

Sandia
National
Laboratories

Constructing Surrogates for Combustion Chemistry: Operator Learning for Reduced Order Dynamics

Simone Venturi & Tiernan Casey

Sandia National Laboratories, Livermore CA

18th International Conference on Numerical Combustion, San Diego CA

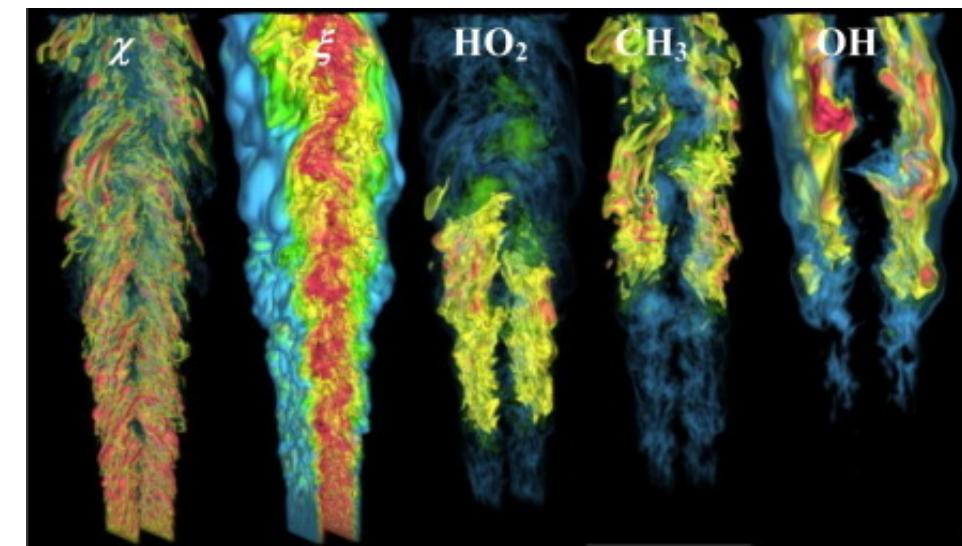
Tuesday, May 10th 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation

Discovery science

- Scale-resolved reacting flow simulations (e.g. turbulent combustion, fluid plasmas) are incredibly expensive
- Resolution of hydrodynamic scales alone is limiting, and drastically exacerbated by the dimension of the reaction model
- Typically use coarse grained chemical models relying on regime specific hypotheses, heuristics to reduce dimensionality

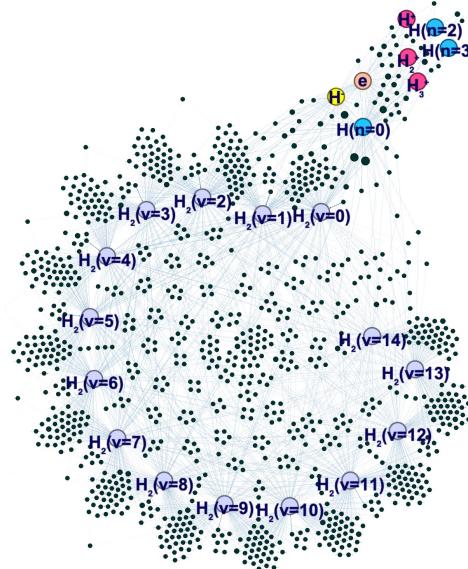


Chen, Proc. Comb. Inst. [2011]

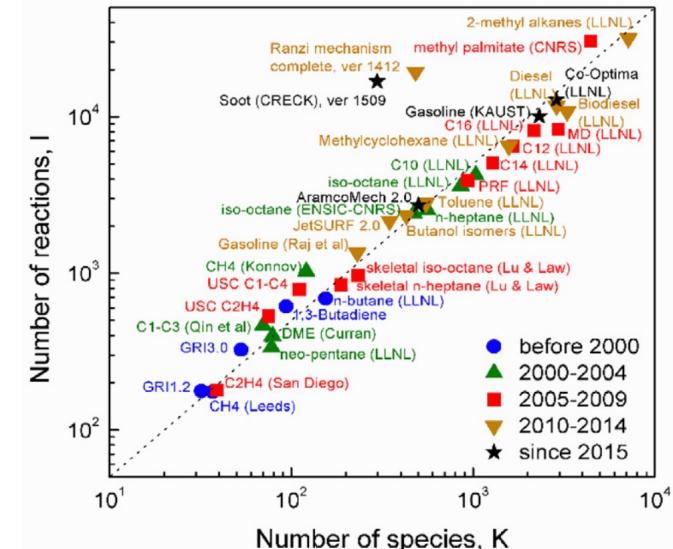
Predictive modeling

- Need accelerators to enable many-query studies
- Want to predict under uncertainty

Pursue a data driven reduction for the chemical component, and retain the hydrodynamic model discretization

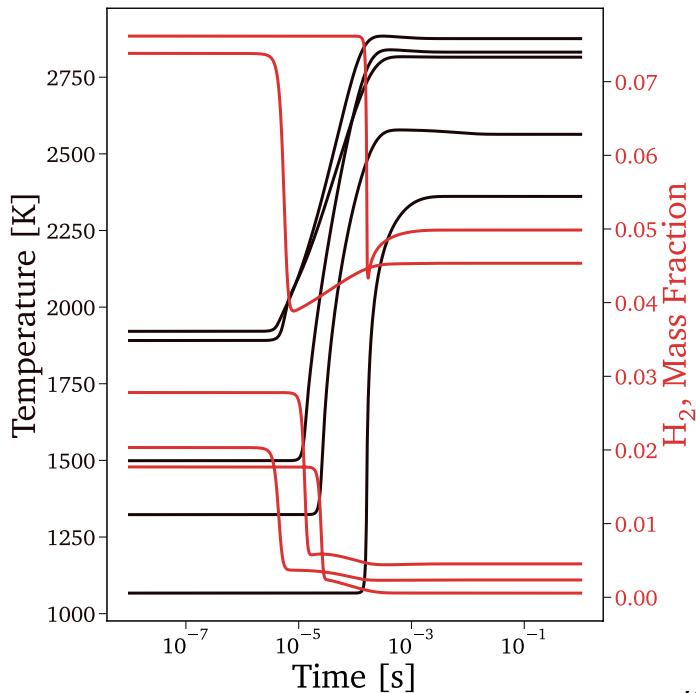
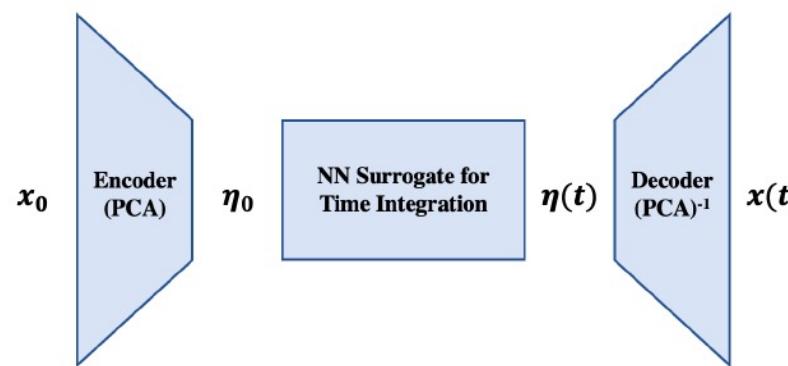


H₂ plasma/excited state chemical reaction network



Mechanism complexity for combustion fuels, Curran et. al. [2019]

