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Background and motivation

Classical model reduction methods

Most classical model-reduction methodologies were originally developed for
asymptotically stable LTI systems

Balanced truncation (Moore 81),

Hankel norm approximation (Glover 84)

Optimal H2 approximation (Gugercin et al. 08)

Galerkin projection exploiting inner-product structure (Rowley et al. 04)

Although many well-known model reduction methods can be directly applied to

systems with purely imaginary poles, they do not guarantee stability.

POD-Galerkin (Holmes et al. 12)
Balanced POD (Rowley et al. 05)
Moment matching (Bai 02, Freund 03)
Shift-reduce-shift-back (Yang et al. 93)
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Background and motivation

Stability-preserving model reduction methods

A priori a stability-preserving model reduction framework.

An energy-based inner product (Rowley et al. 04, Barone et al. 09,
Kalashnikova et al. 10)

Lagrangian structure (Lall et al. 03, Carlberg et al. 12, Carlberg et al. 15)
Symplectic structure (Peng and Mohseni 16, Afkham and Hesthaven 17)
Port-Hamiltonian structure ( van der Schaft and Oeloff 90, Scherpen and van
der Schaft 08, Polyuga and van der Schaft 10, Gugercin et al. 12)

A posteriori stabilization step to stabilize an unstable ROM.

Optimization-based eigenvalue reassignment (Kalashnikova et al. 14)
Minimal subspace rotation (Bond and Daniel 08, Amsallem and Farhat 12)
Viscosity(Aubry et al. 88, Podvin et al. 88, Delville et al. 99)

Penalty term (Cazemier et al. 98)

Calibrate POD coefficients (Couplet et al. 05, Kalb et al. 07)
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Background and motivation

Specific contributions of this work

@ A novel structure-preserving model reduction method for marginally
stable LTI systems.

@ Analysis that demonstrates that any pure marginally stable system is
equivalent to a generalized Hamiltonian system with marginal stability.

© A general symplectic-projection framework with symplectic balancing.

© A geometric framework that enables a unified analysis and comparison of
inner-product and symplectic projection.

1. Peng and K. Carlberg, Structure-preserving model reduction for
marginally stable LTI systems, (2017). http://arXiv:1704.040009.
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Marginally stable LTI systems Full-order model and reduced-order model
System decomposition

Main algorithm

@ Full-order model:
T = Ax + Bu

y=Czx

(A,B,C): AeR"™", BeR"*?, and C € R*"™.
@ Full-order autonomous system:

(1)

T = Az 2
@ Reduced-order model: ) 5 5
; Z gz + Bu 3)
(A,B,C): A:=U"Ad € R*** B:=0"B e R**? C:=C® ¢ RI**,

k<K n.
@ Reduced-order autonomous system:

z= Az (4)
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Marginally stable LTI systems Full-order model and reduced-order model
System decomposition

Main algorithm

@ If the original system is marginally stable and A has a full rank, there
exists a nonsingular matrix T" such that

A=T [%S Aom] T, (1)

where A(As) < 0 and A(An) =0.
@ With z =T [z] x],]", we obtain a decoupled LTI system

alm]=[v AR R,
y=1[C. Cul[F2],

where T™'B = [B] BJ,]” and CT = [Cs Chnl.
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Marginally stable LTI systems Full-order model and reduced-order model

System decomposition
Main algorithm

Algorithm 1 Structure-preserving model reduction for marginally

stable LTI systems

Input: A marginally stable LTI system (A, B,C).
Output: Reduced-order systems (A, B, C).
1: Decompose the original LTI system into an asymptotically stable subsystem
(As, Bs,Cs) and a marginally stable subsystem (A, Bm,Cm).
2: Apply inner-product projection to construct the low-order asymptotically stable sys-
tem A; = VT A;Ps, Bs = VI B, Cs = CsPs.
3: Apply symplectic projection to construct the low-order marginally stable system
Am =¥, Am®m, Bm = V], Bm, Cm = Cp @i

4: Construct the reduced-order system A = diag(As,Am), B = [BST er, and
C=[Cs Cnl
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Marginally stable LTI systems Full-order model and reduced-order model
System decomposition
Main algorithm

Inner-product reduction v. symplectic reduction

Asymptotically stable subsystem  Marginally stable subsystem

Autonomous system & = Az with A(4) <0 & = Az with A(4) =0
Original space Inner-product space Symplectic space
Projection Inner-product projection Symplectic projection
Reduced space Inner-product space Symplectic space

