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Classical model reduction methods

Most classical model-reduction methodologies were originally developed for
asymptotically stable LTI systems

Balanced truncation (Moore 81),
Hankel norm approximation (Glover 84)
Optimal H2 approximation (Gugercin et al. 08)
Galerkin projection exploiting inner-product structure (Rowley et al. 04)

Although many well-known model reduction methods can be directly applied to
systems with purely imaginary poles, they do not guarantee stability.

POD–Galerkin (Holmes et al. 12)
Balanced POD (Rowley et al. 05)
Moment matching (Bai 02, Freund 03)
Shift-reduce-shift-back (Yang et al. 93)
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Stability-preserving model reduction methods

A priori a stability-preserving model reduction framework.

An energy-based inner product (Rowley et al. 04, Barone et al. 09,
Kalashnikova et al. 10)
Lagrangian structure (Lall et al. 03, Carlberg et al. 12, Carlberg et al. 15)
Symplectic structure (Peng and Mohseni 16, Afkham and Hesthaven 17)
Port-Hamiltonian structure ( van der Schaft and Oeloff 90, Scherpen and van
der Schaft 08, Polyuga and van der Schaft 10, Gugercin et al. 12)

A posteriori stabilization step to stabilize an unstable ROM.

Optimization-based eigenvalue reassignment (Kalashnikova et al. 14)
Minimal subspace rotation (Bond and Daniel 08, Amsallem and Farhat 12)
Viscosity(Aubry et al. 88, Podvin et al. 88, Delville et al. 99)
Penalty term (Cazemier et al. 98)
Calibrate POD coefficients (Couplet et al. 05, Kalb et al. 07)

Liqian Peng and Kevin Carlberg Structure-preserving MR for marginally stable LTI systems



Background and motivation
Marginally stable LTI systems

Reduction of pure marginally stable subsystems
Reduction of asymptotically stable systems

Numerical Test

Specific contributions of this work

1 A novel structure-preserving model reduction method for marginally
stable LTI systems.

2 Analysis that demonstrates that any pure marginally stable system is
equivalent to a generalized Hamiltonian system with marginal stability.

3 A general symplectic-projection framework with symplectic balancing.
4 A geometric framework that enables a unified analysis and comparison of

inner-product and symplectic projection.

1L. Peng and K. Carlberg, Structure-preserving model reduction for
marginally stable LTI systems, (2017). http://arXiv:1704.04009.
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Full-order model and reduced-order model
System decomposition
Main algorithm

Full-order model:
ẋ = Ax+Bu

y = Cx
(1)

(A,B,C): A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n.

Full-order autonomous system:

ẋ = Ax (2)

Reduced-order model:
ż = Ãz + B̃u

y = C̃z
(3)

(Ã, B̃, C̃): Ã:=ΨτAΦ ∈ Rk×k, B̃:=ΨτB ∈ Rk×p, C̃:=CΦ ∈ Rq×k,
k � n.
Reduced-order autonomous system:

ż = Ãz (4)
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System decomposition
Main algorithm

If the original system is marginally stable and A has a full rank, there
exists a nonsingular matrix T such that

A = T
[
As 0
0 Am

]
T−1, (1)

where λ(As) < 0 and λ(Am) = 0.

With x = T [xτs xτm]τ , we obtain a decoupled LTI system

d

dt

[
xs
xm

]
=
[
As 0
0 Am

] [
xs
xm

]
+
[
Bs
Bm

]
u

y = [Cs Cm]
[
xs
xm

]
,

(2)

where T−1B = [Bτs Bτm]τ and CT = [Cs Cm].
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Full-order model and reduced-order model
System decomposition
Main algorithm

Algorithm 1 Structure-preserving model reduction for marginally
stable LTI systems
Input: A marginally stable LTI system (A,B,C).
Output: Reduced-order systems (Ã, B̃, C̃).
1: Decompose the original LTI system into an asymptotically stable subsystem

(As, Bs, Cs) and a marginally stable subsystem (Am, Bm, Cm).
2: Apply inner-product projection to construct the low-order asymptotically stable sys-

tem Ãs = ΨτsAsΦs, B̃s = ΨτsBs, C̃s = CsΦs.
3: Apply symplectic projection to construct the low-order marginally stable system
Ãm = ΨτmAmΦm, B̃m = ΨτmBm, C̃m = CmΦm.