H₂-air combustion chemistry: retaining N_η PCs



NN-based surrogate that maps

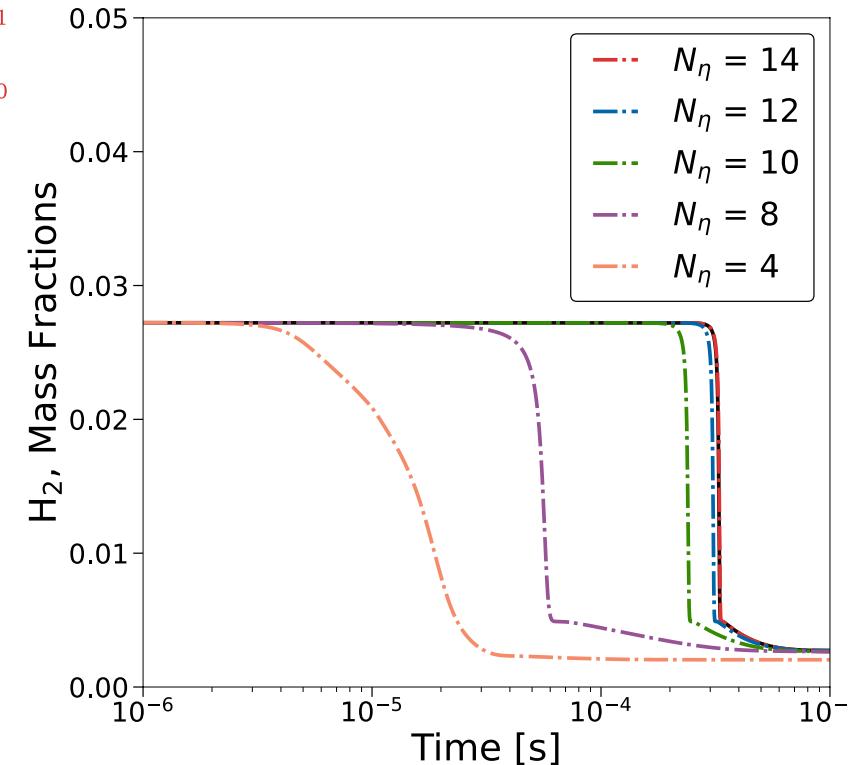
$$\frac{d\eta}{dt} \rightarrow \eta$$

$$\frac{d\eta_1}{dt} = f_{NN}(\eta_1, \eta_2, \dots, \eta_{N_\eta})$$

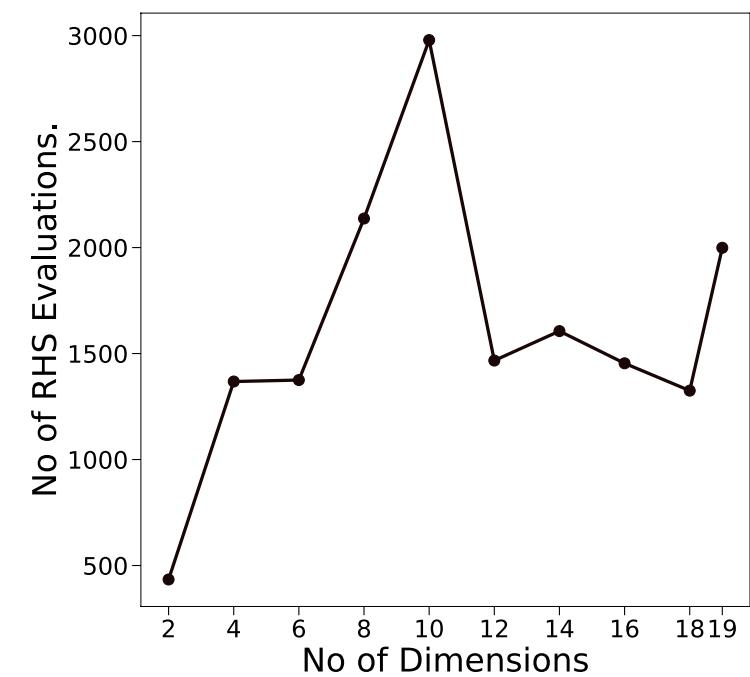
$$\frac{d\eta_2}{dt} = f_{NN}(\eta_1, \eta_2, \dots, \eta_{N_\eta})$$

...

$$\frac{d\eta_{N_\eta}}{dt} = f_{NN}(\eta_1, \eta_2, \dots, \eta_{N_\eta})$$



No of RHS Evaluations.



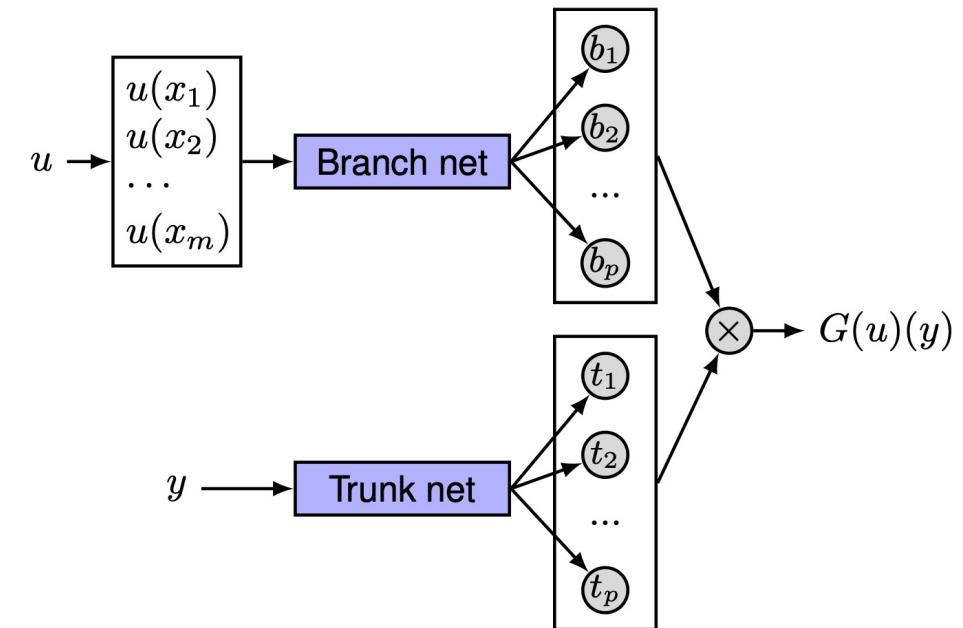
Operator Learning: DeepONet

- We are interested in advancing the chemical state in time, not necessarily by surrogating source terms

Universal approximation theorem of operators [1]

$$\left| G(u)(y) - \sum_{k=1}^p \underbrace{\sum_{i=1}^n c_i^k \sigma \left(\sum_{j=1}^m \xi_{ij}^k u(x_j) + \theta_i^k \right)}_{\text{branch}} \underbrace{\sigma(w_k \cdot y + \zeta_k)}_{\text{trunk}} \right| < \epsilon$$

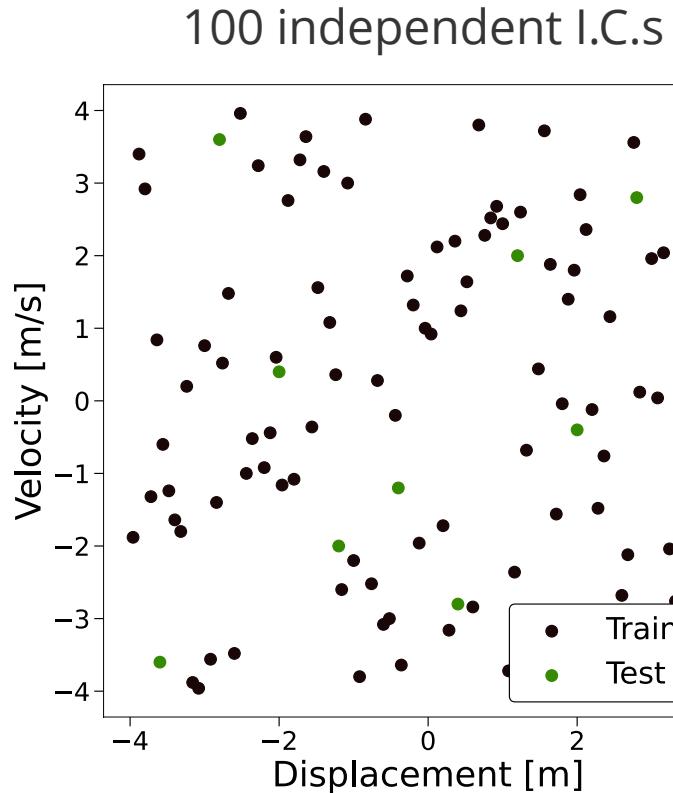
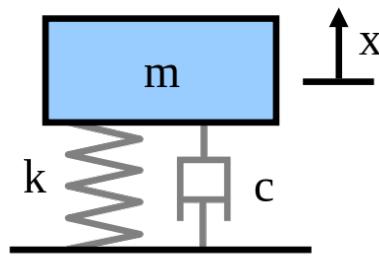
(Unstacked) DeepONet [2]



