This er des b obje: t e te h cal results and analysis. Any subijectiv s or s that m htb expressed in AND2022-622
hpp r do ecessarily repre: th V|ewsfh USDp meth ergy o thU dSt s Government. S 0 6229C

Studying the Computational
Performance of CSP Analysis on
Heterogeneous Computing Platforms

Oscar Diaz-lbarra
odiazib@sandia.gov

Kyungjoo Kim, Cosmin Safta, and Habib Najm
Sandia National Laboratories

Sandia 18th International Conference on Numerical Combustion. N
National La Jolla, CA

I-aboratones 05/08/2022 = 05/1 1/2022 ExascaleCatalytlcChem|stry

Sandia Na
subs|

tional Labor multim labor Ged and operated by National Technoloay & Endineering Solutions of Sandia,LLG, a hollykowned // - i /
idiary of Hon yweIIIt Rationl InG. Tor 6. L. 8. Depariment of Enerays Nations! Nuclea oo tyAdmlntt under contra tDENAOBVO3525wn PS://WWW.eCC prOJeCt-Org

mailto:odiazib@sandia.gov

S

ry

https://ecc-project.sandia.gov/

Acknowledgement:
This work is supported as part of the Computational Chemical
Sciences Program funded by the U.S. Department of Energy, Office

of Science, Basic Energy Sciences, Chemical Sciences, Geosciences
and Biosciences Division.

Award number: 0000232253

Motivation

* The computational singular perturbation (CSP) method was first
introduced by Lam and Goussis (1988).

* This method is useful for dynamical systems with wide range of
time scales.

* |t has been applied in gas phase kinetic modeling, as well as
biochemical modeling for diagnostics and model simplification.

e CSP analysis for gas-phase and surface chemistry models has
been implemented in open-source code, CSPlib:
https://github.com/sandialabs/CSPlib.

https://github.com/sandialabs/CSPlib

Computational Singular Perturbation (CSP) Analysis

ODE:
oCSP basis vectors decouple the fast and slow p
y N B
subspaces. - =9y yeRT y(t=0)
dgi(y) Expand RHS in CSP basis:

oEigenvectors of the Jacobian, i.e. J;; = oy,
provide first order decoupling of the fast ahd slow g=a; f1 T T aNfN
subspaces.

' indi a;f'+ a;f
oFor chemical systems, CSP indices measure 9= Z if %:H if
’L
contribution of reactions in the slow/fast subspace h\/—/ ~—
(Importance indices) and mode amplitudes Gtast =0 gslow

(Participation index).

= Yo

D. Goussis, H. Lam (1988--), M. Valorani ('90s--). Comb.

Sci. Tech.; Comb. Flame; Comb. Theo. Mod.

CSP Helps Uncover the Dynamics of Complex Kinetic Models

2500 - - 600 1094 —— TUM+1]
10° -
2250 - =00 3
- 103
> 2000 -
0]
- - 400 _10°-
E 1750 s D, : .
o Number of exhausted modes F 1034 Fastest time scale in the slow-space
£ 1500+ -300 6 .
2 10
1250 _
1000 10-12
750 Temv}erature -100 10-15 S — R —
104 103 q1p- 104 1073 1072
Time [s] Time[h]
Number of inactive models during Kinetic models exhibit a wide range of
the ignition for n-heptane. time scales.
https://combustion.linl.gov/mechanisms/alkanes/n-heptane-detailed-mechanism-version-3 .

Number of species : 654 Number of reactions: 2827

We Extend the CSP Method to Handle DAE System:s.

* CSP analysis for DAE/ODE of catalysis systems has been implemented in the
open-source code, CSPlib: https://github.com/sandialabs/CSPlib.

* In CSPlib, computations can be executed on modern computing platforms,
i.e, GPUs and many-core CPUs.