4: Construct the reduced-order system Ã = diag(Ãs, Ãm), B̃ =
[
B̃τs B̃m

]τ
, and

C̃ =
[
C̃s C̃m

]
.

Liqian Peng and Kevin Carlberg Structure-preserving MR for marginally stable LTI systems



Background and motivation
Marginally stable LTI systems

Reduction of pure marginally stable subsystems
Reduction of asymptotically stable systems

Numerical Test

Full-order model and reduced-order model
System decomposition
Main algorithm

Inner-product reduction v. symplectic reduction

Asymptotically stable subsystem Marginally stable subsystem

Autonomous system ẋ = Ax with λ(A) < 0 ẋ = Ax with λ(A) = 0

Original space Inner-product space Symplectic space

Projection Inner-product projection Symplectic projection

Reduced space Inner-product space Symplectic space

Reduced autonomous
system

ż = Ãz

Ã = ΨτAΦ with λ(Ã) < 0

ż = Ãz

Ã = ΨτAΦ with λ(Ã) = 0

Structure-preserving Lyapunov inequality Hamiltonian property

Energy property
of reduced system

Strictly monotonically decreasing Energy conservation

1For notational simplicity, we omit the subscripts s and m.
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Pure marginally stable systems
Symplectic lift and projection
Proposed algorithms

Definition (Pure marginal stability)

An LTI system (A,B,C) is pure marginally stable, if A is nonsingular and
diagonalizable, and has a purely imaginary spectrum.

Definition (Hamiltonian)

An LTI system (A,B,C) is Hamiltonian if its corresponding autonomous
system is given by

ẋ = J∇xH(x) = JLx, (1)

where J ∈ SS(2n) and L ∈ R2n×2n is symmetric. The matrix L defines the
(quadratic) Hamiltonian H : R2n → R, x 7→ 1

2
xτLx.

Theorem (Contribution of this work)

The following conditions are equivalent:

1 (A,B,C) is pure marginally stable.

2 (A,B,C) is Hamiltonian and marginally stable.
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Pure marginally stable systems
Symplectic lift and projection
Proposed algorithms

Proof.

(2)⇒ (1):

Since A is Hamiltonian, if λ is an eigenvalue of A, −λ is also an
eigenvalue of A. Thus, the eigenvalues of A are purely imaginary.

Because A is marginally stable, every Jordan block for purely imaginary
eigenvalues must has dimension 1× 1. Thus, A is diagonalizable.

(1)⇒ (2):

Let λ be an eigenvalue of A. Then λ is a root of the characteristic
polynomial det(λI2n −A) = 0. Because A is a real matrix, A contains
eigenvalues of the form {±iβ1, . . . ,±iβn}.
We can construct a nonsingular matrix G ∈ R2n×2n such that
G−1AG = J2nL0, where L0 = diag(β, β) and β = diag(β1, . . . , βn).

We can prove that A is Hamiltonian if and only if there exits a
nonsingular matrix G ∈ R2n×2n such that G−1AG = J2nL0.
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Definition (Symplectic space)

Let V denote a vector space. A symplectic form Ω : V× V→ R is a
skew-symmetric, nondegenerate, bilinear function on the vector space V. The
pair (V,Ω) is called a symplectic vector space.

Let (V,Ω) and (W,Π) be two symplectic vector spaces with coordinate
representations (R2n, JΩ) and (R2k, JΠ), respectively, dim(V) = 2n,
dim(W) = 2k, and k ≤ n.