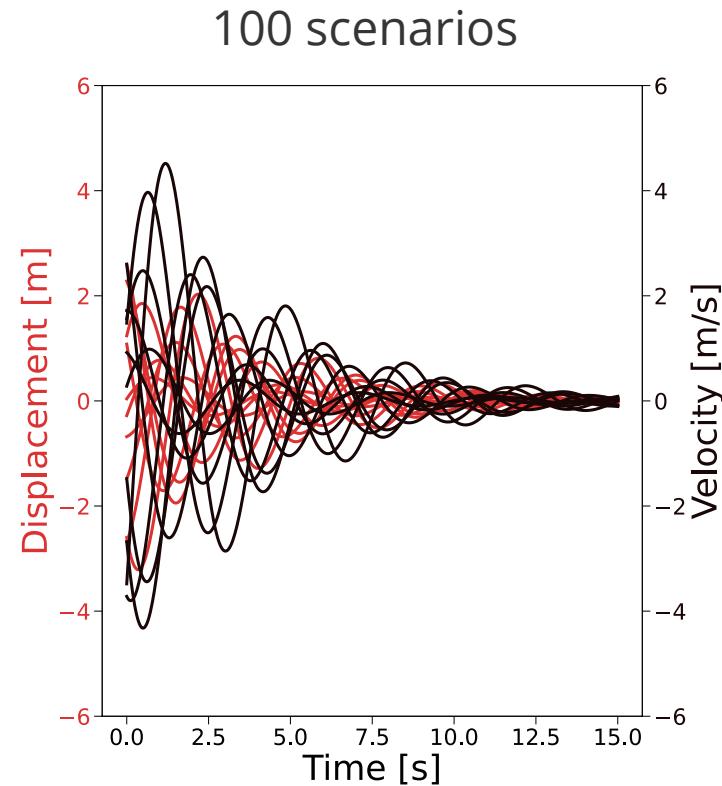
[1] T. Chen and H. Chen - *Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and ...* - 1995

[2] L. Lu et al. - *Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators* - 2021

Example: Mass-Spring-Damper Test Case



$$\begin{cases} \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \\ x(t=0) = x_0, \\ \dot{x}(t=0) = v_0. \end{cases}$$



GOAL: To construct an accurate surrogate for the dynamics

Example: Mass-Spring-Damper Test Case

6

Scenario-Aggregated Snapshot Matrix

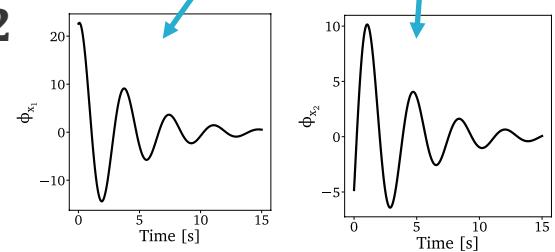
$$X = \begin{bmatrix} | & | & & | & | \\ x_1 & x_2 & \dots & x_{99} & x_{100} \\ | & | & & | & | \end{bmatrix} \xrightarrow{\text{SVD/PCA}} X = \Phi_x A_x^T$$

$\dim(X) = N_t \times N_s$

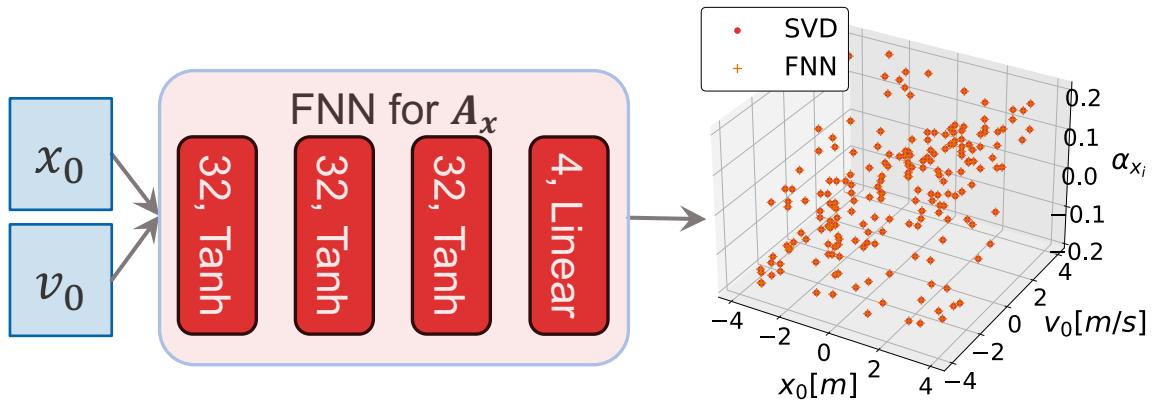
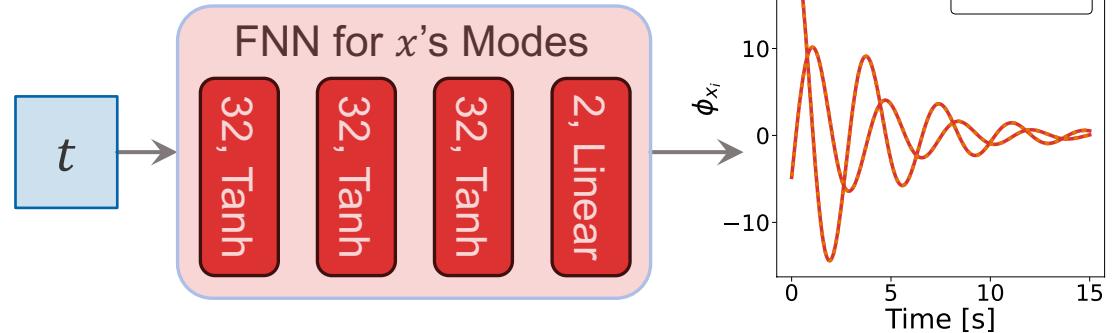
$$A_x = \begin{bmatrix} | & | \\ \alpha_{x_1} & \alpha_{x_2} \\ | & | \end{bmatrix}$$

$\dim(A_x) = N_s \times 2$

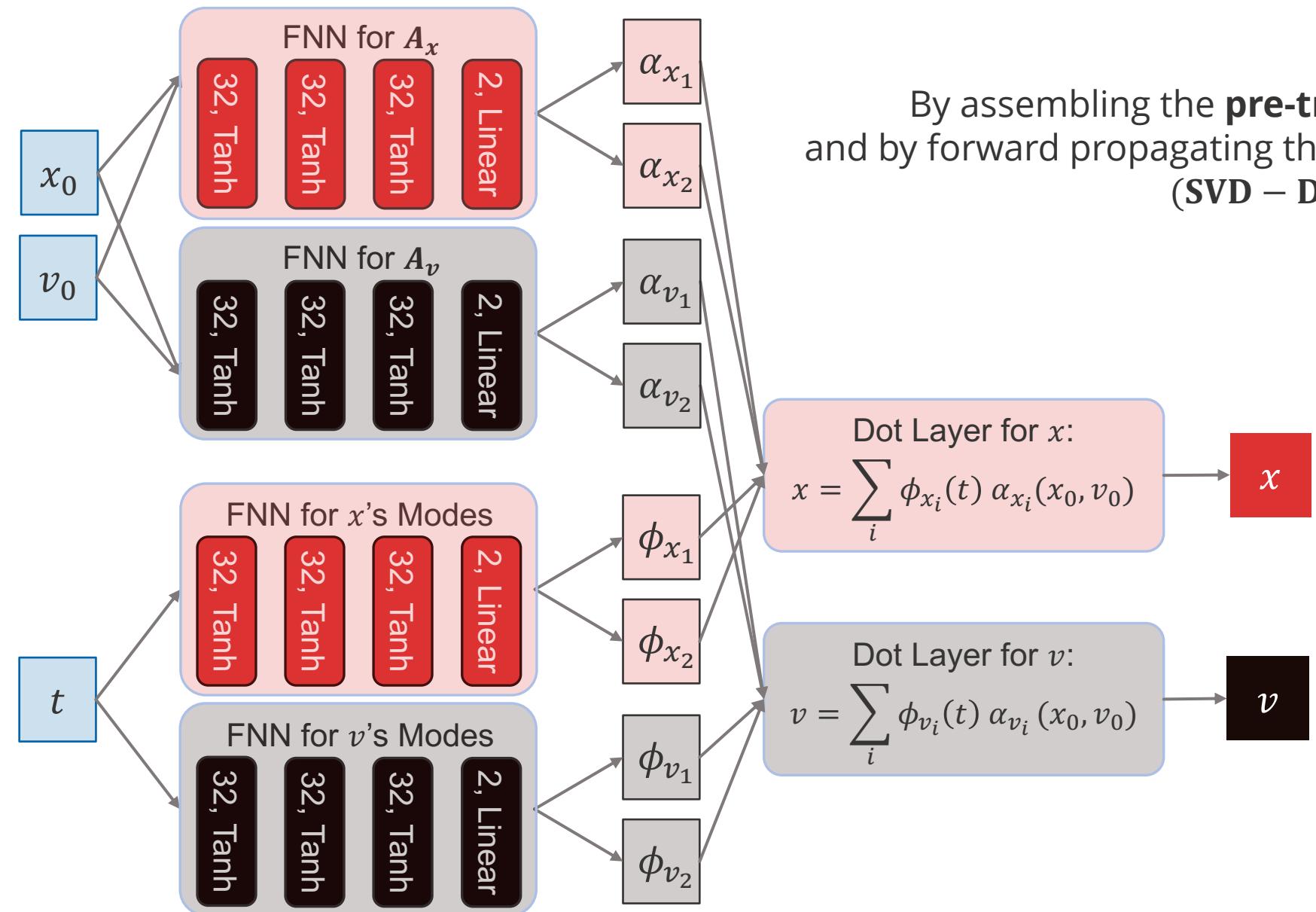
$$\Phi_x = \begin{bmatrix} | & | \\ \phi_{x_1} & \phi_{x_2} \\ | & | \end{bmatrix}$$