Oscar Diaz-lbarra, Kyungjoo Kim, Cosmin Safta, Judit Zador & Habib N. Najm (2021)
Using computational singular perturbation as a diagnostic tool in ODE and DAE

systems: a case study in heterogeneous catalysis, Combustion Theory and Modelling,
DOI: 10.1080/13647830.2021.2002417

https://github.com/sandialabs/CSPlib

RMG

Klnetlc Model
(Chemekin file,
Cantera-Yaml)

Schematic of CSPIlib

github.com/sandialabs/csplib

Database of State
Vectors (y)

- &

o = = g = = = = = = = = = = = = = = = = = e e o e e e = e e = = = = = = = - -

Core
Model Kernel Index
Right CSP Basis Vectors]
e N ST N
L Rate of Progress) Par:|c(|jpat|on
. 5 [Left CSP Basis Vectors j naex J
i N
_ Smatix) [Time Scales] Slow Importance
- N : Index)
Source Term [Mode Amplitude j
N\ Y,
Fast Importance
r . ™ Number of Exhausted Index
L Jacobian) modes
_) \[CSP Pointers]j _)
Third Party Libraries
TChem: Tines:
-1 Support for complex kinetic Solver for eigensolution and inverse matrix, in
model addition matrix multiplication

Kokkos Parallel Programming Model

CSP Tasks in the Kernel/Index Class Are Linear Algebra Operations, E.G.,
Eigensolver, Matrix Inversion, Matrix-Matrix Multiplication.

CSPlib task Type of operation Library
Right CSP Basis Vectors Right e1genYectors of Tines/LAPACK
Jacobian
Left CSP Basis Vectors 1\./[atr1><§ verse of Tines/LAPACK
right eigenvectors
Time Seales Multlpl%catlve inverse CSPlib
of eigenvalues
Mode Amplitude Dense II.lat.I'IX—.VGCtOF Tines
multiplication
Number of Exhausted Modes Iterative search CSPlib
CSP Pointer Element.— Wse matrlx CSPlib
multiplication
Participation Index Dense m.at?lx—paatrlx CSPlib/Tines
multiplication
Slow Importance Index Dense m.at?lx—%natrlx CSPlib/Tines
multiplication
Fast Importance Index Dense matrix-matrix CSPlib/Tines

multiplication

o o ©
O @
~TChem:.
Y °
® e)
https://github.com/sandialabs/TChem
Rate of progress, S matrix,
Source term, and Jacobian

(TChem routines) are non-
linear operations.

Tines

Time Integration, Newton
and Eigensolver
https://github.com/sandialabs/Tines

CSPlib uses Kokkos as parallel programing model.

“Kokkos Core implements a To effectively use modern computer
programming model in C++ for writing platforms, CSPlib computes many CSP
performance portable applications analyses in parallel, i.e., batched
targeting all major HPC platforms.” computation.

https://github.com/kokkos/kokkos

Kokkos::TeamPolicy<exec_space> policy(nBatch, Kokkos::AUTO());
Kokkos::parallel_for("UserCode", policy,
Kokkos offers: KOKKOS_LAMBDA(const member_type& member) {

e Parallel computing patterns bl oo e W e e

e Data management (View)

* Backend: CUDA, HIP, SYCL, HPX, H:—uwuLE_CSPLib_LasH{memher. t, P, Yy oen)
OpenMP and C++ threads

A single version of CSPlib is used for both CPU and GPU, mapping the code to OpenMP
and CUDA backends respectively.

Case Study: Testbed Machine Specification

Processor IBM Power9 NVIDIA V100
2x20@3.6GHz 80 SM@1.5GHz
Threads 4 SMT/core max 2048/SM
Cache 120 MB 6 MB L2
Memory 320 GB 16 GB
Compiler GNU 7.2 NVCC 10.1
Exec. Space OpenMP CUDA

CSPlib copies database from host to device when the CSP analysis starts.

Case Study: Chemical Kinetic Models

Model # Species # Reactions Reference
H, 8 19 Yetter et al. (1991)
CO 14 33 Ranzi et al. (2012)
GRIMech 3.0 53 325 GRI-Mech v3.0 (2011)
n-dodecane 106 420 Luo et al. (2014)
n-heptane 654 2827 Mehl et al. (2011)

e Constant pressure ignition reactor configuration (from TChem)
e Batch parallel computation (vary the number of input states)

Eigensolver is the most expensive task in the CSP analysis, as expected.

) | * Kinetics models size affects the
Jacobian i performance of CSPlib in
' GPUs/CPUs.

ix inversi ‘ . ..
ot nierson [s e !) inees © The computation of CSP indices
; CSP indices ; ; is significant for large kinetic
Eige”SO'éver models because of the number

Eigensolver i ; of species and reactions.

I nheptane

H2

|
i
i
i . .
i Matrix jnversion
i i

: !

nheptane
1

o Figensolver M | « H2:500, 000 state vectors
Matrix inversion ! !
5 : ! * n-heptane : 100 state vectors
' | Allthe rest o

0% All the rest Read/write files is not included.