Reduced autonomous 2 = Az 2= Az

system A= U7 Ad with M(A) < 0 A= U7Ad with \(A) =0
Structure-preserving  Lyapunov inequality Hamiltonian property

Energy property

Strictly monotonically decreasin Energy conservation
of reduced system Y Y & &y

For notational simplicity, we omit the subscripts s and m.
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Pure marginally stable systems
Reduction of pure marginally stable subsystems Symplectic lift and projection

Proposed algorithms

Definition (Pure marginal stability)

An LTI system (A, B, C) is pure marginally stable, if A is nonsingular and
diagonalizable, and has a purely imaginary spectrum.

Definition (Hamiltonian)

An LTI system (A, B, C) is Hamiltonian if its corresponding autonomous
system is given by

&= JV,.H(z) = JLz, (1)

where J € SS(2n) and L € R*™*?™ is symmetric. The matrix L defines the
(quadratic) Hamiltonian H : R*" — R, z + a7 Lz.

Theorem (Contribution of this work)

The following conditions are equivalent:
O (A, B,C) is pure marginally stable.
@ (A, B,C) is Hamiltonian and marginally stable.
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Pure marginally stable systems

Reduction of pure marginally stable subsystems Symplectic lift and projection
Proposed algorithms

Proof.

(2) = (1):

@ Since A is Hamiltonian, if X is an eigenvalue of A, —\ is also an
eigenvalue of A. Thus, the eigenvalues of A are purely imaginary.

@ Because A is marginally stable, every Jordan block for purely imaginary
eigenvalues must has dimension 1 x 1. Thus, A is diagonalizable.

(1) = (2):

@ Let A be an eigenvalue of A. Then ) is a root of the characteristic
polynomial det(Al2, — A) = 0. Because A is a real matrix, A contains
eigenvalues of the form {%if1,...,£iBr}.

@ We can construct a nonsingular matrix G € R?"*2" such that
G 'AG = Jan Lo, where Lo = diag(8, 8) and 8 = diag(B1, ..., Bn).

@ We can prove that A is Hamiltonian if and only if there exits a
nonsingular matrix G € R?"*2" such that G~ AG = Jo,, Lo.
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Pure marginally stable systems
Reduction of pure marginally stable subsystems Symplectic lift and projection
Proposed algorithms

Definition (Symplectic space)

Let V denote a vector space. A symplectic form 2: VXV — R is a
skew-symmetric, nondegenerate, bilinear function on the vector space V. The
pair (V,Q) is called a symplectic vector space.

Let (V,Q) and (W,II) be two symplectic vector spaces with coordinate
representations (R%", Jq) and (R?*, Ji), respectively, dim(V) = 2n,
dim(W) = 2k, and k < n.

Definition (Symplectic lift, Peng and Mohseni 16)

A symplectic lift is a linear mapping ¢ : (W, II) — (V, Q) that preserves
symplectic structure:

(21, 22) = Q(¢(21), #(22)), VE1,22 €W. (1)

In coordinate space, the symplectic lift can be expressed as ¢(2) = @z,
Vz € R*, where (1) implies that ® € R*™*?* satisfies

(@Zl)TJQ(CDZz) = Z{JHZQ VZ1, z2 € ]Rk. (2)

This is equivalent to " Jo® = Jr. For convenience, we write ® € Sp(Ja, Jm).
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ginally stable systems
Reduction of pure marginally stable subsystems ft and projection
Proposed algorithms

Definition (Symplectic projection, Peng and Mohseni 16)

Let ¢ : (W,II) — (V,Q) be a symplectic lift. The adjoint of ¢ is the linear
mapping ¢ : (V,Q) — (W, II) satisfying

(y(2), 2) = Q&, 6(3)), VEeW, &€ V. (3)

We say v is the symplectic projection induced by ¢.

In coordinate space, the symplectic projection can be expressed as
¥(&) = U7z, Yo € R?", where (3) implies that ¥ € R*"*?¥ satisfies

Vg = Jo®, (4)

from which it follows that
U= JodJ; . (5)

It can be verified that U7 is a left inverse of ®, as
VP = (Jo@Jq') ® = J7 (&7 Jo®) = J7 ' Ju = Loy, (6)

which implies that ¢ o ¢ is the identity map on W.
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Pure marginally stable systems
Reduction of pure marginally stable subsystems Symplectic lift and projection
Proposed algorithms

Definition (Symplectic projection of systems, Peng and Mohseni 16)

A reduced-order model (A, B,C) with A = W™ A®, B=U"B, and C = C®d is
constructed by a symplectic projection if ® € Sp(Ja, Ju) and ¥ = Jo®J5",
where Jo € SS(2n) and Ji € SS(2k).