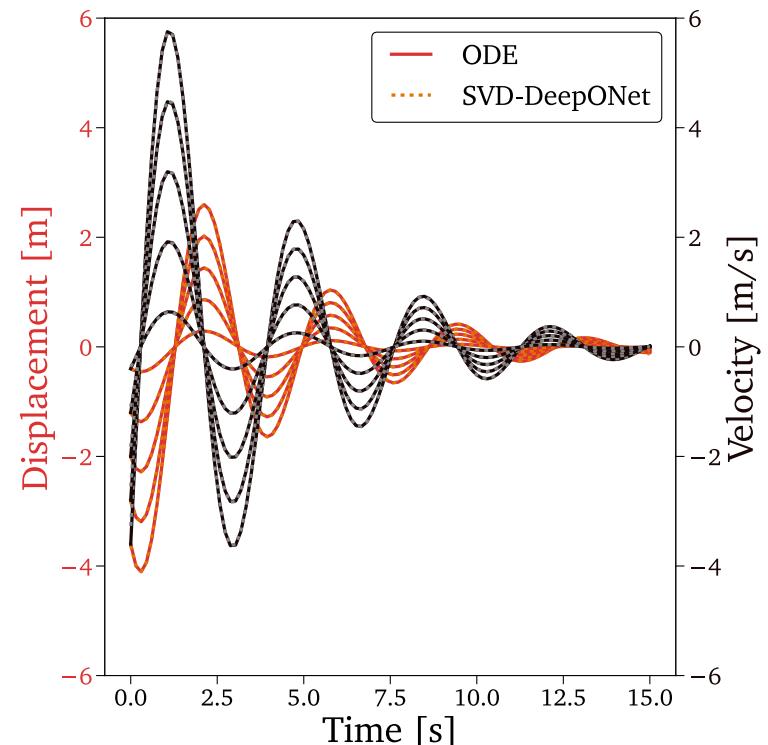
We can map $A_x \rightarrow (x_0, v_0)$ and $\Phi_x \rightarrow t$



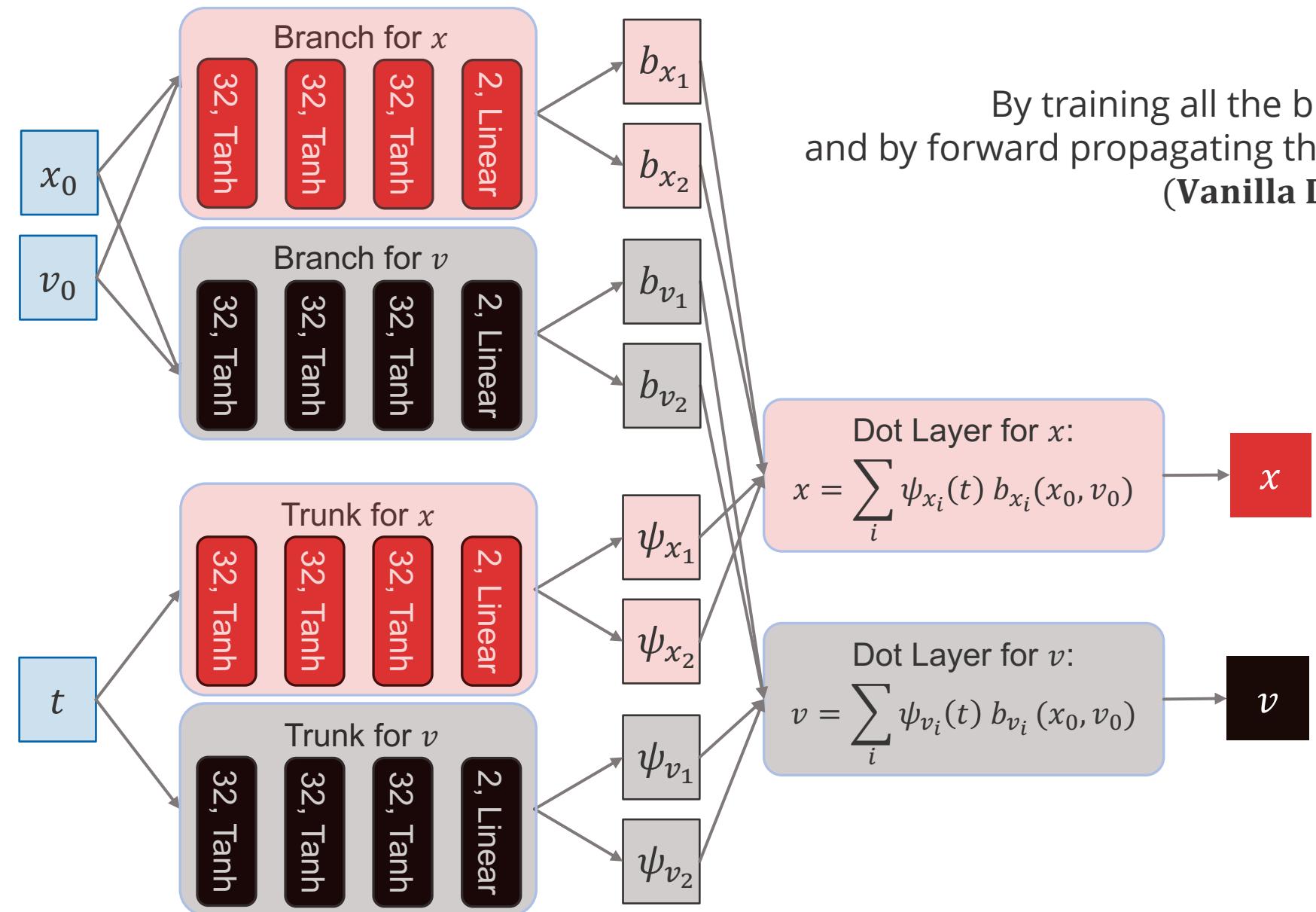
Example: Mass-Spring-Damper Test Case



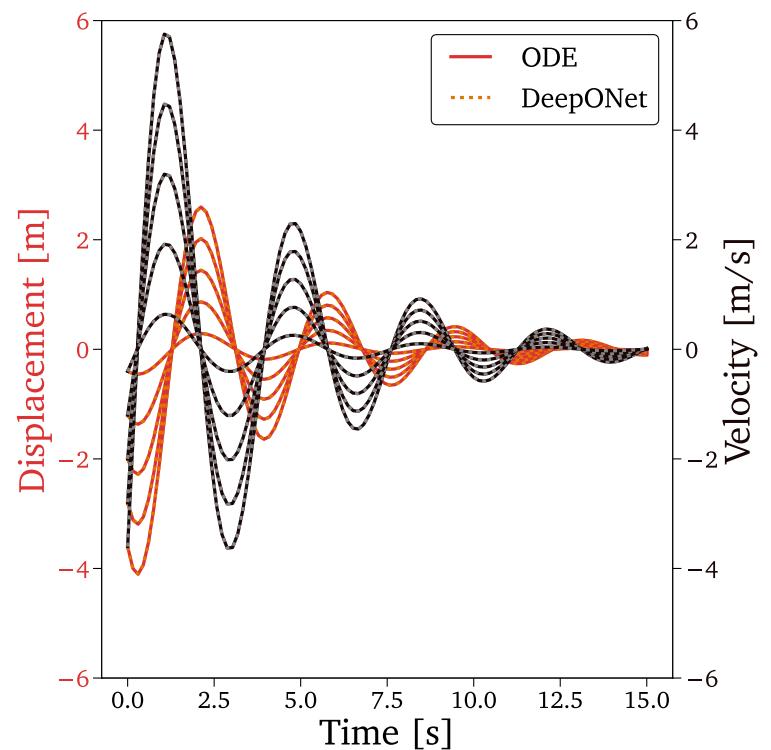
By assembling the **pre-trained blocks** for x and v
and by forward propagating the input inside the architecture...
(SVD – DeepONet)



