SAND2022-6020C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the|United States Government.

ExaGraph: Partitioning & Coloring
Click to edit master subtitle style

— e QEiERGY NISA

—
Sandia National Laboratories is a

. .
E rI k B 0 l I I a n L] S a n d I a multimission laboratory managed and
operated by National Technology &
- . . M H H Engineering Solutions of Sandia, LLC, a
Contributions from: Siva Rajamanickam, Seher Acer
’) International Inc., for the U.S. Department of
> 3 ' : r . . " Energy’s National Nuclear Security
d[loperated by.National"Technology & Engineering/Solutions ofiSandia, LLC, a'wholly.owned Administration under contract DE-
NA0003525.

1 Ia n B 0 Ie I\,Sa-ndia}National Laboratorieszisyalmultimissionrlaboratory managedran
’ subsidiarylof HoneywelkInternationalinc., forthe 'U.S IDepartmentloEnergy's-Nationall Nuclear Security Administrationfunder|contract|DE- }
T \.subsidi f'H ll=Int i Il fortthe IU.S 1D rt FE| 's=Nati I'Nucl S ity Administrati d tract DE-NA0003525

2 | Partitioning: Background/Motivation

Graph partitioning successful approach to load balancing

We are revisiting graph partitioning problem, because:

DoE/ECP supercomputers will use different accelerators
AMD, Intel, NVIDIA GPUs

No accelerator-enabled graph partitioning tool exists
We provide a new partitioner Sphynx to fill this gap

Distributed-memory parallel, accelerator-enabled, and portable

We are pursuing two strategies:

Sphynx: Spectral methods use linear-algebra kernels, which
are more amenable to parallelization on accelerators

Multilevel graph partitioning on GPU: hard!

E
\

3 | Partitioning: Status

= Sphynx has been released in Trilinos/Zoltan2

= First multi-GPU graph partitioner!
= Works on both Nvidia and AMD GPU

Spock/Summit
1.80
1.60
1.40 Sphynx
1.20 partitioning time
1.00 on Spock relative
0.80 to Summit (same
060 # GPU).
0.40
0.20
0.00
0 AN RN OOPOOPP RSP P >N FRLS

L P WIF S S NP FP S A F TP S

9 @& Q7S CF ORIV YF XY & @&

¢ T P F O & N

& e NI RS $

& e © N & K
S (\o _QQJ (;O O

&
&

‘! Graph coarsening on GPU

« Collaboration with Kamesh Madduri and Mike Gilbert
(Penn State)

« Developed and compared several GPU-based graph
coarsening methods

« Used Kokkos for performance portability (CPU, GPU)

« Coarsening can be used for graph partitioning,
clustering, and potentially algebraic multigrid

* The code is available in KokkosKernels

* Future plan includes a GPU based multilevel graph
partitioner

° GPU IhamaAaAd vAfirmAavma A £ lia rmvmA A A~

= HEM

Assume

Wad=-g+wing
ard P = |

Graph coarsening - time

1.0+ T
I
I
0.8
" | |
-
c [IJ_I I_I
©
U 0.6)
Y
O
5
= 0.4 -
[
© —— HEC
- —— HEM
0.2 —— MT-METIS
——— GOSH
— MIS-2
0.0 : : : : :
1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ratio to best

s I Graph coarsening - quality

Quality is measured by cut-size in spectral bisection

1.0 T
I
I

0.8° r' | |
()]
il
c I_I_I |_l
©
(5 0.6
Y
o
s
= 0.4
|9
@ —— HEC
- —— HEM

0.2 - —— MT-METIS

—— GOSH
— MIS-2
0.0 I T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ratio to best

7 I HEC coarsening — CPU vs GPU time

HEC was the best method in our tests. Compare one GPU vs 32 CPU

cores.
A ic04
S 4-
E.S A kmerUia
g ® curopeOsm
= ® delaunay24
-] 5 A vasStokes4M
0 A
O A citatior Products ® rgg24
E A ppa g A hollywood09
a @ nipkktieo @ HV15R
8 21 ..l CubeCoup
§_ Flan1sep ., {
Orkut
w
z
ORE A mycielskian17
0 100 200 300 400