Lemma (Symplectic structure preservation)

If the original LTI system (A, B,C') is Hamiltonian and the reduced-order
model is constructed by symplectic projection with Jo = —J~ L then the
reduced-order model (A, B, C') remains Hamiltonian.

Proof.
Because A = —J;, 'L and ® € Sp(Jq, Ji1), we have that

A=VTAd = (J7'®"Jo)(—J5 ' L)® = —J ' (®7LD).

Because Jii € SS(2k), —J;* € SS(2k). Define L = ®"L® € R**?* Because
L is symmetric and nonsingular, so is L. O
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Pure marginally stable systems
Reduction of pure marginally stable subsystems Symplectic lift and projection
Proposed algorithms

Theorem (Contribution of this work)

Suppose the original system (A, B,C') is pure marginally stable, i.e., A= JL
with J € SS(2n) and L € SPD(2n). Then the reduced system (A, B, C')

constructed by symplectic projection with Jo = —J ™' and any Ji € SS(2k)
remains pure marginally stable.

Proof

@ The reduced system matrix A constructed by symplectic projection can
be written as A = —J; ;'L with L = ®"L® and ® € Sp(Ja, Jn).

@ Because I € SPD(2n), we have L € SPD(2k).

@ Let H:z— %zTiz denote the Hamiltonian function of the reduced
system Z = Az. So z is bounded.
@ Because the reduced system is also linear, it is marginally stable.

@ Since A is a generalized Hamiltonian matrix with marginal stability, A4 is
pure marginally stable.

O
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Pure marginally stable systems
Reduction of pure marginally stable subsystems Symplectic lift and projection

Proposed algorithms

Definition (Symplectic balancing)

Given any =, =’ € SPD(n), Jo € SS(2n), and G € Sp(Ja, Ja2n), the trial and
test bases characterizing a symplectic balancing correspond to

® = Gdiag(®, V) and V¥ =G "diag(\¥,®), )

where basis matrices (U, ®) characterize an inner-product balancing on
matrices = and =, i.e.,

d =5V, "? and ¥ =RUY; 2 (8)

Here, == RR", & = 8S7, and RS = UXV" is the singular value
decomposition.

Lemma (Properties of symplectic balancing)

The test and trial (full-system) basis matrices (U, ®) balance
M = G~ "diag(E,Z)G~ " and M’ = Gdiag(E',E)G7, i.e.,
® € O(M,diag(Z1,%1)) and ¥ € O(M’, diag(X1,21)).
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Pure marginally stable systems

Reduction of pure marginally stable subsystems Symplectic lift and projection
Proposed algorithms

Proposed algorithms for constructing an inner-product
projection that preserves asymptotically stability

Method 1 (symplectic balancing) Method 2 Method 3
=2 € SPD(n), F € Sp(Ja, Jn), Do € Sp(Jan, Jor),
Input Jo € 8S(2n), Jn € SS(2k), Jn € SS(2k),
G satisfying J = GJ2,G™ Jo € SS(2n) Ja € SS(2n
Jn € SS(2k), 2nx2k 2nx2k
Output 3 € Sp(Jo, Jor). U € Sp(Jay, Jox) v e R ® € Sp(Ja,Ju), ¥ € R
1. Compute symmetric factorization
E=RR",Z=85" 1. Compute G € Sp(Jq, J2n)
R 2. Compute SVD R"S =UXV"™ -~ _1 | 2. Compute G € Sp(Jir, Jar)
Algorithm 3 &= SVlzfi/ZL‘i/ _ RUlzfl/z o 1 U =Jo®Jy 3 = GhoGL
4. & = Gdiag(®, V), ¥ = G~ "diag(¥, D) 4.0 = JodJy!
5. Ju = Jak
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Inner-product lift and projection
Inner-product projection of dynamics
Reduction of asymptotically stable systems Existing and proposed algorithms

Definition (Inner-product lift)

Let (W, II) and (V, Q) be two inner-product spaces and dim(W) < dim(V).
An inner-product lift is a linear mapping ¢ : W — V that preserves
inner-product structure: (21, Z2)y = (#(21), #(22))y, V21,22 € W.