Example: Mass-Spring-Damper Test Case

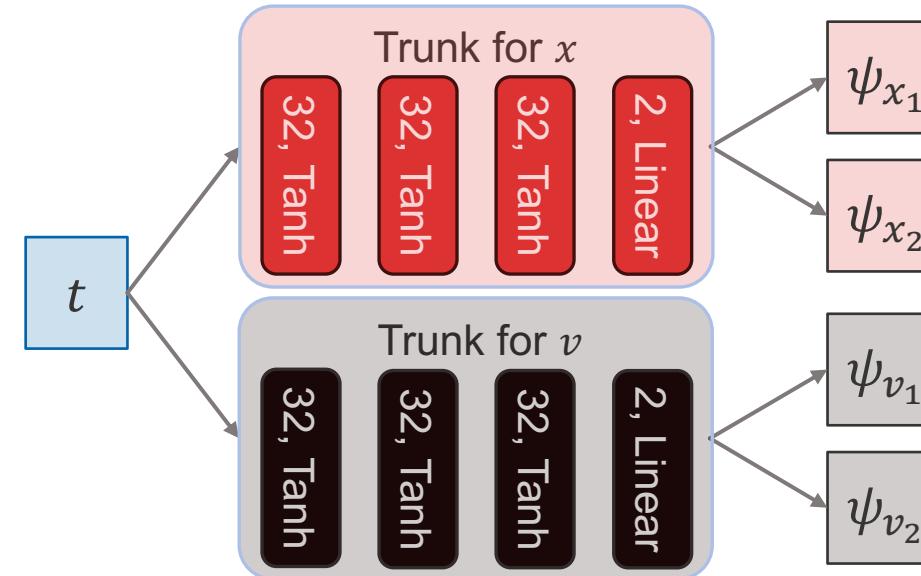
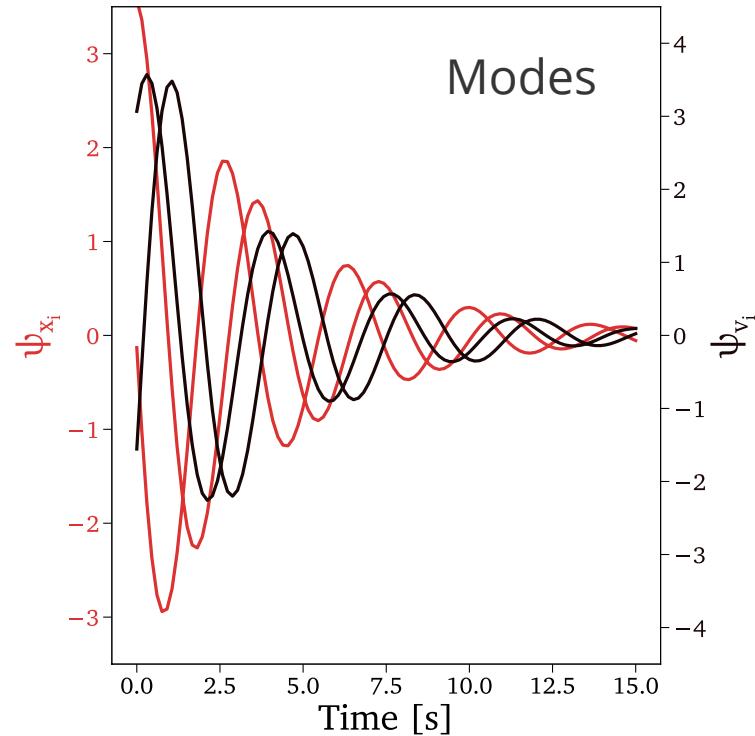


By training all the blocks simultaneously
and by forward propagating the input inside the architecture...
(Vanilla DeepONet)

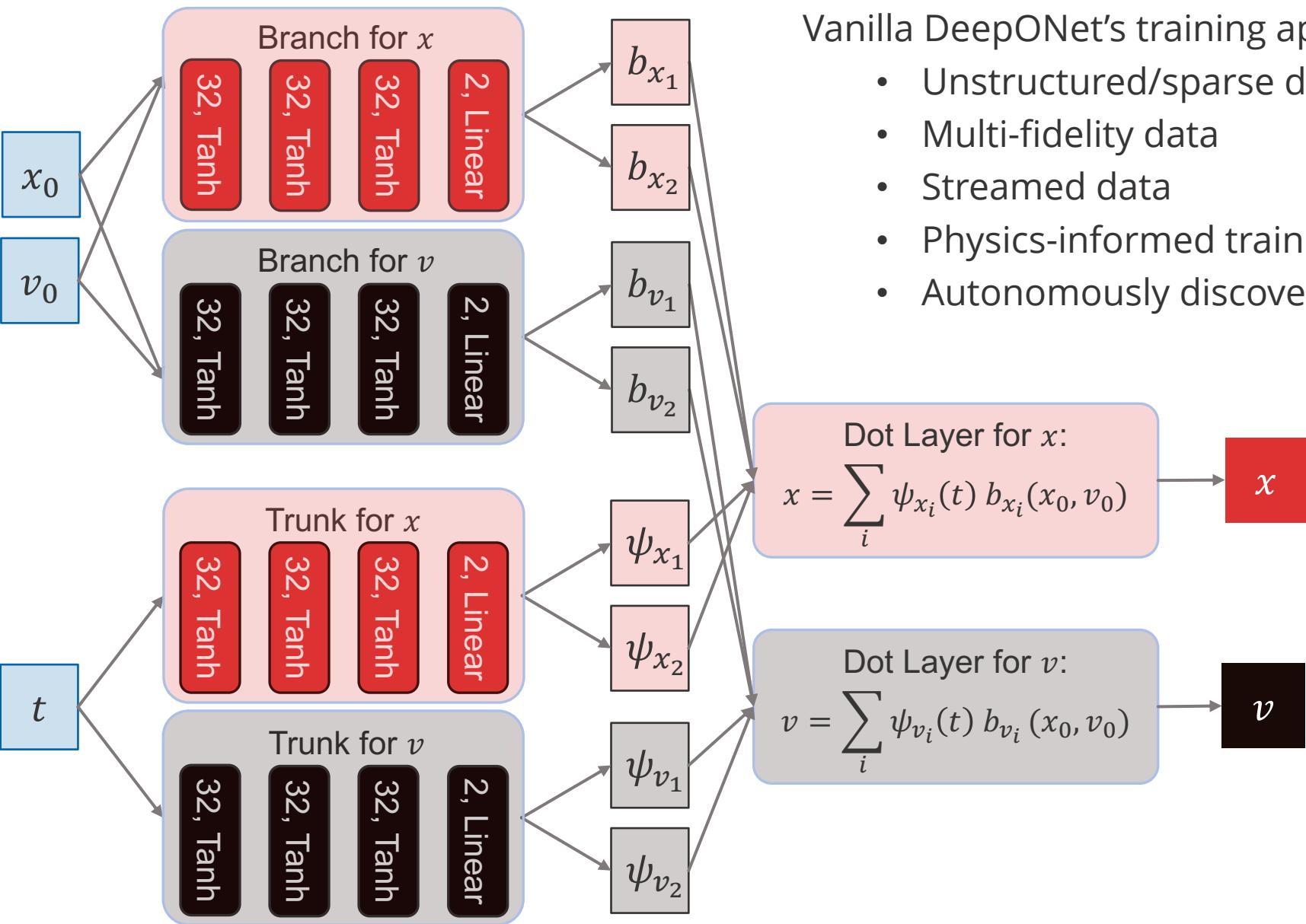
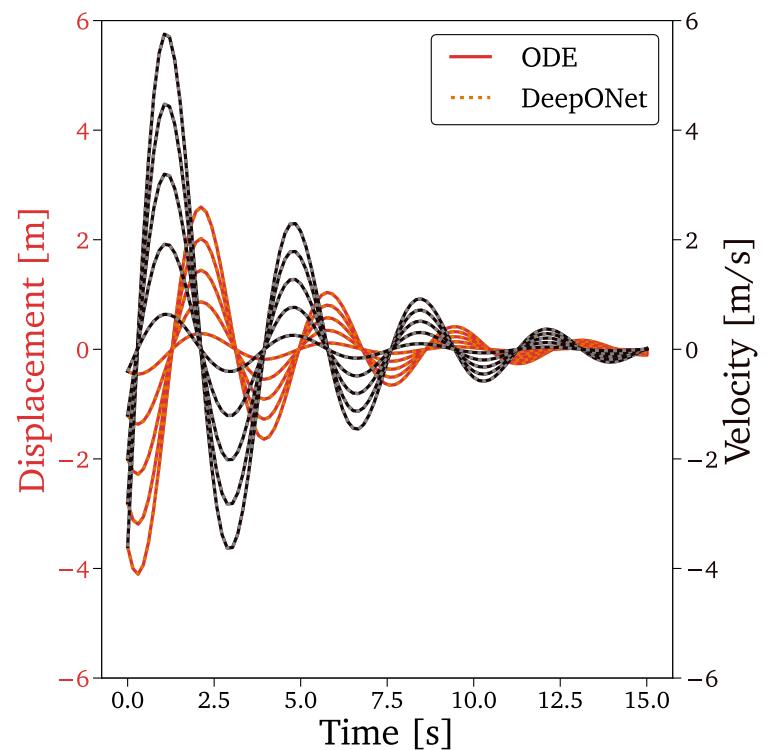