Graph size (2m+n) * 1e-6

s | Graph Coloring on multi-GPU

¥ Collaboration with RPI (Bogle, Slota)

= Software for graph coloring:

Zoltan: Parallel distributed-memory dist-1 and dist-2 coloring

KokkosKernels: Parallel shared-memory dist-1 and dist-2 coloring, tuned for GPU

ColPack (Purdue): Many models and algorithms, but limited to single node (CPU)

NEW: Hybrid MPI+Kokkos coloring for distributed multi-GPU systems

= We reuse algorithms & code
. Speculative coloring (Gebremedhin & Manne 2000), as used in Zoltan
. We use KokkosKernels coloring on the node for optimal GPU performance
. Performance portable to many architectures (all ECP platforms)

. Will be delivered through Trilinos/Zoltan2 (soon)

= Applications

ATDM/SNL Empire: Coloring for Jacobians

ATDM/SNL Scalable solvers: Coarsening for Muelu

Coloring: Weak Scaling on multi-GPU

3D mesh, run on Nvidia GPU cluster at RPI

The largest input we ran has 12.8
Billion vertices and 76.7 Billion

~ edges, which was colored in under
— ot half a second.
0.4
E 03 1 MPI rank per GPU
o
& = |
) nu—=
g 02 F
= ||
= *0 - T ® | —e— 100M vertices/MPI rank
0.1 | N * m— 50M vertices/MPI rank
f*/*rdb/ —e— 25M vertices/MPI rank
0 —+— 12.5M vertices/MPI rank

0 20 40 60 80 100 120 140
MPI Ranks

10 | ECP Collaboration: SPARC

SPARC is a SNL National Security application

[e]

Computational bottleneck is nonlinear solves

Sequence of linear solves, same pattern

Want to use adjoints and AD for sensitivity studies

Need graph coloring of Jacobian matrix

This is distance-2 coloring of the bipartite graph

Developed user-friendly Tpetra::CrsColorer interface
Thanks to Eric Phipps!

Currently only CPU version, but multi-GPU support in progress

[e]

SPARC team is testing it on up to 288 cores/processors.

"' Thank you!

Papers:

> Gilbert et al., “Performance Portable Graph Coarsening for Multilevel
Graph Analysis”, Proc. Of IPDPS’21.

> Bogle et al., “Parallel graph coloring for multi-GPU systems”, Proc. Of
IAAA, 2020.

> Acer, Boman, Glusa, Rajamanickam, “Sphynx: a Parallel Multi-GPU
Partitioner”, Parallel Computing, 2021.

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration.

ey
\ EXASCALE
) COMPUTING
\ PROJECT
gyttt

> 1 Backup slides

» IHighlights: Sphynx partitioner

= Sphynx: Spectral Partitioning for HYbrid alNd
aXelarator-based systems

= Sphynx uses several Trilinos packages using Kokkos
for performance portability

= Sphynx is the first multi-GPU partitioner for
distributed-memory systems

= Compared to ParMETIS, Sphynx is faster on irregular
graphs and obtains a close cutsize on regular graphs

. |ISpectral partitioning

= Use graph Laplacian for embedding into low-dimensional space

= Adjacency matrix A = (a)ij - {(1) gtii’ejrvfife

= Degree matrix D = (d);; = {dego(vi) ifi=j
otherwise
= Form a Laplacian matrix:
Combinatorial Laplacian L =D — A
- Normalized Laplacian Ly =1 — D~1/24D~1/2
= The 2" lowest eigenvector (Fiedler vector) approximately minimizes the
edge cut

igg((:)t)ral recursive bisection was introduced by Pothen, Simon, Liou (SIMAX,

« Sphynx computes (log K + 1) eigenvectors on the Laplacian, all at once
No recursive bisection, only one eigensolve

15 I Trilinos for spectral partitioning

2. Compute (log K + 1) eigenvectors of L using LOBPCG [1] = Anasazi
First eigenvector: trivial, not used

1. Create Laplacian L for G — Tpetra CrsMatrix, Kokkos parallel_for I
L
Remaining vectors: coordinates to embed G into log K-dimensional space |

3. Compute a K-way partition on coordinates using multi-jagged [2] = Zoltan2

graph G cigenveclors multi-jagged partition J]
A 2
o,
' ®
3 o noe,
ey ®
}{. 9 g 1
@
4
)
*;0,
®
1 ® 0
o 1516
2

[1] A.V.Knyazev,“Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method,” SIAM
Journal on Scientific Computing, vol. 23, no. 2, pp. 517-541, 2001.

