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Supercomputing – More Super Than Ever
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• Computational loads are more 
demanding than ever

• Many reports of ending scaling 
principles
•Moore's Law
•Denard Scaling

• But, High Performance 
Computing is growing to meet 
this need regardless!

• No clear slowdown in large 
scale systems



Heterogenous Processors Enable Big Compute
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• A growing percentage of large-
scale compute relies on 
heterogenous accelerators
•GPUs
•Intel Phi
•Systolic Arrays
•Deep Learning Accelerators

• Heterogenous compute can 
improve computational density 
and energy efficiency



Neuromorphic Platforms Offer Energy Benefits
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• Neuromorphic processors mimic event-driven processing seen in 
biological neural networks

• Inherently parallel, these platforms can have millions of copies of 
'neurons' at very lower power 
• But, each neuron has limited behavior

• Configuring a group of neurons to do something useful is the challenge



Neuromorphic’s Potential Spans Fields
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Brain-Derived AI
Achieve brain-like efficiency at advanced cognitive 
tasks, but path has proven elusive…

Opportunity: 
Develop novel algorithms that 
address critical DOE problems

Examples:
• Dragonfly model for interception
• Hippocampus model for context-

dependent learning

Scientific Computing
Well-understood requirements
Opportunity: 
Novel neuromorphic algorithms 

Examples: 
• Solving SDEs (Monte Carlo 

PDE solutions)
• Neural Graph Analytics

Machine Learning
Growing impact and need
Opportunity: 
Mapping to Neuromorphic 

Example:
• Whetstone conversion of 

DL for spiking architectures



A Heterogeneous Future
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• The future of computing is likely 
more heterogeneous. 

• Neuromorphic hardware can work 
side-by-side with CPUs and GPUs.
• Scalability suggests both edge and HPC 

impact

• AI applications and bio-inspired 
algorithms will play a large part

• Energy efficiency and graph 
structure also potentially benefit 
scientific computing applications.

• We are challenged in mapping 
existing applications to new 
devices.

Neuromorphic

Conventional



Assessing 
Neuromorphic 

for Scientific 
Computing Use



Markov Chain Sampling on Neuromorphic
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• Discrete time Markov chains (DTMCs) can 
be sampled efficiently on neuromorphic.

• A random walk is interpreted as a 
trajectory from a DTMC.

• Walkers are spikes and are routed through 
nodes – clusters of neurons – representing 
the state space of the DTMC.

• Samples obtained can be used to solve 
numerous PDEs, including heat and 
particle transport equations.

Images: Smith et al., Nature Electronics 2022.



Evaluating Sampling on Loihi
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• That Loihi numerically solves PDEs well is interesting.
• 8-bit limited PRNG.
• Algorithm only approximates required stochastic process with a DTMC.

• Is Loihi sampling as expected, or are the test cases robust to 
stochastic process perturbations?

• How do we assess sampling and identify where limitations 
may exist?
• How can we perform code verification and hardware validation?

• Relative entropy can measure how far samples are from the 
expected distributions and be framed as a hypothesis test.

• Further statistical analysis can explore the parameter space where 
the neuromorphic sampling algorithm can fail. Image: Smith et al., ICRC 2021.

Image: Severa et al., IJCNN 2018.



Ornstein-Uhlenbeck – A Test Problem
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Applications in 
Physics, Cell-bio, 
Finance, and 
Epidemiology



Data Generation
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Relative Entropy Results
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• In addition to the Kullback-
Leibler (KL) metric, we 
calculated a secondary 
approximate metric, the Log-
Likelihood Ratio (LLR).

• Additionally, we simulated 
trajectories in a traditional 
manner (Euler-Maruyama) for 
the exact same set of 
parameters.

• Each square subplot contains 
one dot for each time step in 
each of the 29,087 
trajectories. This is a total of 
7,715,213 total 
measurements per subplot.

Image: Smith et al., ICRC 2021.



Relative Entropy Results
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• The majority of time steps observed on Loihi have a relative entropy value less than 1.

• Recalling the hypothesis testing analogy, this is highly significant. Particularly so given the 
large number of measurements.



Viable Sampling Space
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• We recovered 4229 combinations of parameters that were unable to be sampled due to 
exhaustion of probabilistic resources.



A Trade-Off in Simulation
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Where do hardware limitations end and algorithm limitations begin?
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Limited PRNG availability and precision.

Viable parameter space limitations and 
accuracy implications.

 More resource-intensive probability 
circuits.

 Further limited parameter space.

 Clever efficient circuits?

AlgorithmHardware
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Sampling 
Validation as a 
Methodology



Assessing New Devices, From the Ground Up
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• The goals of the DOE Office of Science 
COINFLIPS project – Co-Designed 
Improved Neural Foundations Leveraging 
Inherent Physics Stochasticity:

• Make stochasticity ubiquitous and useful;
• Directly sample from distributions of 

interest;
• Allow more efficient sampling of 

probabilistic neural networks.



Assessing New Devices, From the Ground Up
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• The COINFLIPS team are examining two ways of 
generating random coin flips, one a Magnetic 
Tunnel Junction, and the other a Tunnel Diode.

• The devices can be combined to obtain 
distributions of interest. For instance, a 
weighted die that rolls 1 half of the time, and 
the numbers 2, 3, and 4 equally likely the rest of 
the time.

• This can be represented as the outcome of two 
coins with probabilities that change through a 
hidden process.



Assessing New Devices, From the Ground Up
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• Assessment of samples and validation of 
hardware can again be performed through a 
hypothesis test.

• This time, the alternative hypothesis is that the 
device circuit follows the expected/desired 
distribution, and the null hypothesis is that it 
behaves any other way.

To learn more about the COINFLIPS team’s device models and assessment, check out the ICONS conference this July.



Concluding Thoughts, Thanks!
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• Mapping applications to new hardware requires critical thoughts on both code verification 
and hardware validation.

• New devices built from the ground up require equal consideration for how they will meet 
the needs of modern applications.

• Hypothesis testing and relative entropy, as a framework, provide one method of 
statistically rigorous assessment.