Example: Mass-Spring-Damper Test Case

By training all the blocks simultaneously
and by forward propagating the input inside the architecture...
(Vanilla DeepONet)

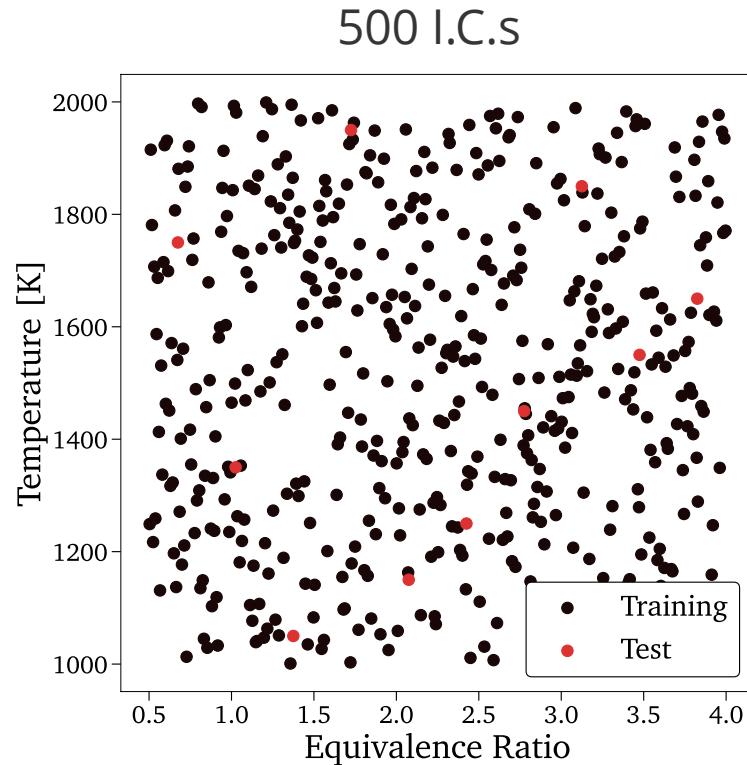


Example: Mass-Spring-Damper Test Case



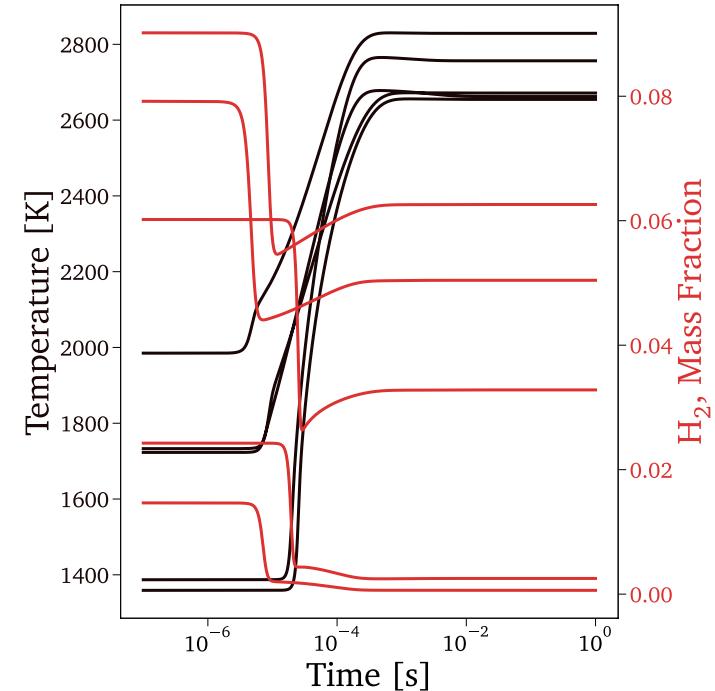
Application: Isobaric 0D Reactor, H_2 Ignition

Hydrogen-air gas mixture, 19 state variables (i.e., temperature and 18 species mass fractions)



