asset 3 Asset 4 Asset
[a'ag
TCU 4000 ().40) __
3 .6
5
W]
&2 35 0.5
E_ 2000 0.._}\)
N
Asset B Asset 7 Asset 8
4000
2000
40 B0 40 60
Mass A

Sandia
National

Laboratories




Logl0 Error
|

— 7.0
—7.
—&.01
—0.501
—0.75
S
N — 1.0}
i
o — | . 251
)
—
— 1.3
—1.75

2D Piston Fleet of Assets Error Metrics

Mean Squared Error
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Piston Model: 2D Problem
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Piston Model: 2D Problem

2D Piston Fleet of Assets Error Metrics
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Piston Model: 2D Problem

2D Digital Twin Gaussian Process Results for Asset 7
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Conclusions

Limited data (possibly non-nested, noisy) for each asset ...

... but the dataset for the entire fleet is rich and diverse.

Demonstrated that fleet data can be used to increase
prediction accuracy for any single asset.

Efficient linear algebra is critical for reducing the cost of
hyperparameter estimation.
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hyperparameter estimation.
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