Definition (Symplectic lift, Peng and Mohseni 16)

A symplectic lift is a linear mapping φ : (W,Π)→ (V,Ω) that preserves
symplectic structure:

Π(ẑ1, ẑ2) = Ω(φ(ẑ1), φ(ẑ2)), ∀ẑ1, ẑ2 ∈W. (1)

In coordinate space, the symplectic lift can be expressed as φ(ẑ) = Φz,
∀z ∈ R2k, where (1) implies that Φ ∈ R2n×2k satisfies

(Φz1)τJΩ(Φz2) = zτ1JΠz2 ∀z1, z2 ∈ Rk. (2)

This is equivalent to ΦτJΩΦ = JΠ. For convenience, we write Φ ∈ Sp(JΩ, JΠ).
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Pure marginally stable systems
Symplectic lift and projection
Proposed algorithms

Definition (Symplectic projection, Peng and Mohseni 16)

Let φ : (W,Π)→ (V,Ω) be a symplectic lift. The adjoint of φ is the linear
mapping ψ : (V,Ω)→ (W,Π) satisfying

Π(ψ(x̂), ẑ) = Ω(x̂, φ(ẑ)), ∀ẑ ∈W, x̂ ∈ V. (3)

We say ψ is the symplectic projection induced by φ.

In coordinate space, the symplectic projection can be expressed as
ψ(x̂) = Ψτx, ∀x ∈ R2n, where (3) implies that Ψ ∈ R2n×2k satisfies

ΨJΠ = JΩΦ, (4)

from which it follows that
Ψ = JΩΦJ−1

Π . (5)

It can be verified that Ψτ is a left inverse of Φ, as

ΨτΦ = (JΩΦJ−1
Π )τΦ = J−1

Π (ΦτJΩΦ) = J−1
Π JΠ = I2k, (6)

which implies that ψ ◦ φ is the identity map on W.
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Definition (Symplectic projection of systems, Peng and Mohseni 16)

A reduced-order model (Ã, B̃, C̃) with Ã = ΨτAΦ, B̃ = ΨτB, and C̃ = CΦ is
constructed by a symplectic projection if Φ ∈ Sp(JΩ, JΠ) and Ψ = JΩΦJ−1

Π ,
where JΩ ∈ SS(2n) and JΠ ∈ SS(2k).

Lemma (Symplectic structure preservation)

If the original LTI system (A,B,C) is Hamiltonian and the reduced-order
model is constructed by symplectic projection with JΩ = −J−1, then the
reduced-order model (Ã, B̃, C̃) remains Hamiltonian.

Proof.

Because A = −J−1
Ω L and Φ ∈ Sp(JΩ, JΠ), we have that

Ã = ΨτAΦ = (J−1
Π ΦτJΩ)(−J−1

Ω L)Φ = −J−1
Π (ΦτLΦ).

Because JΠ ∈ SS(2k), −J−1
Π ∈ SS(2k). Define L̃ = ΦτLΦ ∈ R2k×2k. Because

L is symmetric and nonsingular, so is L̃.
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Theorem (Contribution of this work)

Suppose the original system (A,B,C) is pure marginally stable, i.e., A = JL

with J ∈ SS(2n) and L ∈ SPD(2n). Then the reduced system (Ã, B̃, C̃)
constructed by symplectic projection with JΩ = −J−1 and any JΠ ∈ SS(2k)
remains pure marginally stable.

Proof.

The reduced system matrix Ã constructed by symplectic projection can
be written as Ã = −J−1

Π L̃ with L̃ = ΦτLΦ and Φ ∈ Sp(JΩ, JΠ).

Because L ∈ SPD(2n), we have L̃ ∈ SPD(2k).

Let H̃ : z 7→ 1
2
zτ L̃z denote the Hamiltonian function of the reduced

system ż = Ãz. So z is bounded.