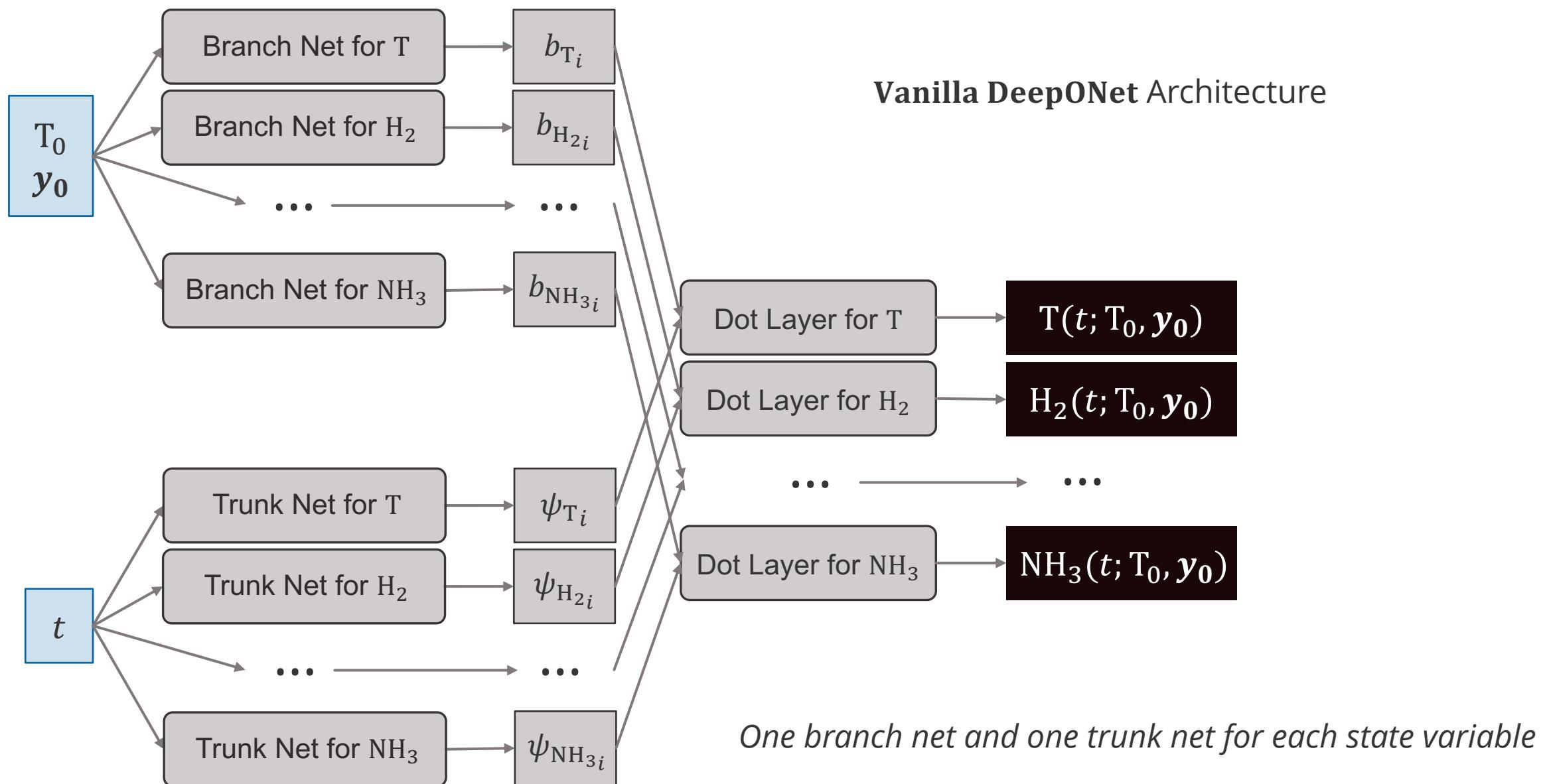
Isobaric 0-D Reactor

Some training scenarios

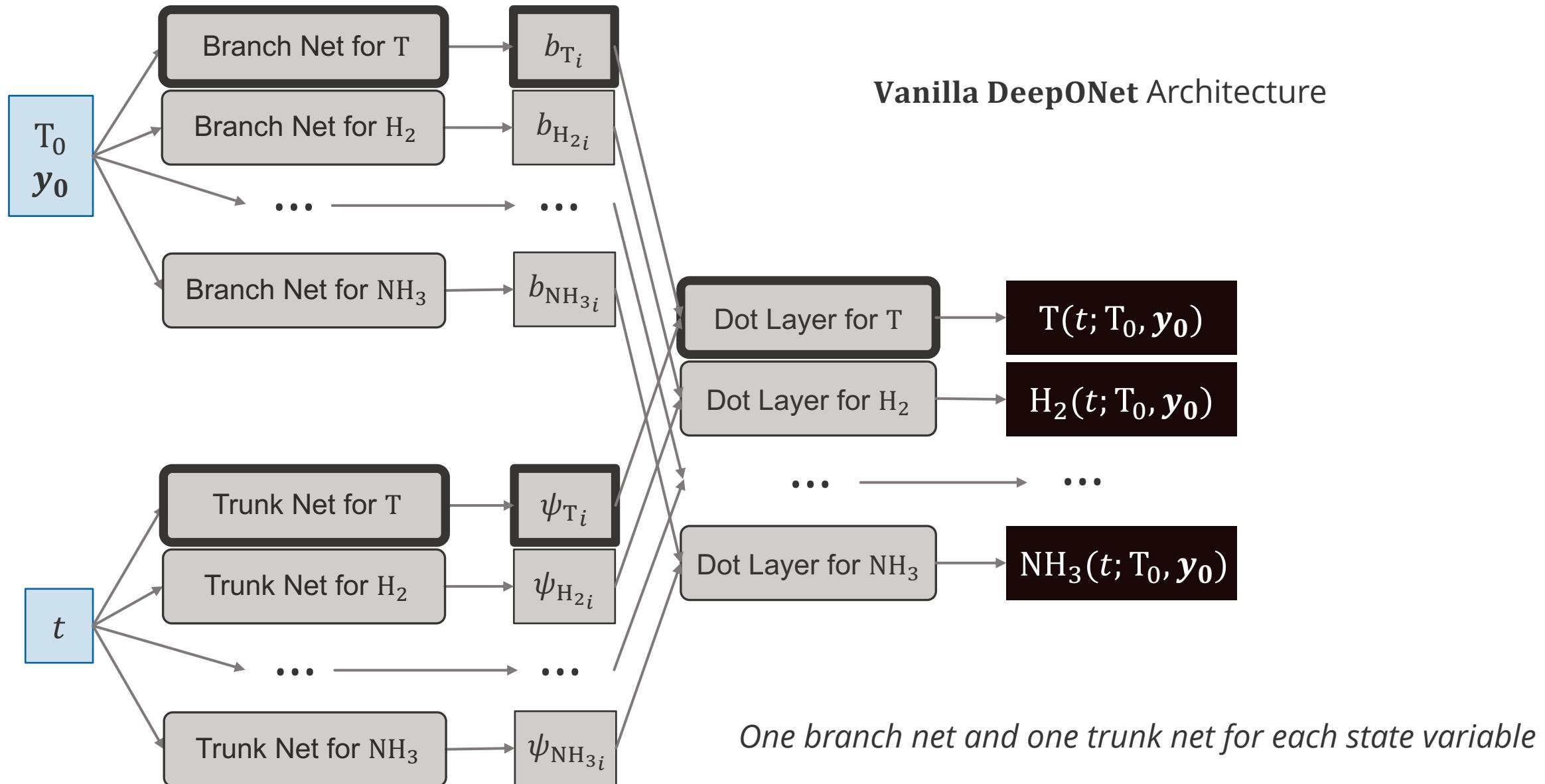


GOAL: To construct an accurate surrogate for the dynamics

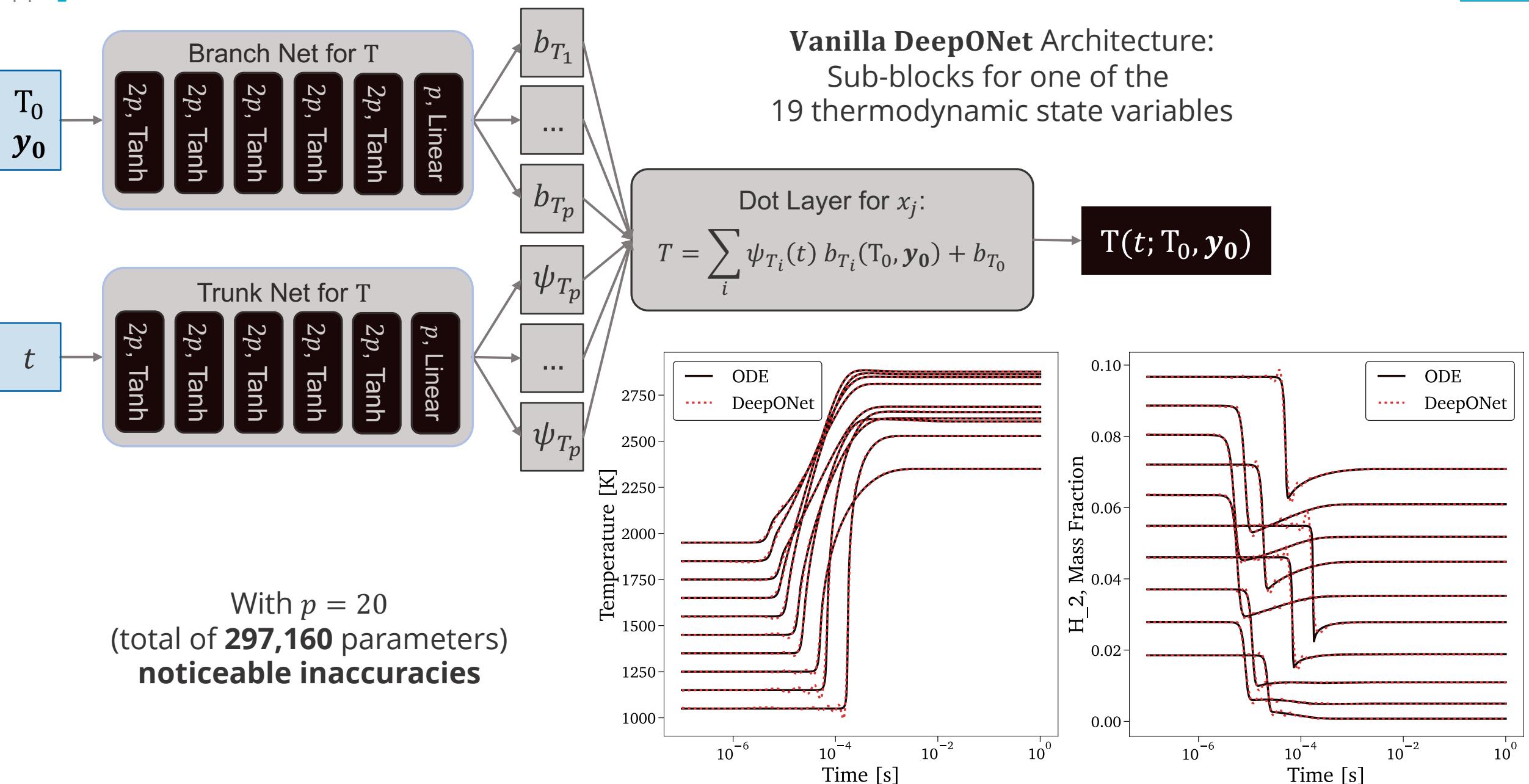
Application: Isobaric 0D Reactor, H₂ Ignition



Application: Isobaric 0D Reactor, H₂ Ignition



Application: Isobaric 0D Reactor, H₂ Ignition



Application: Isobaric 0D Reactor, H₂ Ignition

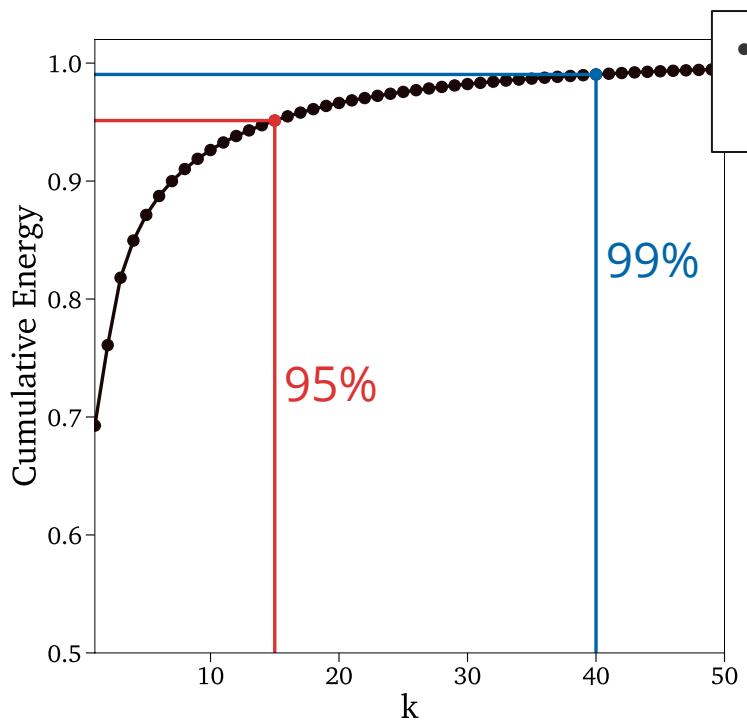
Scenario-Aggregated Snapshot Matrix

$$H_2 = \begin{bmatrix} H_{2,1} & H_{2,2} & \dots & H_{2,499} & H_{2,500} \end{bmatrix}$$