4

CSP indices

i
i
i
Eigensolver
1
i
i
i
i
i
i

| : CSP indices E
SRR _i D i _i https://github_com/kokkos/kokkos_
tools/tree/master/profiling/simple-

“All the rest”: tasks with less than 0.5 % w.r.t. total time. . . 12
kernel-timer-json

https://github.com/kokkos/kokkos-tools/tree/master/profiling/simple-kernel-timer-json

GPU Eigensolver Is Faster Than the LAPACK Routine for Small Kinetic Models.

Time per sample [s]

=
2
IN

=
o
&

=
9
[e)]

H2: 9 variables
H2

-@®- Power9
\¥ -%- V100

‘t\‘
VoSG
YW Te--e---00-00
*
\
\
\
\
\
\
*\\
R T
10! 103 10°

Number of state vectors

Time per sample [s]

1009 |

10_1j

N-heptane: 655 variables

nheptane
X -@- Power9
N —-%- V100
\
\
\
\
\
\
\
| a \
[N X
\\ \\
\\ \
N X
\ \
L N
\ \\ *
\ \~_ 7 ".
\\ w ,.¢
] o---——0 ¢~
10° 101 102 103

Number of state vectors

Time per sample [s]

i -e- Power9
{ -+- Volta ;

10! 102
Jacobian size

Due to limitations of GPU memory, the number of state vectors for large kinetic
model cannot be increased.

Performance (TFLOPS/s)

How Does CSPlib Compare with Peak Performances in GPUs?

Tesla V100-SXM2
10" ; Peak work FP64(84.1%) : 6.56 TF/s

10_2 T L | ! L | ! L | ! L ! L
1072 1071 10° 10t 102 103

Arithmetic Intensity (FLOPs/byte)

e Arithmetic Intensity (Al): ratio of total floating-point
operations (FLOPs) to the total data movement
(Bytes).

* Performance FLOPs/s : computational throughput.

* To compare application performance

vs machine capabilities.

e To track code progress.
* |Information: run time, the total

number of FLOPs performed and
bytes moved.

* Profiling data is produced by Nsight

Compute (NVIDIA) to produce roofline
charts.

Documentation:
https://docs.nersc.gov/tools/performance/roofline/

https://gitlab.com/NERSC/roofline-on-nvidia-gpus

14

https://docs.nersc.gov/tools/performance/roofline/
https://gitlab.com/NERSC/roofline-on-nvidia-gpus

According to Roofline Model, Most of The CSP Tasks Are Considered to Be
Bandwidth-bound.

Rate of Progress

Source Term

Jacobian

Smatrix
RightEigenvectorSchurDevi
GemmRigthEigenvector
HessenbergDeviceCuda
evalCSPPointersBatch

* evallLeftCSP_BasisVectorsB
evalTimeScalesBatch
evalMBatch
evalModalAmpBatch
evalAlphaBatch
evalBetaBatch
evalGammaBatch
evalFastimportantindex
evalParticipationindex
evalSlowlmportancelndex
SolveEigenvaluesNonSymmet

104 DP: 7.8 TFLOP/s 104 DP: 7.8 TFLOP/s

Participation index

[y
o
W
=
o
W
L

Participation index

o €<« Jacobian

>
*

102 1024

Compute-bound

Performance [GFLOP/sec]
Performance [GFLOP/sec]

o< Jacobian COMpute-bound

* % * %

Bandwidth-bound
Bandwidth-bound

»*

1073 102 101 10° 10! 102 103 1073 1072 101 100 10! 102 103

Arithmetic Intensity [FLOPs/Byte]

H2: 9 variables/19 reactions
Batch size : 500,000 samples

Many tasks are close to peak performance, e.g, Participation

Arithmetic Intensity [FLOPs/Byte]

N-heptane: 655 variables/ 2827 reactions
Batch size : 100 samples

index.

Conclusions

* We developed an open-source code, CSPlib, and analyzed its
performance on modern computing platforms using wall-clock
time profiles and roofline charts.

* The most expensive tasks in CSPlib are: eigensolver, matrix
inversion, and Jacobian evaluation; which are expected in the
CSP analysis.

* According to Roofline model, most of the CSP tasks are
considered to be bandwidth-bound.

* GPU implementations of CSPlib (TChem/Tines) are faster that the
CPU implementation for small kinetic models (H2, CO, GRI3).