[2] M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Catalyurek, “Multi-jagged: A scalable parallel spatial partitioning algorithm,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, pp. 803—817, March 2016.

16 | Preconditioning

= Number of iterations in LOBPCG is a bottleneck

= LOBPCG allows using a preconditioner

= Reduces #iterations and overall time

= Sphynx uses three preconditioners
1. Jacobi: M = diag(A)~1 (Ifpack2)
scaling each row by the inverse of the diagonal, easy to parallelize
2. Polynomial: M = p;(A) (Belos)
SpMV to apply, highly parallel
based on GMRES polynomial
3. (Algebraic) Multigrid: Ap.1 = RA,P (Muelu)

multilevel, scalable solver but costlier setup

17 |Experiments

The GPU focus: MPI+Cuda
Performed on Summit

General experiments performed on 24 GPUs
Desired number of parts = K =24

Strong scaling performed on 6, 24, 96 GPUs

Weak scaling performed on 4, 32, 256 GPUs

Each GPU is exclusively used by one MPI rank (default)
Device allocations in the Unified Virtual Memory (default)

Initial distribution of the test graphs: 1D block
This is the default distribution with Tpetra CrsMatrix

Parameter sensitivity and comparison against ParMETIS

Performance metrics: cutsize and runtime

18 | Results

Eigenvalue Problem:

Average results normalized w.r.t combinatorial

generalized normalized
preconditioner runtime cutsize runtime cutsize

Jacobi 0.81 1.15 0.43 2.26

regular Polynomial 0.73 1.21 0.54 2.45

Muelu 0.99 1.12 0.95 2.20

Jacobi 0.75 0.83 0.26 1.36

irregular polynomial 0.36 0.84 0.02 0.83

MuelLu 0.71 0.90 0.31 1.68
Default: combinatorial for regular graphs,

generalized for irregular graphs with Jacobi and MuelLu, and

normalized for irregular graphs with Polynomial.

Results

Typical application use
GPU vs CPU: case. 24 GPUs vs 24 MPI
ranks on CPU.

partitioning time iteration time
27 1 Jacobi 27 - Jacobi
. Polynomial Polynomial
2° 1 Muelu 2° + Muelu
5

g 2 g 25
3 3
O 54 | O
E 3 24
o 23 _ o
3 3 A»3
3 3%
VU 22] V
) & 22 A

21]

21 .
L
L
;SQ G & & & ,gQ & & & &
s 0§ s s 8 s 0§ s s 8
@ G ~ ~N ¥ @ o ~ ~N ¥

20

Results

Strong Scaling:

running time (s)

—o—ParMETIS

90
80
70
60
50
40
30
20
10

0

Graph: 40073

—e—Jacobi Polynomial ==Muelu

—~—

\ —
[—
6

24

number of GPUs (number of MPI ranks)

96

21 | Results

Weak Scaling:

(tolerance = 1e-2 for all)

100.0

10.0

running time (s)

1.0

2M VERTICES PER RANK

——ParMETIS -®-Jacobi —+-Muelu Polynomial

4 32 256
number of GPUs (number of MPI ranks)

22 | Conclusions: Sphynx

= First multi-GPU partitioner on distributed-memory systems

Spectral method is based on linear algebra, so well suited for GPU

Many knobs to tune the performance (preconditioners, problem
type,..)

= Built on top of other Trilinos packages, lots of code reuse

Performance portability to many GPU architectures via Kokkos

Any improvement in Kokkos, Anasazi, Muelu, ..., will lead to an
improvement in Sphynx

= Sphynx is a subpackage of Zoltan2 (in Trilinos):

https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2/sphynx

https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2/sphynx

