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2‘ 2-Local Hamiltonian Problem

» Given a Hamiltonian which is the sum of “local” interactions, what is
the smallest/largest eigenvalue? 7o 0

» Much known about the complexity of solving exactly, little known
about approximating them (no PCP)
Motivation
The Heisenberg model is fundamental for describing quantum magnetism,

superconductivity, and charge density waves. Beyond 1 dimension, the properties
of the anti-ferromagnetic Heisenberg model are notoriously difficult to analyze.

» QMA-hard, so we can’t exactly solve these problems how well can we
expect to approximate them?

» |Is nature also approximating them?

Anti-ferromagnetic Heisenberg model: roughly

neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian }
for so-called Mott insulators. AN
[Image: Sachdev, arxiv:1203.4565]




Quantum Max cut
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Notation- Let o; for o € {X,Y, Z} be Pauli o on qubiti, i.e. Z, = IQZRI ...
7,75 = ZQIRZRI..

Quantum Max Cut (QMC)- Define h;; = 1/4(1 — X; X smglet\
Y;Y; — Z;Z;). Given graph G=(V, E), find: ‘\hi.
Amaz (H(G)) where H(G) = Z hij / J
ijEE

> “How close” to the singlet on each edge?




"" Approximation Algorithms and Ansatze

®§

Approx. Alg.-

Alg(G)

min

6" L (H(G)) =

Classical Description
Of Quantum state

Y

. Runsin poly time in n, provable

guarantee independent of instance

» Unlike classical Max-cut not clear what kind of description is best
» Two ansatze of interest:

Product State Ansatz

Pi

T+ ailXi + BiYi +viZ;

2
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Singlets+Product States
p =1l pi-[ljkPji

T— XX — V% —Z, Z¢
pjk = 4

. I+ HJ'XJ + .IBJYI +}"!'zi
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;| Rounding Strategy

» These problems are hard because the domain is complicated

» We can “relax” the domain to a larger domain that is easier to optimize over

» Generally this is an LP or SDP

Obj
» Use the relaxed solution to construct point in
the domain (i.e. round your decimal number e00ooo

to +1) ©0e00ecc oo
©00000000000

» Bound objective loss incurred by rounding

» In quantum picture, optimize over
“unphysical” pseudo-density matrices on a
classical computer

lon)-110)

[120 oo

» Same idea for rounding: use the unphysical
state to construct a physical state and worry
about the objective loss.




| Previous Work

1

[ | 0.533-This work i
_#_,..-'_"_',_".iﬂ.bS:l-[.nnﬁhu, Gosset, Morenz "20] Singlet+Product State Ansatz

0,5 e 1/2-This work
:.:~—H: 0.498-[Gharibian, Parekh '19)

HHU'-“E'?" [Parekh, T. '20]* Product State Ansatz
0.328-|Hallgren, Lee, Parekh "20]*

D Q{1/log{n))}-[Bravyi, Gosset, Koenig, Temme '18]*

-gpprox. Blgs. apply 10 more Qéndral probiems

Otheer relevant slgs. but those not comparable
bacalse thay take assumptions am the graph

» Features to note:
» All except AGM20 produce product states
» Generic states (i.e. max energy states of QMA-complete) are highly
entangled. There is great need for additional “non-product” state
algorithms. -
> In particular for product states (PS) @ < 1/2. Why? If 7/ and ¢ are Bloch
vectors, then:

Tr P & P A — 4 n=—C )

Approximation factor must hold for all instances

[-X®X-Y®RY-2Z® Z) 1 -4j-¢ (Maximized when

» On the other hand, there is evidence [Anshu, Gosset, Morenz ‘20] that these
small graphs like the example above are “blocking” a good approx. factor
with product states. Give 0.546 — O(1/|E]) PS algorithm.
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Previous Work (cont.)

Indeed, [Brandao, Harrow ‘16] suggests that for very dense graphs the
optimal state is very nearly a product state ‘

Hence, it’s reasonable to expect any algorithm which achieves a good
approximation factor “looks like” a product state rounding algorithm for
dense G |

[Anshu, Gosset, Morenz ‘20] achieves an approximation
factor better than %2 by trading off between product
state and entangled state

So, finding good product state algorithms can improve v
performance of entangled algorithms

That being said, finding entangled algorithms is the
frontier, we do both! I



s | Our Contribution
) ) arxiv: 2105.05698
» Discussing the contents of two papers grxiy: 777

» Main contribution is new techniques

Result #1- We construct a polynomial-time classical algorithm achieving approx.
factor 0.533 for QMC.

» Also construct algorithm which achieves the optimal approx. factor for
product states

Result #2- We construct a polynomial-time classical algorithm achieving approx.
factor 1/2 for QMC using product state ansatz.

» Not achieving optimal product state on every instance (NP-hard), alg. has
best approx. factor with respect to all instances.

» Also achieve a “fine-tuned” version of [Brandao, Harrow ’16] restricted to
QMC:
Result #3- If the graph G has min degree d, we achieve «(d)-approx. where, e.g.

a(3) = 0.557, «(4) = 0.574




Moment Matrix Description of Quantum
| States

(|
(| X,
(Y|Ys
State on n qubits :

W, 2" 4™ x 2" e :
(| € C | > C S5V iz,

(‘f;i‘ ‘ Xl Xg
> _<'I_;'TI.T|Z]_...Z?-L_
) I / \ X e
1| (DY) 7 (W Xq|y)
X 1 <E"J ‘X 1 | LJ) <1.‘|{I'T |")(|2 |?'F;> AT n o
M:=VVi= Yi| @) (0]Yi X1 |w) c CY Y (Hermitian)

» Properties
» Matrix entries encode the expectation values of all Pauli observables.
» M = 0 since it has a Gram vectors by it’s definition.
» Many of the entries would be the same up to phase »redundant
description of state




[Lasserre ‘01]

Relaxing the Moment MatriX pionio, navascués, Acin, 10]

» Try to solve the Local Hamiltonian by optimizing over moment matrices.
Problem is this is exponentially large. Optimize over submatrix?
» Still guaranteed PSD
» Satisfies all equality constraints the submatrix intersects with
» Relaxation because submatrix likely not embeddable
Lasserre, 9

o o ZaaZg I 005 . 0.




