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Computational loads are more
demanding than ever

Many reports of ending scaling
principles

* Moore's Law

« Denard Scaling
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But, High Performance
Computing is growing to meet
this need regardless! tes6

No clear slowdown in large
scale systems
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Supercomputing - More Super Than Ever
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« A growing percentage of large-
scale compute relies on
heterogenous accelerators

* GPUs

« Intel Phi
- Systolic Arrays
- Deep Learning Accelerators

- Heterogenous compute can
Improve computational density
and energy efficiency
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Neuromorphic Platforms Offer Energy Benefits

Neuromorphic processors mimic event-driven processing seen in
biological neural networks

 Inherently parallel, these platforms can have millions of copies of
'neurons' at very lower power
* But, each neuron has limited behavior

« Configuring a group of neurons to do something useful is the challenge

Mathematical Representation

Biological Neuron

Dendrites

Neuromorphic
Processor
Architectures




/" Neuromorphic’'s Potential Spans Fields
4

/4 Scientific Computing , ,
Well-understood requirements Brain-Derived Al 5
Opportunity: Achieve brain-like efficiency at advanced cognitive
Novel neuromorphic algorithms tasks, but path has proven elusive...
Opportunity:
Examples: 3 Develop novel algorithms that

« Solving SDEs (Monte Carlo address critical DOE problems

PDE solutions)
» Neural Graph Analytics

Examples:
» Dragonfly model for interception

Machine Learning « Hippocampus model for context-
Growing impact and need 3 dependent learning
Opportunity: |

Mapping to Neuromorphic
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P A Heterogeneous Future

The future of computing is likely
more heterogeneous.

« Neuromorphic hardware can work

side-by-side with CPUs and GPUs.

* Scalability suggests both edge and HPC
impact

Al applications and bio-inspired
algorithms will play a large part

- Energy efficiency and graph
structure also potentially benefit
scientific computing applications.

« We are challenged in mapping
existing applications to new
devices.




Assessing
Neuromorphic

for Scientific
Computing Use
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Discrete time Markov chains (DTMCs) can
be sampled efficiently on neuromorphic.

A random walk is interpreted as a
trajectory from a DTMC,

Walkers are spikes and are routed through
nodes - clusters of neurons - representing
the state space of the DTMC.

Samples obtained can be used to solve
numerous PDEs, including heat and
particle transport equations.

Markov Chain Sampling on Neuromorphic
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« That Loihi numerically solves PDEs well is interesting.
« 8-bit limited PRNG.

« Algorithm only approximates required stochastic process with a DTMC,

 Is Loihi sampling as expected, or are the test cases robust to
stochastic process perturbations?

- How do we assess sampling and identify where limitations
may exist?
«  How can we perform code verification and hardware validation?

- Relative entropy can measure how far samples are from the
expected distributions and be framed as a hypothesis test.

 Further statistical analysis can explore the parameter space where "«
the neuromorphic sampling algorithm can fail.



P Ornstein-Uhlenbeck - A Test Problem

We assess our Loihi algorithm on the Ornstein-Uhlenbeck Equation:

Applications in

dX(t) = —k(X(t) — z)dt + “/ZDdW(t) —— Physics, Cell-bio,

Finance, and
Epidemiology

- The measure of relative entropy we select is the Kullback-Leibler Divergence:

k(p,q) = fp(x)logzg; dx

We let p represent the distribution of samples from Loihi and g represent the distribution
of the Ornstein-Uhlenbeck process.




P Data Generation

+ We generated 29.087 observations on
L0|h| by sampling from a DTMC given a
collection of parameters.

* Observations are of M random walkers
starting at location X (0).
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P Relative Entropy Results

Relatwe Entropy vs Simulation Parameters

* |n addition to the Kullback-
Leibler (KL) metric, we
calculated a secondar%
approximate metric, the Log-
Likelihood Ratio (LLR)

. » * Additionally, we simulated

ey gl trajectories in a traditional
iﬁiﬁﬁﬁ manner (Euler-Maruyama) for
the exact same set of
parameters.

- Each square subplot contains
one dot for each time step in
each of the 29,087
trajectories. This is a total of
7,715,213 total
measurements per subplot.
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P Relative Entropy Results

The majority of time steps observed on Loihi have a relative entropy value less than 1.

