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2 2-Local Hamiltonian Problem
 Given a Hamiltonian which is the sum of “local” interactions, what is 

the smallest/largest eigenvalue?

 Much known about the complexity of solving exactly, little known 
about approximating them (no PCP)

Motivation
The Heisenberg model is fundamental for describing quantum magnetism, 
superconductivity, and charge density waves. Beyond 1 dimension, the properties 
of the anti-ferromagnetic Heisenberg model are notoriously difficult to analyze.

 QMA-hard, so we can’t exactly solve these problems how well can we 
expect to approximate them?

 Is nature also approximating them?

Anti-ferromagnetic Heisenberg model: roughly 
neighboring quantum particles aim to align in 
opposite directions.  This kind of Hamiltonian 
appears, for example, as an effective Hamiltonian 
for so-called Mott insulators.
[Image: Sachdev, arxiv:1203.4565]



3 Quantum Max cut

 “How close” to the singlet on each edge?

singlet



Approximation Algorithms and Ansatze4

Runs in poly time in n, provable 
guarantee independent of instance

G
Classical Description 
Of Quantum state

 Unlike classical Max-cut not clear what kind of description is best
 Two ansatze of interest:

Product State Ansatz
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Singlets+Product States
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Approx. Alg.-



5 Rounding Strategy
 These problems are hard because the domain is complicated

 We can “relax” the domain to a larger domain that is easier to optimize over

 Generally this is an LP or SDP

 Use the relaxed solution to construct point in 
the domain (i.e. round your decimal number 
to     )

 Bound objective loss incurred by rounding

 In quantum picture, optimize over 
“unphysical” pseudo-density matrices on a 
classical computer

 Same idea for rounding: use the unphysical 
state to construct a physical state and worry 
about the objective loss.  

Obj



6 Previous Work

 Features to note:
 All except AGM20 produce product states
 Generic states (i.e. max energy states of QMA-complete) are highly 

entangled.  There is great need for additional “non-product” state 
algorithms.

 In particular for product states (PS)              .  Why?  If    and   are Bloch 
vectors, then: 

     Approximation factor must hold for all instances

 On the other hand, there is evidence [Anshu, Gosset, Morenz ‘20] that these 
small graphs like the example above are “blocking” a good approx. factor 
with product states.  Give                           PS algorithm.

(Maximized when
                  ) 



7 Previous Work (cont.)
 Indeed, [Brandão, Harrow ‘16] suggests that for very dense graphs the 

optimal state is very nearly a product state

 Hence, it’s reasonable to expect any algorithm which achieves a good 
approximation factor “looks like” a product state rounding algorithm for 
dense G

 [Anshu, Gosset, Morenz ‘20] achieves an approximation 
factor better than ½ by trading off between product 
state and entangled state

 So, finding good product state algorithms can improve 
performance of entangled algorithms

 That being said, finding entangled algorithms is the 
frontier, we do both!



8 Our Contribution
 Discussing the contents of two papers

 Main contribution is new techniques

Result #1- We construct a polynomial-time classical algorithm achieving approx. 
factor 0.533 for QMC.

 Also construct algorithm which achieves the optimal approx. factor for 
product states

Result #2- We construct a polynomial-time classical algorithm achieving approx. 
factor 1/2 for QMC using product state ansatz.

 Not achieving optimal product state on every instance (NP-hard), alg. has 
best approx. factor with respect to all instances.  

 Also achieve a “fine-tuned” version of [Brandão, Harrow ’16] restricted to 
QMC:

Result #3- If the graph G has min degree d, we achieve       -approx. where, e.g.  

arxiv: 2105.05698
arxiv:  ???



Moment Matrix Description of Quantum 
States 9

 Properties
 Matrix entries encode the expectation values of all Pauli observables. 
             since it has a Gram vectors by it’s definition.
 Many of the entries would be the same up to phase   redundant 

description of state

=



Relaxing the Moment Matrix
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� � 1 � 1 � 1 � 2 … � � � 1� 2 … � 1� 2� 3 … � 1…� �

������� � 2

[Lasserre ‘01]
[Pironio, Navascués, Acìn, ‘10]

 Try to solve the Local Hamiltonian by optimizing over moment matrices.  
Problem is this is exponentially large.  Optimize over submatrix?
 Still guaranteed PSD
 Satisfies all equality constraints the submatrix intersects with
 Relaxation because submatrix likely not embeddable



Pseudo-Density matrices
11

� � 1 � 1 � 1 � 2 … � � � 1� 2 … � 1� 2� 3 … � 1…� �

 Pseudo-density   is density matrix with Pauli statistics matching submatrix of 
moment matrix

 Can optimize over since local expectations defined by classical SDP



12 Relaxation Quality
Star Bound

[Lieb, Mattis, ’62]
[Anshu, Gosset, Morenz, ‘20]

 Relatively simple bound (sufficient for our entangled rounding algorithm) not 
fully capturing allowed edge overlaps for a quantum state:
 I.e.         :                                              , but for physical state:

 Demonstrate a stronger inequality for the optimal PS rounding paper:

Monogamy of 
Entanglement


 We think these constraints are fully capturing the allowed values on a triangle!



13 Rounding Algorithm
 PS rounding algorithm and singlet+PS rounding algorithm follow similar meta-

algorithm, with different “building blocks”

i

j

Threshold
Block 1

Handling large 
edges

Block 2

Handling qubits 
outside M

Block 3



14 Rounding Algorithm (cont.)

d=1 for PS rounding
d=2 for Entangled

Block 2/Block 3



Analysis15

 Three kinds of edges 
 Edges in M  
 Edges adjacent to M
 Edges not adjacent to M

 We want to show algorithm has good performance on all types
 Edges in M are easy: state specifically constructed to be optimal
 Edges not adjacent to M:

 Looking at                      or at state produced by [GP’19]
 Performance of [GP’19] is well understood

 Edges adjacent to M we have little control over the objective value 
 We don’t need to do well on these edges because of 

Triangle/Star Bounds! 
 This is where the Triangle bound really shines, it 

says that the adjacent edge value is quite small

 Additional proof techniques
 Symmeterization over transformations
 “Sum of Squares” proofs



Implications16



17 Open Questions



18 Thank you!

Questions?


