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2 I All models are wrong...

...but some are useful (George Box 76)

« Computational models support decision making when:
v the models are computationally efficient enough
v’ uncertainty may be accounted for and propagated through the analysis

* Many models of complex systems do not meet these criteria




3 I Optimization of approximate models

min J(S(z),z)

e .J is the objective |
e 5(z) is an approximation model "
e 2 is a design, control, or inversion paramecter

Our goals are:

e Use the limited high-fidelity evaluations to improve the solution

e Characterize uncertainty in the optimal solution due to S — S ]
Assume that we can
e solve the optimization problem constrained by S

e cvaluatc a high-fidelity model S(z) at a small numbcer of inputs z



Algorithmic Pipeline

Discrepancy Parameterization

6(z,0) = S(z) — f(z)
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5 1 |llustrative example

1ot ) 3 ! ‘
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where S(z) is the solution operator for

— k' =2 on (0,1)
s = hu on {0,1}
The high-fidelity model S solves |
—rku +vu =2 on (0, 1)
k' = hu on {0,1}

Given the high-fidelity solution 5(z) for 2 different source terms, im-
prove and characterize uncertainty in the low-fidelity optimal source. ‘



6 1 Optimal solution posterior samples

Posterior optimal solution samples
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Algorithmic Pipeline

Discrepancy Parameterization

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution Post-Optimality Sensitivity Optimal Solution Posterior I
~ ) - 9z , 0Z
2(6) = argmin(S() + 6(z,6),2) > ~=40 = —H™BAG > O~ Mpost = 2" = 550 g
High-fidelity Data Bayesian Inversion
5(z) - $(z) > Tt X Tl hal T pio

I |

Prior Discrepancy

Mo = Laws, length scales, etc.




s I Parameterizing model discrepancy

min J(S(z) + §(z, ), 2) ‘
z€Z
/\ |
5(z,0) = S(z) — 5(z2) 6(z,0) =0
v l |
gréig J(S(z), z) gélg J(S(z), 2) |
e 0(z,08) interpolates between the optimization problems ‘

e parameterize §(z,#) in a basis expansion with coefficients 6



Algorithmic Pipeline

Discrepancy Parameterization

6(z,0) = S(z) — §(z}

1
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High-fidelity Data Bayesian Inversion
5(z) - $(z) > Tt X Tl hal T pio
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10 I Model discrepancy representation

e gcneral form for a (discretized) operator

Zf'-i(z)@i

e since post-optimality analysis only depends on the mixed (z,#) derivative, |
assumce f;’s arc lincar, Reisz representation yiclds
B
e ™
E 0.0 + E 8. (z,v)z | &
— T
e discretized ¢ : R™ x R? — R™ is parameterized by 6 € R? [

e p =m(n+ 1) so the dimension of § may be O(mesh size?)
e evaluate §(z, ) efficiently using Kronecker product

° (ﬁMz),,;?j = (s, Vj) » - Mass matrix that defines the inner product on Zj,



11 ¥ Discrepancy Parameterization

6(z,0) = S(z) — f(z)
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Post-optimality sensitivities (Hyper-Differential Sensitivity
12 I Analysis)

min J(S(z) + 8(z, 0), 2) (1) ‘
[
e z* solves (1) when d(z, 8y) = 0, the problem solved in practice ]

e Under mild assumptions, the implicit function theorem gives
F : N(0o) = N(2") |

such that F(6y) solves (1) when 6 = 6y and
Fo(bo) = —H™'B

is the sensitivity of the optimal solution with respect to model discrepancy ‘



13 I Post-optimality sensitivities

Fo(Op) = —H™'B
e 7{ is the Hessian of the objective function with respect to z

e [3is the mixed second derivative of the objective with respect to z and 6

o Actslike a Newton step to update the optimal solution after a perturbation
of the model discrepancy



14 ¥ Discrepancy Parameterization

6(z,0) = S(z) — f(z)

1
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z(8) = argminJ(S(z) + 8(z,0),z
Z

Algorithmic Pipeline

Post-Optimality Sensitivity

0z

—Af@ = —H 'BA
38 0 8

High-fidelity Data
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15 I Bayesian Inverse Problem - Prior discrepancy

e Measure size of §:

