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: ‘Type 2 high-pressure hydrogen storage vessels

Hoop wrapped carbon fiber

Ny

Steel liner

*Type 2 vessels are

commonly used at

Hydrogen Refueling
Stations (HRS)

- Type 2 tanks are carbon-fiber overwrapped and autofrettaged
— Fracture mechanics design approach: ASME BPVC Section 8 Div 3

—> Design cycle life is defined in User’s Design Specification (UDS) based on a max pressure
range

* e.g., Pressure range 93 MPa to 61 MPa, Design Life = 37,540 cycles or 20 yr
—> Tanks are reaching cycle limit much sooner than desired (e.g. 7 yr)

— Conventional non-destructive evaluation (NDE) methods to inspect metal liner are incompatible
with overwrap; therefore no means to inspect, recertify, and extend life of tank > Result = tanks "~
are retired



: ‘ In-service pressure cycle data from retired tanks
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— Real data for approximately 3 years of service show usage rarely matches UDS max pressures and load

ratio

* Median pressure range AP = 14.6 MPa vs. AP ps = 32 MPa

NO guidance and considerabie savings to be realized if fatigue tife car D3elv tied

Research questions:

1. Can we identify a threshold pressure range APth below which we can assume negligible cragk
arowth?
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Steel
CFRP 68

Autofrettage simulation to determine residual stress

FE model includes the liner and
overwrap
o Liner is SA-372 Grade J Class 70
stainless steel

o Sandia performed tensile characterization
and determined plastic anisotropy is
negligible

o Qverwrap is uni-directional (hoop) carbon-
fiber and assumed elastic, and well
bonded

BCs simulate overburden pressure and
removal
o Qverburden pressure monitored by hoop
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Crack growth simulation

Crack growth performed with FRANC3D

> Pre-process mesh to add crack

o Post-processes Abaqus FEA results to
compute the driving force and geometry of

crack advance

o Templated crack front very accurately
calculates the stress intensity factors

o Accommodates arbitrary 3D crack shapes
o Maximum tensile stress theory for crack

kinking
o Autofrettage resi
supdfpdRa) = K|

g

ual stresses are
(P a) + K| aito(a)
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We use the previously established relationship between K and « to rapidly integrate the data
da

da af
—=f(AK,R) — N =
AN / ( ; ) /aZ 7 (AK, R) (assume 5,040 max pressure cycles/yr + 2 full blowdowns)

Data available for crack growth rate in hydrogen including bi-linear form in ASME code case
2938

« 1 Fatigue estimates [EI:
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APth is established using a threshold crack growth rate of 0.1 nm/cycle, and the curves
relating crack length to driving force and fatigue cycle (age in years).

7 I Threshold pressure [EI:
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Objective: an algorithm that can be used in the field to reduce over conservatism and
account for actual tank usage

s 1 Simplified fatigue analysis [EI:

Using the relationship for APth, we develop a simplified fatigue analysis that can be
used in the field to reduce the over conservatism

I
Data: a, N, Net 0.25 — 1
Result: Fatigue life estimate I e :
initial ization; < Simplified analysis
a= 0.5;N=Ng = O; = 0.20
while &/t < 0.25do <
DP  next; N+=1: £
= 0.15
eval DP(Neft); —
if DP> DPy then g
Nesrt+ = 1; = 0.10
a= a(Net); E I
end 3
if N== Ngng then < 0.05 I
| STOP
end
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, | Sensitivity to residual stress

Perform the autofrettage simulation with 90% autofrettage pressure - 65% reduction in
compressive residual stress

o Since autofrettage pressure is obtained by monitoring the external strain, this is a bit unrealistic

o Qur current effort is to explore sensitivity to liner plasticity (hardening) which strongly influences
residual stress

Recompute K versus «a relationship:
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. | Examine residual life for a range of initial flaw sizes

Given a range of initial flaw sizes and uncertainty in residual stress state, we can explore

fatigue life
This can be used to inform NDE inspection period (as NDE techniques become
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1 1 Summary

We used computational simulation to explore fatigue life of Type 2 high-pressure
hydrogen tanks

We showed that data from the field for two tanks indicates significantly gentler fatigue
cycling than the User Design Specification

We explained our simulation approach

We developed a simplified fatigue analysis that accounts for in-service pressure cycles,
appears to remain conservative, but also significantly reduces over conservatism

We demonstrated the sensitivity of fatigue life to the achieved residual stress
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