Recalling the hypothesis testing analogy, this is highly significant. Particularly so given the

large number of measurements.

M
25 50 100 150 200 500 1000 All
Lothi - LLR  Mean 3.0348 2.6378 1.9470 1.7794 1.4786 0.8407  0.6270 § 2.3859
Std Dev 241788  21.8369  18.8534 159938 144001 6.9788 5.7801 § 20.6868
90% Quantile 1.0880 0.8682 0.7646 0.8320 0.6899 0.7300  0.7626 § 0.9200
EM - LLR Mean 0.3517 0.2719 0.2097 0.2017 0.2128 0.2535  0.3536 § 0.2790
Std Dev 0.7112 1.0117 [.1081 0.9558 1.5374 [.8285  3.4872 f 1.1118
90% Quantile || 0.5268 0.3615 0.2853 0.2810 0.2669 0.3348  0.4801 § 0.4407
Loihi - KL Mean 1.8094 1.6362 1.1634 1.0352 0.8980 0.4350  0.2031 § 1.4318
Std Dev 154816 15.8599 119741 10.1031 10.5996 50513 19176 § 13.8093
90% Quantile || 0.5350 0.3383 0.2463 0.2503 0.2118 0.2387  0.2243 § 0.4264
EM - KL Mean 0.1917 0.1105 0.0665 0.0529 0.0477 0.0545  0.0763 § 0.1187
Std Dev 0.1796 0.2248 0.2020 0.2809 0.4522 0.8234  0.8567 § 0.3086
90% Quantile || 0.3588 0.1996 0.1118 0.0805 0.0648 0.0442  0.0837 § 0.2593




/" Viable Sampling Space
g

* We recovered 4229 combinations of parameters that were unable to be sampled due to
exhaustion of probabilistic resources.

Non-Viable Combinations
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A Trade-Off in Simulation

Non-Viable Combinations

Relative Entropy vs Simulation Parameters
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/" Where do hardware limitations end and algorithm limitations begin?

Hardware Algorithm

Limited PRNG availability and precision. = More resource-intensive probability

1 circuits.
1{0joj111) 1
Py o|0|1|o|0|1‘1|1\ |o|0|1|0|0|1|1|1|0|0‘ | | | | ‘ |
- 256 | 111
Viable parameter space limitations and « Further limited parameter space.
accuracy implications. — o =

EEE
(1 1
EEEEE .
aEEEES o
L L Ll |
aEEEEmEm T EE
[ L L

e 8 & 8 @B
L _L___ N e

|
‘ s (Clever efficient circuits?




Sampling

Validation as a
Methodology




Assessing New Devices, From the Ground Up

« The goals of the DOE Office of Science
COINFLIPS project - Co-Designed
Improved Neural Foundations Leveraging
Inherent Physics Stochasticity:

- Make stochasticity ubiquitous and useful;

« Directly sample from distributions of
interest;

« Allow more efficient sampling of
probabilistic neural networks.




P Assessing New Devices, From the Ground Up

* The COINFLIPS team are examining two ways of
generating random coin flips, one a Magnetic
Tunnel Junction, and the other a Tunnel Diode.

Hidden Process X

 The devices can be combined to obtain
distributions of interest. For instance, a
weighted die that rolls 1 half of the time, and
the numbers 2, 3, and 4 equally likely the rest of
the time.

p1 = f1(X) pz = [2(X) Pz = f3(X)
« This can be represented as the outcome of two

coins with probabilities that change through a
hidden process.




P Assessing New Devices, From the Ground Up

* Assessment of samples and validation of
hardware can again be performed through a
hypothesis test.

« This time, the alternative hypothesis is that the
device circuit follows the expected/desired
distribution, and the null hypothesis is that it
behaves any other way.
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Hidden Process X

m = fi(X)

P2 = f2(X)
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To learn more about the COINFLIPS team’s device models and assessment, check out the ICONS conference this July.
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P Concluding Thoughts, Thanks!

- Mapping applications to new hardware requires critical thoughts on both code verification
and hardware validation.

*  New devices built from the ground up require equal consideration for how they will meet
the needs of modern applications.

« Hypothesis testing and relative entropy, as a framework, provide one method of
statistically rigorous assessment.