Because the reduced system is also linear, it is marginally stable.

Since Ã is a generalized Hamiltonian matrix with marginal stability, Ã is
pure marginally stable.
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Definition (Symplectic balancing)

Given any Ξ,Ξ′ ∈ SPD(n), JΩ ∈ SS(2n), and G ∈ Sp(JΩ, J2n), the trial and
test bases characterizing a symplectic balancing correspond to

Φ = Gdiag(Φ̄, Ψ̄) and Ψ = G−τdiag(Ψ̄, Φ̄), (7)

where basis matrices (Ψ̄, Φ̄) characterize an inner-product balancing on
matrices Ξ and Ξ′, i.e.,

Φ̄ = SV1Σ
−1/2
1 and Ψ̄ = RU1Σ

−1/2
1 . (8)

Here, Ξ = RRτ , Ξ′ = SSτ , and RτS = UΣV τ is the singular value
decomposition.

Lemma (Properties of symplectic balancing)

The test and trial (full-system) basis matrices (Ψ,Φ) balance
M = G−τdiag(Ξ,Ξ′)G−1 and M ′ = Gdiag(Ξ′,Ξ)Gτ , i.e.,
Φ ∈ O(M,diag(Σ1,Σ1)) and Ψ ∈ O(M ′,diag(Σ1,Σ1)).
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Proposed algorithms for constructing an inner-product
projection that preserves asymptotically stability

Method 1 (symplectic balancing) Method 2 Method 3

Input
Ξ,Ξ′ ∈ SPD(n),
JΩ ∈ SS(2n),
G satisfying J = GJ2nG

τ

Φ ∈ Sp(JΩ, JΠ),
JΠ ∈ SS(2k),
JΩ ∈ SS(2n)

Φ0 ∈ Sp(J2n, J2k),
JΠ ∈ SS(2k),
JΩ ∈ SS(2n)

Output JΠ ∈ SS(2k),
Φ ∈ Sp(JΩ, J2k), Ψ ∈ Sp(JΩ′ , J2k) Ψ ∈ R2n×2k Φ ∈ Sp(JΩ, JΠ), Ψ ∈ R2n×2k

Algorithm

1. Compute symmetric factorization
Ξ = RRτ , Ξ′ = SSτ

2. Compute SVD RτS = UΣV τ

3. Φ̄ = SV1Σ
−1/2
1 , Ψ̄ = RU1Σ

−1/2
1

4. Φ = Gdiag(Φ̄, Ψ̄), Ψ = G−τdiag(Ψ̄, Φ̄)
5. JΠ = J2k

1. Ψ = JΩΦJ−1
Π

1. Compute G ∈ Sp(JΩ, J2n)
2. Compute G̃ ∈ Sp(JΠ, J2k)
3. Φ = GΦ0G̃

−1

4. Ψ = JΩΦJ−1
Π
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Definition (Inner-product lift)

Let (W,Π) and (V,Ω) be two inner-product spaces and dim(W) ≤ dim(V).
An inner-product lift is a linear mapping φ : W→ V that preserves
inner-product structure: 〈ẑ1, ẑ2〉W = 〈φ(ẑ1), φ(ẑ2)〉V , ∀ẑ1, ẑ2 ∈W.

Definition (Inner-product projection)

Let φ : W→ V be an inner-product lift. The adjoint of φ is the linear mapping
ψ : V→W satisfying 〈ψ(x̂), ẑ〉W = 〈x̂, φ(ẑ)〉V , ∀ẑ ∈W, x̂ ∈ V. We say ψ is
the inner-product projection induced by φ.

