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Motivation

* The computational singular perturbation (CSP) method was first
introduced by Lam and Goussis (1988).

* This method is useful for dynamical systems with wide range of
time scales.

* |t has been applied in gas phase kinetic modeling, as well as
biochemical modeling for diagnostics and model simplification.

e CSP analysis for gas-phase and surface chemistry models has
been implemented in open-source code, CSPlib:
https://github.com/sandialabs/CSPlib.



https://github.com/sandialabs/CSPlib

Computational Singular Perturbation (CSP) Analysis
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CSP Helps Uncover the Dynamics of Complex Kinetic Models
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We Extend the CSP Method to Handle DAE System:s.

* CSP analysis for DAE/ODE of catalysis systems has been implemented in the
open-source code, CSPlib: https://github.com/sandialabs/CSPlib.

* In CSPlib, computations can be executed on modern computing platforms,
i.e, GPUs and many-core CPUs.

Oscar Diaz-lbarra, Kyungjoo Kim, Cosmin Safta, Judit Zador & Habib N. Najm (2021)
Using computational singular perturbation as a diagnostic tool in ODE and DAE

systems: a case study in heterogeneous catalysis, Combustion Theory and Modelling,
DOI: 10.1080/13647830.2021.2002417
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CSP Tasks in the Kernel/Index Class Are Linear Algebra Operations, E.G.,
Eigensolver, Matrix Inversion, Matrix-Matrix Multiplication.

CSPlib task Type of operation Library
Right CSP Basis Vectors Right e1genYectors of Tines/LAPACK
Jacobian
Left CSP Basis Vectors 1\./[atr1><§ verse of Tines/LAPACK
right eigenvectors
Time Seales Multlpl%catlve inverse CSPlib
of eigenvalues
Mode Amplitude Dense II.lat.I'IX—.VGCtOF Tines
multiplication
Number of Exhausted Modes Iterative search CSPlib
CSP Pointer Element.— Wse matrlx CSPlib
multiplication
Participation Index Dense m.at?lx—paatrlx CSPlib/Tines
multiplication
Slow Importance Index Dense m.at?lx—%natrlx CSPlib/Tines
multiplication
Fast Importance Index Dense matrix-matrix CSPlib/Tines

multiplication
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Rate of progress, S matrix,
Source term, and Jacobian

(TChem routines) are non-
linear operations.

Tines

Time Integration, Newton
and Eigensolver
https://github.com/sandialabs/Tines



CSPlib uses Kokkos as parallel programing model.

“Kokkos Core implements a To effectively use modern computer
programming model in C++ for writing  platforms, CSPlib computes many CSP
performance portable applications analyses in parallel, i.e., batched
targeting all major HPC platforms.” computation.

https://github.com/kokkos/kokkos

Kokkos::TeamPolicy<exec_space> policy(nBatch, Kokkos::AUTO());
Kokkos::parallel_for("UserCode", policy,
Kokkos offers: KOKKOS_LAMBDA(const member_type& member) {

e Parallel computing patterns bl oo e W e e

e Data management (View)

* Backend: CUDA, HIP, SYCL, HPX, H:—uwuLE_CSPLib_LasH{memher. t, P, Yy oen )
OpenMP and C++ threads

A single version of CSPlib is used for both CPU and GPU, mapping the code to OpenMP
and CUDA backends respectively.



Case Study: Testbed Machine Specification

Processor IBM Power9 NVIDIA V100
2x20@3.6GHz 80 SM@1.5GHz
# Threads 4 SMT/core  max 2048/SM
Cache 120 MB 6 MB L2
Memory 320 GB 16 GB
Compiler GNU 7.2 NVCC 10.1
Exec. Space OpenMP CUDA

CSPlib copies database from host to device when the CSP analysis starts.



Case Study: Chemical Kinetic Models

Model # Species # Reactions Reference
H, 8 19  Yetter et al. (1991)
CO 14 33 Ranzi et al. (2012)
GRIMech 3.0 53 325 GRI-Mech v3.0 (2011)
n-dodecane 106 420 Luo et al. (2014)
n-heptane 654 2827 Mehl et al. (2011)

e Constant pressure ignition reactor configuration (from TChem)
e Batch parallel computation (vary the number of input states)



Eigensolver is the most expensive task in the CSP analysis, as expected.

) | * Kinetics models size affects the
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https://github.com/kokkos/kokkos-tools/tree/master/profiling/simple-kernel-timer-json

GPU Eigensolver Is Faster Than the LAPACK Routine for Small Kinetic Models.
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Due to limitations of GPU memory, the number of state vectors for large kinetic
model cannot be increased.




Performance (TFLOPS/s)

How Does CSPlib Compare with Peak Performances in GPUs?
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Arithmetic Intensity (FLOPs/byte)

e Arithmetic Intensity (Al): ratio of total floating-point
operations (FLOPs) to the total data movement
(Bytes).

* Performance FLOPs/s : computational throughput.

* To compare application performance

vs machine capabilities.

e To track code progress.
* |Information: run time, the total

number of FLOPs performed and
bytes moved.

* Profiling data is produced by Nsight

Compute (NVIDIA) to produce roofline
charts.

Documentation:
https://docs.nersc.gov/tools/performance/roofline/

https://gitlab.com/NERSC/roofline-on-nvidia-gpus
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According to Roofline Model, Most of The CSP Tasks Are Considered to Be
Bandwidth-bound.
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H2: 9 variables/19 reactions
Batch size : 500,000 samples

Many tasks are close to peak performance, e.g, Participation

Arithmetic Intensity [FLOPs/Byte]

N-heptane: 655 variables/ 2827 reactions
Batch size : 100 samples

index.



Conclusions

* We developed an open-source code, CSPlib, and analyzed its
performance on modern computing platforms using wall-clock
time profiles and roofline charts.

* The most expensive tasks in CSPlib are: eigensolver, matrix
inversion, and Jacobian evaluation; which are expected in the
CSP analysis.

* According to Roofline model, most of the CSP tasks are
considered to be bandwidth-bound.

* GPU implementations of CSPlib (TChem/Tines) are faster that the
CPU implementation for small kinetic models (H2, CO, GRI3).




