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Motivation: Avenues for Life Extension of Pressure Vessels
/o

74 High pressure hydrogen storage vessels, such as those used at hydrogen refueling
stations, are retired upon reaching their designed number of pressure cycles

» Design cycle life is defined in User’'s Design Specification (UDS) based on pressure range

* One avenue for extending the life of hydrogen vessels is recertification through non-
destructive evaluation (NDE)

» Currently no commercially available means to perform NDE on Type 2 vessels, therefore vessels
are retired
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* Goal: Development of a representative
NDE sample/methodology that can:

» Develop fatigue cracks to prescribed
depths

» Provide NDE calibration data based on
sharp fatigue cracks (as opposed to
machined notches)

» Provide a testing platform to simulate
compressive residual stresses induced
by autofrettage or proof testing

* The scope of this paper includes the
development and analysis of a
representative NDE sample from a type
1 pressure vessel

» NDE validation and calibration is

planned but not discussed in this
presentation
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Schematic of type 1 pressure
vessel (above) and ring
section extracted from a type
1 vessel (below)
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/7~ Material and C-ring Sample Design
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/ Type 1 Pressure Vessel C-ring Sample Geometry
50.8 mm wide ring sections
T ! t Mechanical cycling
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« C-ring samples were machined by extracting ring sections from an all-steel transportable pressure
vessel (type 1)

» Sides of the ring sections were removed (giving the sample a “C” shape) and %" bolt holes were added to allow for mechanical
cycling or static loading during NDE

« Starter notches were added (plunge EDM) to ensure crack growth initiated at the center of the C-ring
samples
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/ Crack Growth Monitoring through DCPD and Backface Strain
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/ _ _ C-ring Sample 1 on Load Frame
* To monitor crack growth, C-ring
samples were instrumented with: DCPD and Starter
. . : Notch on Sample 1
» Direct current potential difference

(DCPD)
» Backface strain gauge

» Post-fatigue, samples were
submerged in LN, and fractured open
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* Heat tinting (275°C / 30 min) was
utilized to mark fatigue crack growth at
specific stages of the test




/" Fatigue Cycling at Increasing Maximum Loads
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« Two C-ring samples were mechanically cycled to induce fatigue crack growth
» R =0.1 (Min/Max load)
» Both DCPD and backface compliance (slope of the load-strain curve) monitored throughout tests

* Loads below 8.9kN (2000 Ibf) had minimal effect on the measured compliance and DCPD
* Higher loads resulted in crack propagation, as indicated by the increasing DCPD and compliance
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Fatigue Crack Growth at Constant (10kN) Max Load

* A second C-ring sample was
cycled with a peak load of
10kN (2250 Ibf) and R = 0.1

* The measured DCPD can be
seen to increase at the
beginning of the test, indicating
the immediate onset of crack
growth

» The test was interrupted for
heat tinting after the relative
DCPD (measured/initial)
reached a value of 2, which
happened after ~100,000
cycles
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* The DCPD (normalized by
the initial measurement)
was found to increase
approximately linearly for
Increasing crack areas
(normalized by cross-
sectional area)

» The linear estimation (dashed
line) is fit to experimental data
from both samples

»Heat tinting during testing of
sample 2 allowed for the
collection of an additional data
point
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/" Linear Trend Observed between DCPD and Crack Area
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P Comparison of Modeling and Experimental Backface Strains

« Simulations were performed to better 0.24
understand the crack propagation and 03 |
provide a relationship between the crack 2 y
depth (a/t) and the measured strain on 502 b e Predicred
the backface of the C-ring samples 3 e
. . . . = Xperimenta s
» Simulations performed with Sierra/SM < 021 SammeT >
and FRANC3D S oo L
7
$019
Plunge EDM Notch g01e :
@
Front Face 2017 }
3
EO.’IEJ - L
o
Y015 F e
......... o----="
D’]4 T 1 1 J
0 0.2 0.4 0.6
Normalized Crack Depth (a/t)
Crack Propagation Compressive backface strain at a load of 6.7kN vs. crack depth

oo




Model Predicts Evolution of Crack Geometry
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Normalized Distance along Crack Front

. Aspect ratio of crack (width/depth) vs. normalized crack depth
K, vs. position along crack front at a load of 6.7kN

* Initially, the maximum stress intensity factor (K)) is located at the center (deepest portion) of the crack

* As the crack propagates deeper into the sample, the stress intensity factor becomes higher on the edges

» This is due to the bending nature of the applied mechanical load, which induces compressive stresses at the
backface
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P Summary and Conclusions

* C-ring specimens were extracted
from a type 1 pressure vessel and
mechanically cycled to induced
fatigue crack growth

* Both DCPD and backface strain
were found to be good indicators of
crack area and depth (respectively)

» The measured DCPD varied

approximately linearly with crack
area
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P Summary and Conclusions

» Using this C-ring geometry, cracks could
be extended to prescribed flaw depths,
which could then be inspected via NDE
methods (e.g., eddy current)

» The machined notch could be removed via

grinding or polishing so that only the fatigue
crack remains

» After NDE, the C-ring can be heat tinted
and fractured open to calibrate the NDE
measurements with the true crack size

* The unique nature of the C-ring allows for
either static compressive or tensile
loading such that flaws could be scanned
concurrent with applied stresses

» Such as those that represent residual
stresses from proof testing or autofrettage

‘ Static compressive load

Fatigue crack
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Sample 2 cross-section post

Remalnlng fatigue cracked region if
the machined notch was removed
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Thank you for your attention!
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