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Type 2 high-pressure hydrogen storage vessels

 Type 2 tanks are carbon-fiber overwrapped and autofrettaged
 Fracture mechanics design approach: ASME BPVC Section 8 Div 3
 Design cycle life is defined in User’s Design Specification (UDS) based on a max pressure 
range 

• e.g., Pressure range 93 MPa to 61 MPa, Design Life = 37,540 cycles or 20 yr

 Tanks are reaching cycle limit much sooner than desired (e.g. 7 yr)
 Conventional non-destructive evaluation (NDE) methods to inspect metal liner are incompatible 
with overwrap; therefore no means to inspect, recertify, and extend life of tank  Result = tanks 
are retired
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In-service pressure cycle data from retired tanks
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Pressure cycle data from in-service tanks
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 Real data for approximately 3 years of service show usage rarely matches UDS max pressures and load 
ratio

• Median pressure range DP = 14.6 MPa vs. DPUDS = 32 MPa
 No guidance and considerable savings to be realized if fatigue life can be more closely tied to actual use 
Research questions:

1. Can we identify a threshold pressure range DPth below which we can assume negligible crack 
growth?

2. How sensitive is fatigue life to the parameters governing residual stress from autofrettage?  
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Autofrettage simulation to determine residual stress

 FE model includes the liner and 
overwrap

◦ Liner is SA-372 Grade J Class 70 
stainless steel

◦ Sandia performed tensile characterization 
and determined plastic anisotropy is 
negligible

◦ Overwrap is uni-directional (hoop) carbon-
fiber and assumed elastic, and well 
bonded 

 BCs simulate overburden pressure and 
removal

◦ Overburden pressure monitored by hoop 
strain on outer fiber (which imitates the 
manufacturing process) 
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Crack growth simulation 

 Crack growth performed with FRANC3D
◦ Pre-process mesh to add crack 
◦ Post-processes Abaqus FEA results to 

compute the driving force and geometry of 
crack advance

◦ Templated crack front very accurately 
calculates the stress intensity factors

◦ Accommodates arbitrary 3D crack shapes
◦ Maximum tensile stress theory for crack 

kinking  
◦ Autofrettage residual stresses are 

superposed 
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Crack front evolution for longitudinal crack

Predicted crack front driving force versus normalized crack 
depth at max operating pressure 93 MPa

Crack depth, a



Fatigue estimates
 We use the previously established relationship between K and a to rapidly integrate the data 

 Data available for crack growth rate in hydrogen including bi-linear form in ASME code case 
2938

 The data tell a very different story in the lower DK regime; we will use the 2010 data for our 
purposes
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(assume 5,040 max pressure cycles/yr + 2 full blowdowns)

threshold

Normalized crack depth versus service years, max 
UDS DP = 32 MPa, R = 0.66Crack growth rate curves



Threshold pressure 

 DPth is established using a threshold crack growth rate of 0.1 nm/cycle, and the curves 
relating crack length to driving force and fatigue cycle (age in years). 

 Note:
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Provides guidance for operators about pressure 
cycles that can be ignored throughout the life 
of the vessel



Simplified fatigue analysis 
 Objective: an algorithm that can be used in the field to reduce over conservatism and 
account for actual tank usage

 Using the relationship for DPth, we develop a simplified fatigue analysis that can be 
used in the field to reduce the over conservatism
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Sensitivity to residual stress 

 Perform the autofrettage simulation with 90% autofrettage pressure  65% reduction in 
compressive residual stress 

◦ Since autofrettage pressure is obtained by monitoring the external strain, this is a bit unrealistic
◦ Our current effort is to explore sensitivity to liner plasticity (hardening) which strongly influences 

residual stress

 Recompute K versus a relationship:
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Examine residual life for a range of initial flaw sizes

 Given a range of initial flaw sizes and uncertainty in residual stress state, we can explore 
fatigue life

 This can be used to inform NDE inspection period (as NDE techniques become 
available) 
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Max UDS w/ 2010 crack growth rates Max UDS w/ 2019 crack growth rates



Summary

 We used computational simulation to explore fatigue life of Type 2 high-pressure 
hydrogen tanks

 We showed that data from the field for two tanks indicates significantly gentler fatigue 
cycling than the User Design Specification

 We explained our simulation approach

 We developed a simplified fatigue analysis that accounts for in-service pressure cycles, 
appears to remain conservative, but also significantly reduces over conservatism

 We demonstrated the sensitivity of fatigue life to the achieved residual stress 
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