
Click to edit master subtit le style
Sandia National Laboratories is a 

multimission laboratory managed and 
operated by National Technology & 

Engineering Solutions of Sandia, LLC, a 
wholly owned subsidiary of Honeywell 

International Inc., for the U.S. Department of 
Energy’s National Nuclear Security 
Administration under contract DE-

NA0003525.
1

Exagraph Tutorial, ECP 2022

ExaGraph: Partitioning & Coloring

Erik Boman , Sandia
Contributions from:  Siva Rajamanickam, Seher Acer, 
Ian Bogle, Michael Gilbert, Kamesh Madduri, George 
Slota

SAND2022-6020CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



2 Partitioning: Background/Motivation

 Graph partitioning successful approach to load balancing

 We are revisiting graph partitioning problem, because:
 DoE/ECP supercomputers will use  different accelerators 
 AMD, Intel, NVIDIA GPUs

 No accelerator-enabled graph partitioning tool exists
 We provide a new partitioner Sphynx to fill this gap
 Distributed-memory parallel, accelerator-enabled, and portable 

 We are pursuing two strategies:
 Sphynx: Spectral methods use linear-algebra kernels, which 

are more amenable to parallelization on accelerators
 Multilevel graph partitioning on GPU: hard!



3 Partitioning: Status

 Sphynx has been released in Trilinos/Zoltan2

 First multi-GPU graph partitioner!
 Works on both Nvidia and AMD GPU

ec
olo

gy
1

die
lFilte

rV
2re

al

the
rm

al2

Bum
p_

29
11

Que
en

_4
14

7
10

0^
3
20

0^
3
40

0^
3

reg
ula

r

ho
llyw

oo
d-2

00
9

co
m-O

rku
t

wikip
ed

ia-
20

07
02

06

cit
-P

ate
nts

co
m-Li

ve
Jo

urn
al

wb-e
du

uk
-20

05

it-2
00

4

tw
itte

r7

co
m-Frie

nd
ste

r

Full
Chip

cir
cu

it5
M

irre
gu

lar
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Spock/Summit

Sphynx 
partitioning time 
on Spock relative 
to Summit (same 
# GPU).



Graph coarsening  on GPU4

• Collaboration with Kamesh Madduri and Mike Gilbert 
(Penn State)

• Developed and compared several GPU-based graph 
coarsening methods

• Used Kokkos for performance portability (CPU, GPU)
• Coarsening can be used for graph partitioning, 

clustering, and potentially algebraic multigrid
• The code is available in KokkosKernels
• Future plan includes a GPU based multilevel graph 

partitioner
• GPU-based refinement in progress



Graph coarsening - time5



Graph coarsening - quality6

 Quality is measured by cut-size in spectral bisection



HEC coarsening – CPU vs GPU time7

 HEC was the best method in our tests. Compare one GPU vs 32 CPU 
cores.



8 Graph Coloring on multi-GPU
 Collaboration with RPI (Bogle, Slota)

 Software for graph coloring:

 Zoltan: Parallel distributed-memory dist-1 and dist-2 coloring

 KokkosKernels: Parallel shared-memory dist-1 and dist-2 coloring, tuned for GPU

 ColPack (Purdue): Many models and algorithms, but limited to single node (CPU)

 NEW: Hybrid MPI+Kokkos coloring for distributed multi-GPU systems

 We reuse algorithms & code

 Speculative coloring (Gebremedhin & Manne 2000), as used in Zoltan

 We use KokkosKernels coloring on the node for optimal GPU performance

 Performance portable to many architectures (all ECP platforms)

 Will be delivered through Trilinos/Zoltan2 (soon)

 Applications

 ATDM/SNL Empire: Coloring for Jacobians

 ATDM/SNL Scalable solvers: Coarsening for MueLu 



Coloring: Weak Scaling on multi-GPU

The largest input we ran has 12.8 
Billion vertices and 76.7 Billion 
edges, which was colored in under 
half a second.

1 MPI rank per GPU

3D mesh, run on Nvidia GPU cluster at RPI



10 ECP Collaboration: SPARC
◦ SPARC is a SNL National Security application

 Computational bottleneck is  nonlinear solves
 Sequence of linear solves, same pattern

 Want to use adjoints and AD for sensitivity studies

 Need graph coloring of Jacobian matrix
 This is distance-2 coloring of the bipartite graph

 Developed user-friendly Tpetra::CrsColorer interface
 Thanks to Eric Phipps!