Definition (Inner-product projection)

Let ¢ : W — V be an inner-product lift. The adjoint of ¢ is the linear mapping
¥V — W satisfying ((2), 2)y = (&, 0(2))y, VZ2€W, 2€V.Wesay 1 is
the inner-product projection induced by ¢.

In coordinate space, V and W can be represented by (R, M) and (R*, N)
respectively. This inner-product lift can be expressed as ¢(3) = &z, Vz € R*.
Then, that ® € R™** satisfies

OMD =N (1)

For convenience, we write ® € O(M, N). The induced inner-product projection
can be expressed as ¢ (&) = U7z, Va € R". Then,

U =MON . (2)
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Inner-product lift and projection
Inner-product projection of dynamics
Reduction of asymptotically stable systems Existing and proposed algorithms

Definition (Inner-product projection of systems)

A reduced-order model (A, B,C) with A = U7 A®, B=U"B, and C = C® is
constructed by an inner-product projection if ® € O(M, N), ¥ = M®N*,
where M € SPD(n) and N € SPD(k).

| A

Lemma (Rowley et al. 04)

If the original LTI system (A, B,C') has a Lyapunov matrix © satisfying
A"O + ©A < 0 and the reduced-order model is constructed by inner-product
projection with M = ©, then the reduced-order model (A, B,C) is
asymptotically stable with Lyapunov matrix N.
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Inner-product lift and projection
Inner-product projection of dynamics

Reduction of asymptotically stable systems Existing and proposed algorithms

Existing algorithms for computing test and trial basis
matrices

POD-Galerkin Balanced truncation Balanced POD Shift-reduce-shift-back
. , Primal snapshots S and (A,B,C)
Input Snapshot matrix X (4.5,0) Dual snapshots R Shift margin u
e O(W,, %), € O(W,,%); > ecoWh %),
tput | O, & € O(I, Iy). Lo
Outpu + €O, Iy) U € O(W,, %) U e O(W.51). v e O(WH, %)
1. Compute W, and W, 1. Compute W/ and W
by the Lyapunov equation by the Lyapunov equation
2. ComPute_symmetrlc 1. Compute SVD 2. Compute_symmetrlc
1. Compute SVD factorization RS — USV™ factorization
Algorithm X =UxV". W, =887, W, = RR". w12 Wk =887, Wi = RR".
2. U =d="U. 3. Compute SVD 2.8= SV12171/2 3. Compute SVD
RS =UXVT. 3. ¥ =RUX, . R™S=UXVT.
4 0= sz V2 4.0 =sux; V2
5. 0= RU;x; V2 5. = RU;x; V2
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Inner-product lift and projection
Inner-product projection of dynamics

Reduction of asymptotically stable systems Existing and proposed algorithms

Proposed algorithms for constructing an inner-product

projection that preserves asymptotically stability

I [ Method 1 (inner-product balancing) | Method 2 Method 3
@, € O(Mo, No),
E,E € SPD(n) with o e Rk, No, N € SPD(k),
Input =QorZ =0 O satisfying satisfying My € SPD(n),
satisfying the Lyapunov equation the Lyapunov equation O satisfying the
Lyapunov equation
outost | M € SPD(n), N € SPD(R), Moo M € SPD(n),
P ® € O(M,N), ¥ € O(M',N) v epmt ® € O(M,N), U € R™*
1. —Co_mggs sxm:?gc factorization 1 Set M —0
2. Compute'SVD R7S = USV™ 1. M=0 2. Construct G € O(M, My)
Algorithm 3. 6= SViET 1/2 2 N=d"MP 3. Construct G E O(N, No)
i Y 3. U =MeN! 4. & = GooG!
4. = AUy 5 ¥=M®N!
5. M=, M ==, N=3, .
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Inner-product lift and projection
Inner-product projection of dynamics
Reduction of asymptotically stable systems Existing and proposed algorithms

Inner-product reduction v. symplectic reduction

Asymptotically stable subsystem  Marginally stable subsystem

Original space Inner-product space: Symplectic space:

ginal sp (R", M) with M € SPD(n) (R™, Jo) with Jo € SS(m)
Autonomous system & = Az with A(4) <0 = = Az with A\(A) =0
Key property Lyapunov inequality: Hamiltonian property:
of full system ATM+MA<O ATJa+JaA=0
Ener ropert AT T
of fuﬁysgstepm Y % (%“L ]\'[l) <0 % (%“L LL) =0