{ L L ® zT M. ‘
2 AT z
16(2,0)||L =0 (L@Mzz L& M,zzTM, )9

e marginalize out z: I
E.[15(2, 0)][2] = 67 Mo8

e where

Mo — L Lez'M,
"\ LoMz L&E

e L encodes known physics of the discrepancy - in our case a Laplacian like

operator and L' represents the prior covariance I
e I' is a covariance matrix on the control space Z
e Hence My defines an inner product for 8 to measure the size of the model

discrepancy 6(z, @) according to our prior knowledge imposed in L and T’



16 I Bayesian Inverse Problem - notation

e for notational simplicity, we define

Af - (Im ITrL®ZgMZ) = Rfm}xpﬂ ﬁ: 1123"'3N: ‘
e so that §(z,,0) = A0, and the concatenation of these matrices I
B
A,
A,
A — . c Rfm,NXp
Ay |
e so that Af ¢ R™Y corresponds to the cvaluation of §(z, #) for the inputs
7z, {=1.2 ..., N. .
o let b € R™Y he defined by stacking y, = S(z;) — S(Zg'), {=1,2,...,N,
into a vector so that we seek Af ~ b.

¢ infinite number of # directions because the problem is underdetermined



17 1 Bayesian Inversion Problem

e given (Gaussian prior and noise models, linearity of §(z,6) in 8, the poste-
rior is Gaussian with a negative log probability density function ‘

— (Al — Af — — 60" Mygb.
5 (A8 —b)" (A6 —D) + 26" M6

e « balances the dependence of prior and data misfit "

e the posterior mean is

_ 1
0=_YA"Db |

8

e and the posterior covariance is

1 —1
Y = (MQ + —ATA) . ‘
Y



18 I Bayesian Inversion Problem — enabling sampling

e goal is to sample from a Gaussian distribution which may be generated
by multiplying a factor of the covariance matrix with a standard normal ‘
random vector and adding the mean
e but how do we invert a sum? |
B
1 —1
3 = (Mg + ATA) .
s
1. Factorize A to rewrite My + éATA |
i
2. Invert My + éATA |
3. Factorize X ‘

4. Compute matrix-vector products for posterior samples



19 I Posterior samples for discrepancy

e Posterior samples take the form
O+0+0 I

where the mean is

aew SiUq ¢ i
[( u£®M;1I‘ z;g—z ) Zb”g( u?;j@Mz_lI‘_lwi )]

uncertainty in the data informed directions is |

N
o~ 1 S./&.
9—\/521—( o st )
— VAL @ MITTDT wy

T

|

I

O |+
1M

and uncertainty in the data uninformed directions is

n—N-+1 .
1= > (e
— Up & Wy




20 Fpjscrepancy Parameterization

6(z,0) = S(z) — f(z)
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21 1 Propagating samples through post-optimality sensitivities

Sample
Fi(0)(0 + 6+ 0) = —H~Y(BY + BY + BO)
1 N 1 &
B_ —— T .. ar . iT _ . - — =
0 . S S VAN | Z (ug Zb@}g(f gz)u@’g) — . Z(Vujtbg)r (z¢e — Z)
(=1 i=1 (=1
| NN

— a Z Z b,,;,g(VuJu?;:g)I‘_lwi

and



2 I A fluid flow example to illustrate
Optimal design of a flow controller

1
min = /vy<z>2+ﬁf 2P ‘
= 2'X 2 Q

constrained by the Stokes equations |
—uVv+Vp=g+1z on {2 "
V-v=90 on 2
as a simplification of the Navier-Stokes equations |
—uVv+{(v-V)v+Vp=g+2z on
V.-v=20 on {2

How does modeling error effect the flow controller design?



23 I Comparison of controllers
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24 I Comparison of Stokes and Navier-Stokes
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nominal controller
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25 I Posterior controller uncertainty

First mode coefficient

First mode z, controller
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26 I Conclusions

e Developed framework to leverage high-fidelity data to improve low fidelity
optimization and characterize uncertainty ‘
¢ Builds on linear approximation in post-optimality sensitivity analysis |

e The discrepancy representation, inverse problem formulation, and judi-
cious lincar algebra manipulations cnables closed form solution for poste-

rior samples ‘
e Kronecker product representation of the discrepancy facilitates computa-

tion which scales with dim(i/) and dim(Z), not dim(U ® Z) :
e Approach is non-intrusive to the high-fidelity data and hence applicable ‘

to wide range of applications