In coordinate space, V and W can be represented by (Rn,M) and (Rk, N)
respectively. This inner-product lift can be expressed as φ(ẑ) = Φz, ∀z ∈ Rk.
Then, that Φ ∈ Rn×k satisfies

ΦτMΦ = N (1)

For convenience, we write Φ ∈ O(M,N). The induced inner-product projection
can be expressed as ψ(x̂) = Ψτx, ∀x ∈ Rn. Then,

Ψ = MΦN−1. (2)
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Definition (Inner-product projection of systems)

A reduced-order model (Ã, B̃, C̃) with Ã = ΨτAΦ, B̃ = ΨτB, and C̃ = CΦ is
constructed by an inner-product projection if Φ ∈ O(M,N), Ψ = MΦN−1,
where M ∈ SPD(n) and N ∈ SPD(k).

Lemma (Rowley et al. 04)

If the original LTI system (A,B,C) has a Lyapunov matrix Θ satisfying
AτΘ + ΘA ≺ 0 and the reduced-order model is constructed by inner-product
projection with M = Θ, then the reduced-order model (Ã, B̃, C̃) is
asymptotically stable with Lyapunov matrix N .
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Existing and proposed algorithms

Existing algorithms for computing test and trial basis
matrices

POD–Galerkin Balanced truncation Balanced POD Shift-reduce-shift-back

Input Snapshot matrix X (A,B,C)
Primal snapshots S and
Dual snapshots R

(A,B,C)
Shift margin µ

Output Ψ, Φ ∈ O(In, Ik).
Φ ∈ O(Wo,Σ1),
Ψ ∈ O(Wc,Σ1)

Φ ∈ O(Ŵo,Σ1);

Ψ ∈ O(Ŵc,Σ1).

Φ ∈ O(Wµ
o ,Σ1),

Ψ ∈ O(Wµ
c ,Σ1)

Algorithm
1. Compute SVD
X = UΣV τ .

2. Ψ = Φ = U1.

1. Compute Wo and Wc

by the Lyapunov equation
2. Compute symmetric

factorization
Wc = SSτ , Wo = RRτ .

3. Compute SVD
RτS = UΣV τ .

4. Φ = SV1Σ
−1/2
1 .

5. Ψ = RU1Σ
−1/2
1 .

1. Compute SVD
RτS = UΣV τ

2. Φ = SV1Σ
−1/2
1

3. Ψ = RU1Σ
−1/2
1 .

1. Compute Wµ
o and Wµ

c

by the Lyapunov equation
2. Compute symmetric

factorization
Wµ
c = SSτ , Wµ

o = RRτ .
3. Compute SVD
RτS = UΣV τ .

4. Φ = SV1Σ
−1/2
1 .

5. Ψ = RU1Σ
−1/2
1 .
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Existing and proposed algorithms

Proposed algorithms for constructing an inner-product
projection that preserves asymptotically stability

Method 1 (inner-product balancing) Method 2 Method 3

Input
Ξ,Ξ′ ∈ SPD(n) with
Ξ = Θ or Ξ′ = Θ′

satisfying the Lyapunov equation

Φ ∈ Rn×k,
Θ satisfying satisfying
the Lyapunov equation

Φ0 ∈ O(M0, N0),
N0, N ∈ SPD(k),
M0 ∈ SPD(n),
Θ satisfying the
Lyapunov equation

Output
M ∈ SPD(n), N ∈ SPD(k),
Φ ∈ O(M,N), Ψ ∈ O(M ′, N)

M ∈ SPD(n),
N ∈ SPD(k),
Ψ ∈ Rn×k

M ∈ SPD(n),
Φ ∈ O(M,N), Ψ ∈ Rn×k

Algorithm

1. Compute symmetric factorization
Ξ = RRτ , Ξ′ = SSτ

2. Compute SVD RτS = UΣV τ

3. Φ̄ = SV1Σ
−1/2
1

4. Ψ̄ = RU1Σ
−1/2
1

5. M = Ξ, M ′ = Ξ′, N = Σ1

1. M = Θ
2. N = ΦτMΦ
3. Ψ = MΦN−1

1. Set M = Θ
2. Construct G ∈ O(M,M0)
3. Construct G̃ ∈ O(N,N0)
4. Φ = GΦ0G̃

−1

5. Ψ = MΦN−1
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Inner-product reduction v. symplectic reduction