Inner-product space: Symplectic space:

Reduced space (R*, N) with N € SPD(k) (R*, Ju) with Ju € SS(k)
Projection Inner-product projection Symplectic projection
Trial basis matrix PcOM,N):P"MP=N ® € Sp(Jo,Ju) : 27Jo® = Ju
Test basis matrix T =MON ' e RF U = Jo®J ' € R™¥F
Reduced autonomous 2 = Az ~ z=Az ~
system A= T7Ad with \(A) <0 A = U" AP with A\(A) =0
Key property Lyapunov inequality: Hamiltonian property:
of reduced system AN+ NA<0 A"Jn+JuA=0
Ener ropert i - i 7\ T 17
of reduced Zystyem @ (327N2) <0 z (%z Lz) =0 with A = —Jg'L

Ligian Peng and Kevin Carlberg Structure-preserving MR for marginally stable LTI systems



Numerical Test

2D mass—spring system (

miki; = ko (Wit1,j + i1, — 2ui5) — 2bti 5,

mbi,j = ky(vij+1 +vij—1 — 204 5),

(1)

0.005

-0.005
-0.01
-0.015
-0.02
-0.025
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Numerical Test

Comparison of different model-reduction methods for reduced dimension

k = 40.
| Pop | srsB [BPOD | sP1 sP2 Fulorder
model
Number of
unstarl?‘le modes 8 16 18 0 0 0
Instability margin
max(Re())) 50.480 | 10.586 | 3.695 0 0 0
Marginal-stability
preservation No No No Yes Yes Yes
Relative Statespace | joo | too | +oo 0.11156 010214 0.04358
REfative system-eneiey [ oo | +oo | +oo | 8.6868x10°° [ 48843 x 10°° | 3413 % 10°°
Inﬂenr;é?éty'me +oo 400 +oo | 1.9958 x 1073 | 1.9959 x 1072 | 1.9959 x 1072
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Numerical Test

10 10’
—— Benchmark —— Benchmark
= —=—POD —=—POD
S —A— SRSB = —A—SRSB
20 —#*—BPOD E 10° —*—BPOD
= ® spi ® spi
S D sp2 ey D sp2
5 <_Full Model %‘) ] <« Full Model
. 1 8
g 3 o> o> o"’v""’q"’ 51
B o Wb 8
2 10% }44»“ 21079
8 «t )
7] «!
. 3|
10 10
5 10 15 0 5 10 15
Time ¢ Time ¢

(a) The evolution of the state-space (b) The evolution of the system en-
error [le(t)|| = [|=(t) — & (t)|l ergy E(t)

Figure: The evolution of the state-space error |le(t)| = ||z(¢) — Z(¢)|| and
system energy E(t) for all tested methods and reduced dimension k = 40.
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Numerical Test

W
Inf} W} *
) " m.m ®m . " . E =
:10 g_¥ C o 10 '-i.; a
. IS TS L S— *f\‘ ]
m POD e . 5 ..
5 —a— SRSB * b E 107 A srss 'Y ‘: + ]
|4 * BPOD *\ o i ~: gz?n N > > B
S a0l "0 --9--8-9 - B - - °. ]
S0 ® B-n-p 2 0 s e o
g —<— Full Model E 107 —<— Full Model (Y
e ————— —————————
107
0 10 20 30 40 0 10 20 30 40

Subspace dimension k Subspace dimension &

(a) Relative state-space error 7 ver- (b) Relative system-energy error ng
sus subspace dimension k versus subspace dimension k

Figure: Method performance as a function of reduced dimension k.
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Numerical Test

Conclusions

@ We propose a structure-preserving model reduction for marginally stable
linear time-invariant (LTI) systems

The method decomposes a marginally stable LTI system into an
asymptotically stable subsystem and a pure marginally stable subsystem

The pure marginally stable subsystem is Hamiltonian.
Symplectic projection preserves pure marginal stability of this subsystem.
Symplectic balancing method is proposed to reduce this subsystem.

The accuracy, stability, and energy preservation of the proposed method
is demonstrated through the 2D mass—spring system.

The offline complexity of this method is O(n?), which is the same as

balanced truncation. We will continue our work to reduce the offline
complexity.
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