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Motivation and Main Idea



Digital Twins

• Single asset:

• Corresponding digital twin:



Fleet of Assets

• Similar assets, different (unknown) operating conditions.

• Fuse information from the fleet to improve each individual 
digital twin.



Individual Digital Twins
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Individual Digital Twins



Network from the Fleet of Assets
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Network from the Fleet of Assets

• We can repeat this procedure for any asset of interest 
(AoI) in the fleet.



Specialization to Gaussian Processes



FA Network of Gaussian Processes

• Introduce independent GP priors for the peers and a 
discrepancy GP.
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FA Network of Gaussian Processes

• Treat        polynomial coefficients as hyperparameters and form 
a sparse prior for the covariance between asset GPs.



• Hierarchical / auto-regressive GPs (Kennedy and O’Hagan, 
Le Gratiet and Garnier):

• Requires nested training data sets and noiseless 
observations for the parent models.

• Hierarchical ordering not appropriate for a fleet of assets.

• MF Nets (Gorodetsky et al.): Our work is an instance of a 
peer directed acyclic graph of Gaussian processes.

 

Related Work



• The covariance matrix has a block structure that is 
determined by computing the covariance between the 
approximations

• The matrices                                              are obtained by 
evaluating the kernels for           at all pairs of points in 

• Similarly, the matrix                    is computed by evaluating 
the kernel for the discrepancy GP          . 

 

FA Network of GPs via Co-Kriging



• Negative marginal log-likelihood:

• Computational bottlenecks:

• Cholesky factorization –                 .

• NLL typically non-convex – multiple optimization runs 
from different starting points.

• All-at-once and sequential approaches.

 

Hyperparameter Estimation



Linear Algebra for the FA Network of GPs
• The block covariance matrix is sparse.

• Efficient linear algebra techniques reduce the overall 
complexity of hyperparameter learning to 

 



Numerical Examples



Analytical Assets Example

• Analytical functions for the assets that conform to the 
additive / multiplicative discrepancy structure.



Nested Samples Analytical DT GP Results

• Model 0 is the asset of interest (AoI) in these results.

• Fleet of assets (FA) vs single asset (SA).

• MLE results in



Nested Samples Analytical DT GP Results

• The discrepancy GP approximates the discrepancy when the 
training data is nested and peer datasets are noiseless.



Non-nested Samples Analytical DT GP Results

• FA  approach still performs better than single asset, but …



Non-nested Samples Analytical DT GP Results

• ... the discrepancy GP is doing something different. 



Piston Model
• Benchmark problem for surrogate modeling: 

https://www.sfu.ca/~ssurjano/piston.html .
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Piston Model: 1D Problem
• Benchmark problem for surrogate modeling: 
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Piston Functions



Noiseless 1D Piston Results
• All-at-once vs. sequential training of hyperparameters:



Noise-corrupted 1D Piston Results
• All-at-once vs. sequential training of hyperparameters:



Piston Model: 2D Problem
• Benchmark problem for surrogate modeling: 

https://www.sfu.ca/~ssurjano/piston.html .

Input variable Latent variables

https://www.sfu.ca/~ssurjano/piston.html


Piston Model: 2D Problem
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Conclusions

• Limited data (possibly non-nested, noisy) for each asset …

• … but the dataset for the entire fleet is rich and diverse.

• Demonstrated that fleet data can be used to increase 
prediction accuracy for any single asset.

• Efficient linear algebra is critical for reducing the cost of 
hyperparameter estimation.
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Thank you!


