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> | The Streak Camera Observatory with Radial and Polar

Implementation on Z (SCORPIONZ)
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s | The Streak Camera Observatory with Radial and Polar
ula

Implementation on Z (SCORPIONZ) =
SCORPIONZ will build upon previous streak camera design, e.g.,
SPIDER and DISC on the National Ignition Facility.
SPIDER DISC
« Measures x-ray burn history. « Measures time-dependent x-
* Views x-ray emission from ray emission from a variety
an implosion (10keV-upper of targets.
LEH). « Commonly used in
« Aversion of the DISC x-ray experiments involving
streak camera fixed ata 7 backlighting (i.e. for ignition
degree viewing angle. implosion experiments, used
« Designedtorunina5e16 to measure the trajectory |
neutron yield by design.* and width of the imploding
shell).?.23 |
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. | Sources of EMI on Z are a potential problem for implementing
an x-ray streak camera on Z L

SCORPIONZ must be designed to operate in the harsh Z-Machine environment that includes
significant debris, mechanical shock, and large electromagnetic impulses (EMI) that result from the >
10MA currents delivered to physics targets

B-dot location o

The Z-Machine Pulse
forming and energy
storage sections are

responsible for

delivering current to the SCORPIONZ location

target, but can
simultaneously be
detrimental to electron
optics in streak tubes.

Intermediate Storage Capacitors

Laser Trigger Gas Switches

Pulse Forming Lines I
Insulator Stack

Magnetically Insulated Transmission Lines

Load

Marx Capacitors I
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Sources of EMI on Z are a potential problem for implementing
an x-ray streak camera on Z

Radius of curvature: r = mv/qB
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Deflections caused by the time-varying magnetic fields produced can
significantly warp streak records beyond usability.




Multi-gap and free-field sensors fielded on Z to measure
magnetic field near SCORPIONZ installation area
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Multi-gap and free-field sensors fielded on Z to measure
magnetic field near SCORPIONZ installation area
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B-60 Sensor vs. Dummy Cable Z3652
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Balun and Sensor

]
* A “dummy cable”
connected to a capped
balun was fielded along
side B-dot sensors to
compare sensor signal
data to noise levels.
« Signal data from both
types of sensors
appear significantly
above noise.
I

Balun for measuring background



¢ | Measured time-varying B-fields range from ~1 — 10 Gauss, and
depend on Z Machine pulsed power configuration

Measured magnetic field strength increases

B fields are strongest around x-ray production

+ range of expected x-ray emission l
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s 1 Using EMI measurements to guide shielding strategies in new

diagnostic design

We can calculate the expected electron deflections for field strengths at the most prominent frequencies in

the magnetic-field spectrum.
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At high frequencies the skin depth for good conductors
becomes very small. The skin depths for Aluminum in the
MHz range becomes a fraction of a millimeter.

Skin depth is used to calculate the transmission of the B-fields through the aluminum layer. The plot
above shows that 250um of Al can reduce the B-field by a factor of 104 at a frequency of ~OMHz.




0 1 Using EMI measurements to guide shielding strategies in new

diagnostic design

We can calculate the expected electron deflections for field strengths at the most prominent frequencies in

the magnetic-field spectrum.

Calculated Electron Deflection
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(note) This calculation assumes a 14kV voltage accelerating electrons over a
distance of 186mm between anode and microchannel plate.

Aluminum

These findings have guided SCORPIONZ shielding
design. Aluminum Faraday cage has been shown to
be more than sufficient.

Rear of streak camera

Mu-metal




.1 1 Conclusions

» Successful fielding of the SCORPIONZ x-ray streak camera on Z required
validation of proposed EMI shielding designs for the sensitive electron
optics

* B-field measurements were taken with B-dot probes in SCORPIONZ
fielding locations across a multitude of Z shots of different target loads,
pulsed power configurations, and shot charge voltages.

* EMI measurements help confirm that the SCORPIONZ electron optics will
be adequately shielded from time-varying magnetic fields in the MHz-GHz
range
* These types of measurements will continue to guide design of future EMI- |

sensitive diagnostics on Z |



