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Motivation: Low Temperature Molten Sodium (Na-NaI) Batteries

Martha Gross

Na-NaI battery: 

Na  Na+ + e-    E 0 = 0 V
I3

- + 2e-  3I-     E 0 = 3.24 V

2Na + I3
-    2Na+ + 3I-   E0

cell
 = 3.24 V

Realizing a new, low temperature molten Na battery requires new battery materials and 
chemistries – particularly in sodium ion conductors 

• Highly Na+-conductive
• Zero-crossover
• (Electro)chemical compatibility with Na and halide salts
• Mechanical integrity and “dendrite” suppression

 Important for large-scale, long-duration, long-life 
applications

Important electro-chemo-mechanical properties 
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SiO4 or PO4 ZrO6 Na

Key Qualities of NaSICON Ceramic Ion Conductors
• Na3.4Zr2Si2.4P0.6O12

• High Na-ion conductivity (>10-3 S/cm at 25oC)
• Zero-crossover (high-density after sintering)
• Chemically compatible with molten Na and halide salts (at low T!)
• Mechanical integrity? After exposure to battery materials?

NaSICON Solid Electrolytes

1000/T (K-1)

NaSICON
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Understanding NaSICON Behavior in Na Batteries

• Electro-chemo-mechanical phenomenon
– Must understand all three aspects

• UK-SNL team has the capability to explore these!
– Cycling molten sodium batteries (electrochemical)
– Compositional analysis (chemical)
– Indentation (mechanical)
– Microstructure analysis
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Mechanical Behavior of NaSICON

• Exploring mechanical properties after:
– NaSICON heated to 110 °C
– NaSICON exposed to molten Na at 110 °C
– NaSICON (x2) cycled up to 50 mA/cm2 in Na|NaSICON|Na cell at 110 °C 
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Mechanical Behavior of NaSICON

• Saw changes in NaSICON’s 
mechanical response
–Modulus increased after exposure 

to molten Na metal
–Modulus and hardness decreased 

after cycling in Na|NaSICON|Na

Exposed to Na Cycled

Color disappeared 
upon air exposure

Pristine
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Fracture Toughness of NaSICON
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Pristine 
NaSICON

Exposed to 
Na

Cycled in 
Na|NaSICON|Na

Fracture toughness not significantly impacted by 
Na+ conduction

Cycling NaSICON should not affect ability to 
handle higher current densities

ᵄ� ᵅ�ᵅ�ᵄ�ᵅ�ᵅ� = ᵄ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� − ᵄ� ᵅ�ᵅ�

Kic: Fracture Toughness
Wirrev: Total irreversible indentation work
Wpp: Purely plastic indentation work
Wcrack: Work done to create cracks
Er: Material reduced modulus
Am: Indent contact area

Hempel, J. L.; Meyer, A.; Hill, R.; Cheng, Y.-T. MRS Commun. 2022 122 2022, 12 (2), 279–282.

Fracture toughness is intimately related 
to critical current density (CCD)
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Chemical Changes in NaSICON
• NaSICON cycled up to 225 mA/cm2 in 

Na|NaSICON|Na symmetric cell at 110 °C
– High current density to induce chemical changes
– Typical CCD in SEs @ RT is ~0.1-1 mA/cm2

• Permanent gray spots (and lines) appeared 
across NaSICON surface
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Chemical Changes in NaSICON

• XPS to determine composition in various areas
– Gray spots have much higher Na1s signal than edge 

(uncycled) area - more similar to leftover “pure” Na metal
– Gray spots still show expected Zr and Si signals
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Permanent color change corresponding to increased 
Na content occurs during cycling at high current“Dendrites”?
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Electrochemical Behavior of NaSICON
• Cycling above 100 mA/cm2 led to 

unstable voltage plateaus

• Continued cycling at 225 mA/cm2 led 
to eventual voltage drop 
– Very small impedance measured by 

impedance spectroscopy
– Consistent with electronic short
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Electrochemical Behavior of NaSICON
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Li propagation in LLZO

(c)

(d)

Meyer, A.; An Electrochemical-mechanical Investigation of Next Generation Lithium Metal Electrode and Solid Electrolyte (PhD thesis 2022)

Na propagation in NaSICON

• Na can propagate through NaSICON 
causing an electronic short

• Morphology of Na within NaSICON is 
vastly different than Li within LLZO
– Needle-like vs. grain boundary 

accumulation
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In Short

• NaSICON solid electrolytes will play an integral role in next
-generation energy storage technology 

• NaSICON SEs exhibit changes in their mechanical, 
chemical, and electrochemical behavior during cycling
– These all contribute to NaSICON failure in Na batteries

• Failure of NaSICON at high-temperature is significantly 
different than in RT batteries
– A fundamental understanding of this failure will guide improved 

electrolyte fabrication
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