Pseudo-Density matrices

> Pseudo-density 2is density matrix with Pauli statistics matching submatrix of
moment matrix
» Can optimize over since local expectations defined by classical SDP

b
— X+ —Y] + ...
+ o X1 Vi +

1 2 ---Zn—lzn 1 2 3 1--

AT 1
X, XXz 1

ZiZZ"'Zﬂ‘ 1 ]




Relaxation Quality

Monogamy of

[Lieb, Mattis, '62]
Star Bound [Anshu’ Gosset Morenz ‘20] / Entanglement
q + 1 » Lasserre, gets q
Z Tr(phﬂf) ST » Lasserre, gets (g +1)/2

» Relatively simple bound (sufficient for our entangled rounding algorithm) not
fully capturing allowed edge overlaps for a quantum state:
» le.q=2:Tr(ho1p) = 1= Tr(hoap) < 1/2, but for physical state:
Tl'(,(.)h—{}]) =1= T'I‘(,Oh.(]g) = 1/4
» Demonstrate a stronger inequality for the optimal PS rounding paper:
Triangle Bound Lasserre, satisfies: 0< i1 + fios + 1112 < 372

0

Ho1 = Tl'(ﬁhfm) 5 o 5
A M A(peo1 + 1o + 112) — 8(1o1 /o2 + Lot /12

o2 = Tr(pho2) o
~ 0o [
p12 = Tr(phis) po2/412) <
po1 = 1= po2 =1/4 &

1

» We think these constraints are fully capturing the allowed values on a triangle!
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Rounding Algorithm

» PS rounding algorithm and singlet+PS rounding algorithm follow similar meta-
algorithm, with different “building blocks”

pij = Tr(phiz)
0 < p;; <1, if y; = 1then Lasserre, “thinks” that
edge should be a singlet.

Overall idea- Find the edges Lasserre, “thinks” should be a singlet, take
care to get good objective value on these edges

ok W

Meta-Algorithm
1.

2. Initialize L = {}
For all ij calculate p;;. If u;; >{y|add ij to L.

Solve Lasserre, to get submatrix of M

Find Maximum matching M on L.
Consider two states

Block 1

Threshold

Block 2

Handling large

edges

1. Take optimal state on M, |[something standard on the rest Block 3

2. PS rounding from [GP 19’]
Take whichever has better objective.

N

Handling qubits
outside M




Rounding Algorithm (cont.)
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Block 1

» Star/Triangle bounds say that large edges must be adjacent to small edges =

set L forms a subgraph of small degree
» Threshold controls degree of subgraph

d=1 d=2 d=3

» Why set them differently? Technical reasons

» Tradeoff in d:
» d is too small = product state rounding bad
» dis too large = matching is bad

d=1 for PS rounding
d=2 for Entangled

Block 2/Block 3 . M
I N o rounding
> from [GP '19]

singlets




°" Analysis

» Three kinds of edges
> Edgesin M M
» Edges adjacent to M

» Edges not adjacent to M

» We want to show algorithm has good performance on all types
» Edges in M are easy: state specifically constructed to be optimal
» Edges not adjacent to M:
> Looking at(I/2) @ (I/2) or at state produced by [GP’19]
» Performance of [GP’19] is well understood
» Edges adjacent to M we have little control over the objective value

> We don’t need to do well on these edges because of ~ forced
Triangle/Star Bounds!

» This is where the Triangle bound really shines, it
says that the adjacent edge value is quite small

» Additional proof techniques
» Symmeterization over transformations
» “Sum of Squares” proofs




16 . .
Implications

» Demonstrated that Lasserre, satisfies physically motivated constraints,
possibly opening the door to additional approximation algorithms.
» “low-order” quasi-description of a state can look “entangled”

» Demonstrate explicit gap in “representational power” of different

levels of Lasserre

» Classical approximation algorithms follow a standard “meta” algorithm,
1. Solve SDP
2. Use solution to round to feasible point
» Only other known algorithm which produces entangled ansatz [Anshu,
Gosset, Morenz ‘20] does not follow this format
» By bringing in the meta algorithm we have opened the door to using
the rich background of classical techniques for combinatorial opt.

» Also give computational evidence that our product state rounding is
optimal for a much more general class of Hamiltonians




»1 Open Questions

Y

"-.:_)"

‘f'f

Likely only scratching the surface of the power of Lasserre,
» What other kinds of graphs is Lasserre, exact on?
» Are moments subject to other monogamy inequalities?
» Can these be used to further improve approx. factor?

More generally, what kind of physical constraints are present in Lasserre,, for
k=0(1)?

Can we find new monogamy of entanglement inequalities for quantum states
by looking at Lasserre?

Singlets + product state still locally entangled. Can we get more entangled
ansatz? i.e. tensor network states?

Genuinely quantum Approximation algorithms? i.e. alg requires quantum
computer and produces quantum state




#1 Thank youl!

Questions?