Asymptotically stable subsystem Marginally stable subsystem

Original space Inner-product space:
(Rn,M) with M ∈ SPD(n)

Symplectic space:
(Rm, JΩ) with JΩ ∈ SS(m)

Autonomous system ẋ = Ax with λ(A) < 0 ẋ = Ax with λ(A) = 0
Key property
of full system

Lyapunov inequality:
AτM +MA ≺ 0

Hamiltonian property:
AτJΩ + JΩA = 0

Energy property
of full system

d
dt

(
1
2
xτMx

)
< 0 d

dt

(
1
2
xτLx

)
= 0

Reduced space
Inner-product space:
(Rk, N) with N ∈ SPD(k)

Symplectic space:
(Rk, JΠ) with JΠ ∈ SS(k)

Projection Inner-product projection Symplectic projection
Trial basis matrix Φ ∈ O(M,N) : ΦτMΦ = N Φ ∈ Sp(JΩ, JΠ) : ΦτJΩΦ = JΠ

Test basis matrix Ψ = MΦN−1 ∈ Rn×k Ψ = JΩΦJ−1
Π ∈ Rm×k

Reduced autonomous
system

ż = Ãz
Ã = ΨτAΦ with λ(Ã) < 0

ż = Ãz
Ã = ΨτAΦ with λ(Ã) = 0

Key property
of reduced system

Lyapunov inequality:
ÃτN +NÃ ≺ 0

Hamiltonian property:
ÃτJΠ + JΠÃ = 0

Energy property
of reduced system

d
dt

(
1
2
zτNz

)
< 0 d

dt

(
1
2
zτ L̃z

)
= 0 with Ã = −J−1

Π L̃
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2D mass–spring system (n = 2× 512)

müi,j = kx(ui+1,j + ui−1,j − 2ui,j)− 2bu̇i,j ,

mv̈i,j = ky(vi,j+1 + vi,j−1 − 2vi,j),
(1)
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Figure: 2D mass–spring example. Initial condition and final state.
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Comparison of different model-reduction methods for reduced dimension
k = 40.

POD SRSB BPOD SP1 SP2 Full-order
model

Number of
unstable modes 8 16 18 0 0 0

Instability margin
max(Re(λ)) 50.480 10.586 3.695 0 0 0

Marginal-stability
preservation No No No Yes Yes Yes

Relative state-space
error η +∞ +∞ +∞ 0.11156 0.10214 0.04358

Relative system-energy
error ηE +∞ +∞ +∞ 8.6868× 10−5 4.8843× 10−3 3.413× 10−5

Infinite-time
energy +∞ +∞ +∞ 1.9958× 10−3 1.9959× 10−3 1.9959× 10−3
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(a) The evolution of the state-space
error ‖e(t)‖ = ‖x(t)− x̂(t)‖
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ergy E(t)

Figure: The evolution of the state-space error ‖e(t)‖ = ‖x(t)− x̂(t)‖ and
system energy E(t) for all tested methods and reduced dimension k = 40.
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Figure: Method performance as a function of reduced dimension k.
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Conclusions

We propose a structure-preserving model reduction for marginally stable
linear time-invariant (LTI) systems

The method decomposes a marginally stable LTI system into an
asymptotically stable subsystem and a pure marginally stable subsystem

The pure marginally stable subsystem is Hamiltonian.

Symplectic projection preserves pure marginal stability of this subsystem.

Symplectic balancing method is proposed to reduce this subsystem.

The accuracy, stability, and energy preservation of the proposed method
is demonstrated through the 2D mass–spring system.

The offline complexity of this method is O(n3), which is the same as
balanced truncation. We will continue our work to reduce the offline
complexity.
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