 Currently only CPU version, but multi-GPU support in progress

◦ SPARC team is testing it on up to 288 cores/processors.



Thank you!

Papers:
◦ Gilbert et al., “Performance Portable Graph Coarsening for Multilevel 

Graph Analysis”, Proc. Of IPDPS’21.
◦ Bogle et al., “Parallel graph coloring for multi-GPU systems”, Proc. Of 

IAAA, 2020.
◦ Acer, Boman, Glusa, Rajamanickam, “Sphynx: a Parallel Multi-GPU 

Partitioner”, Parallel Computing, 2021.

 This research was supported by the Exascale Computing Project 
(17-SC-20-SC), a collaborative effort of the U.S. Department of 
Energy Office of Science and the National Nuclear Security 
Administration.

11



Backup slides12



Highlights: Sphynx partitioner

 Sphynx: Spectral Partitioning for HYbrid aNd 
aXelarator-based systems

 Sphynx uses several Trilinos packages using Kokkos 
for performance portability 

 Sphynx is the first multi-GPU partitioner for 
distributed-memory systems

 Compared to ParMETIS, Sphynx is faster on irregular 
graphs and obtains a close cutsize on regular graphs

1
3



1
4 Spectral partitioning

otherwise

otherwise



15

1 & 2

A. V. Knyazev,“Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method,” SIAM 
Journal on Scientific Computing, vol. 23, no. 2, pp. 517–541, 2001. 

[1]

3

M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Catalyurek, “Multi-jagged: A scalable parallel spatial partitioning algorithm,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 27, pp. 803–817, March 2016. 

[2]

Trilinos for spectral partitioning



16 Preconditioning 



17 Experiments
 The GPU focus: MPI+Cuda

 Performed on Summit 

 General experiments performed on 24 GPUs
 Desired number of parts = K = 24

 Strong scaling performed on 6, 24, 96 GPUs 

 Weak scaling performed on 4, 32, 256 GPUs 

 Each GPU is exclusively used by one MPI rank (default)

 Device allocations in the Unified Virtual Memory (default)

 Initial distribution of the test graphs: 1D block
 This is the default distribution with Tpetra CrsMatrix

 Parameter sensitivity and comparison against ParMETIS
 Performance metrics: cutsize and runtime



18 Results

Average results normalized w.r.t combinatorial

preconditioner
generalized normalized

runtime cutsize runtime cutsize

regular
Jacobi 0.81 1.15 0.43 2.26
Polynomial 0.73 1.21 0.54 2.45
MueLu 0.99 1.12 0.95 2.20

irregular
Jacobi 0.75 0.83 0.26 1.36
Polynomial 0.36 0.84 0.02 0.83
MueLu 0.71 0.90 0.31 1.68

Eigenvalue Problem:

Default: combinatorial for regular graphs,

                generalized for irregular graphs with Jacobi and MueLu, and

 normalized for irregular graphs with Polynomial.



19 Results
GPU vs CPU:

Typical application use 
case. 24 GPUs vs 24 MPI 
ranks on CPU.



20 Results
Strong Scaling:

6 24 96
0

10
20
30
40
50
60
70
80
90

Graph: 400^3

ParMETIS Jacobi Polynomial MueLu

ru
nn

in
g 

tim
e 

(s
)

number of GPUs (number of MPI ranks)



21 Results
Weak Scaling:

4 32 256
1.0

10.0

100.0

2M VERTICES PER RANK

ParMETIS Jacobi MueLu Polynomial

number of GPUs (number of MPI ranks)

ru
nn

in
g 

tim
e 

(s
)

(tolerance = 1e-2 for all)



22 Conclusions: Sphynx
 First multi-GPU partitioner on distributed-memory systems
 Spectral method is based on linear algebra, so well suited for GPU

 Many knobs to tune the performance (preconditioners, problem 
type,..)

 Built on top of other Trilinos packages, lots of code reuse
 Performance portability to many GPU architectures via Kokkos

 Any improvement in Kokkos, Anasazi, MueLu, …, will lead to an 
improvement in Sphynx

 Sphynx is a subpackage of Zoltan2 (in Trilinos):

 https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2/sphynx

https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2/sphynx