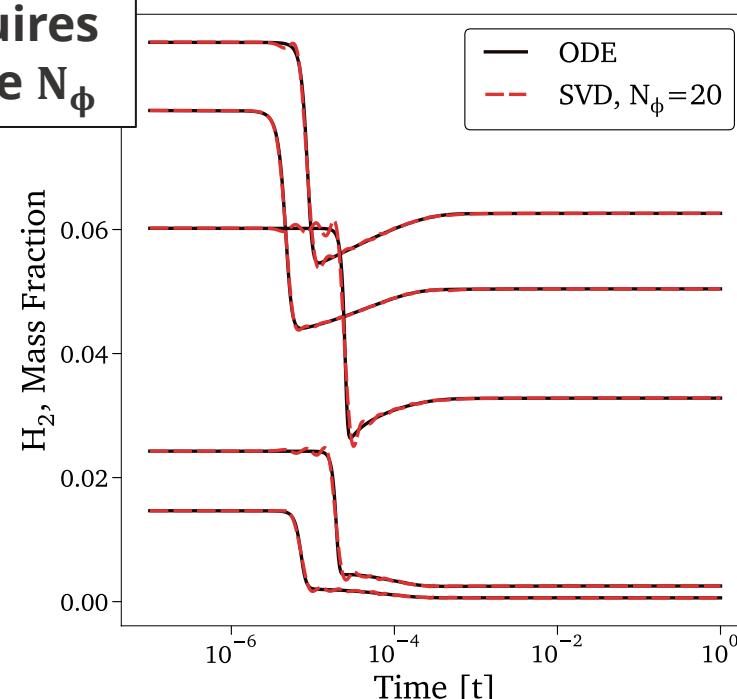
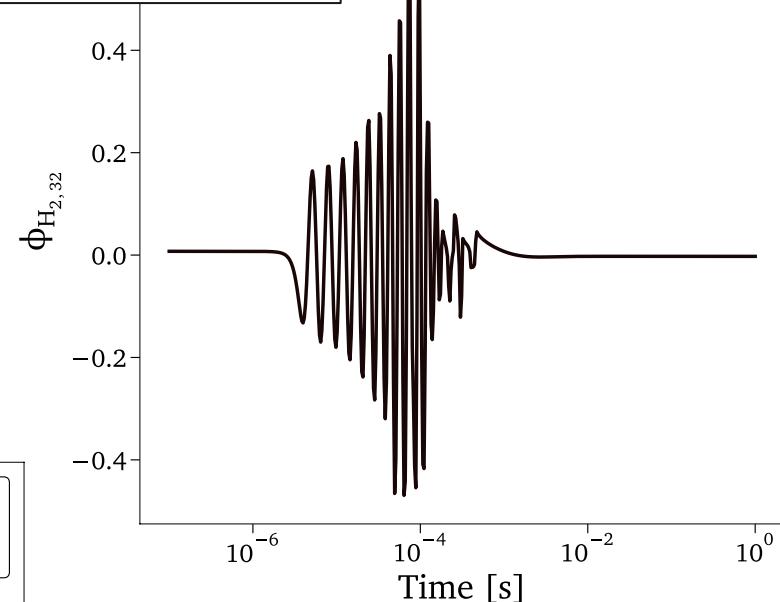
→ SVD

$$H_2 = \Phi_{H_2} A_{H_2}^T$$

- Highly oscillatory modes



- Requires large N_Φ

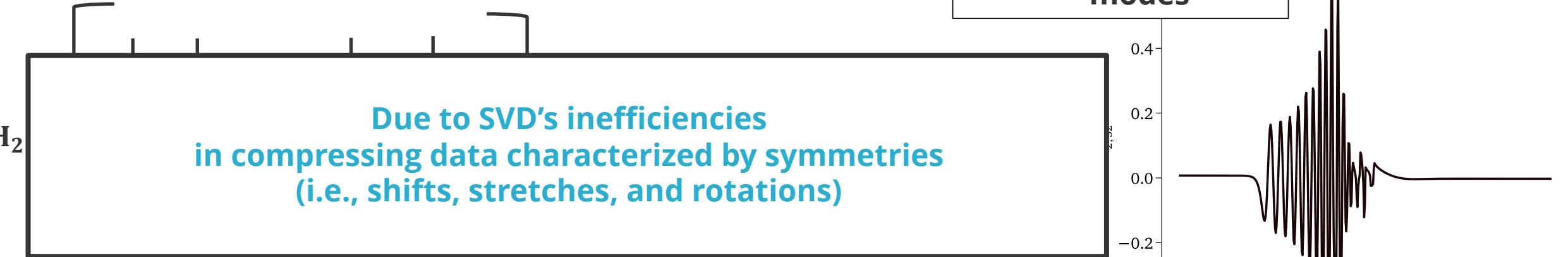
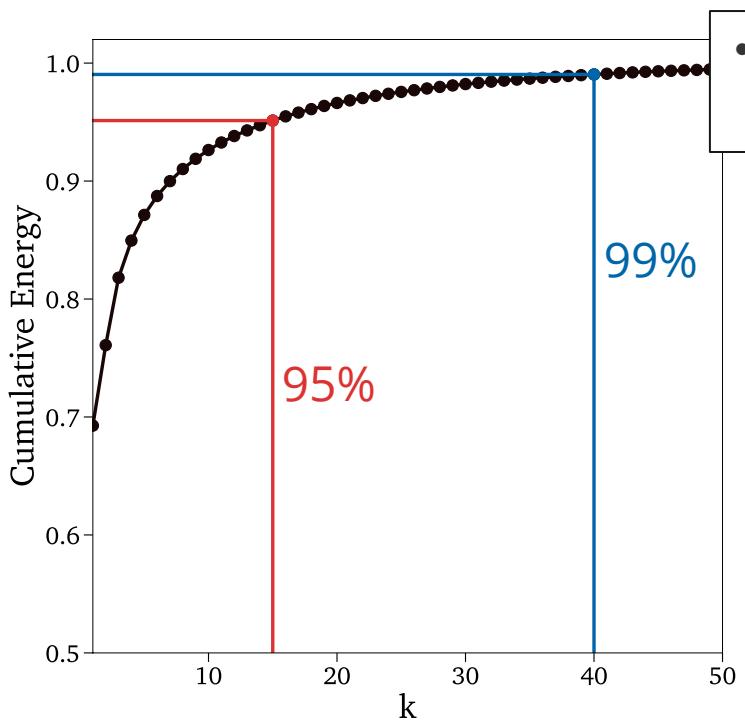
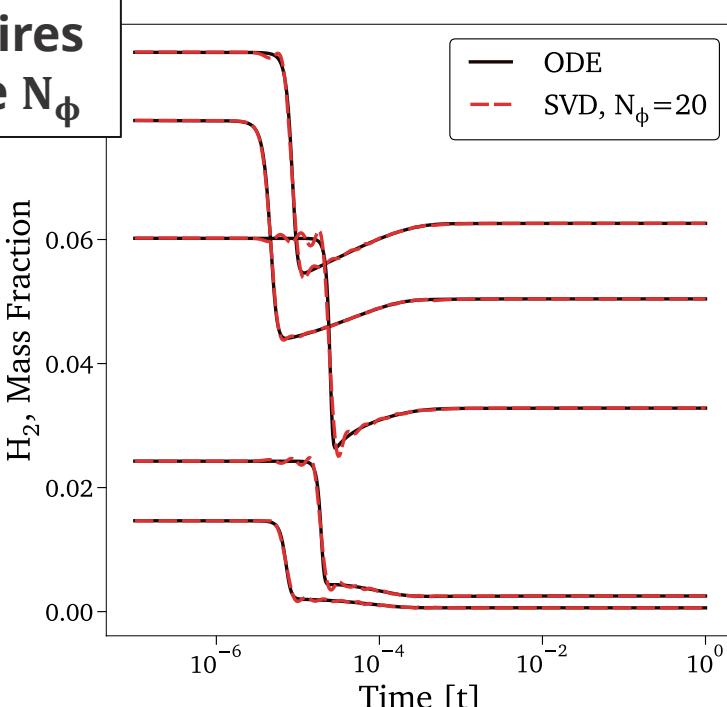


H₂ Matrix

Application: Isobaric 0D Reactor, H₂ Ignition

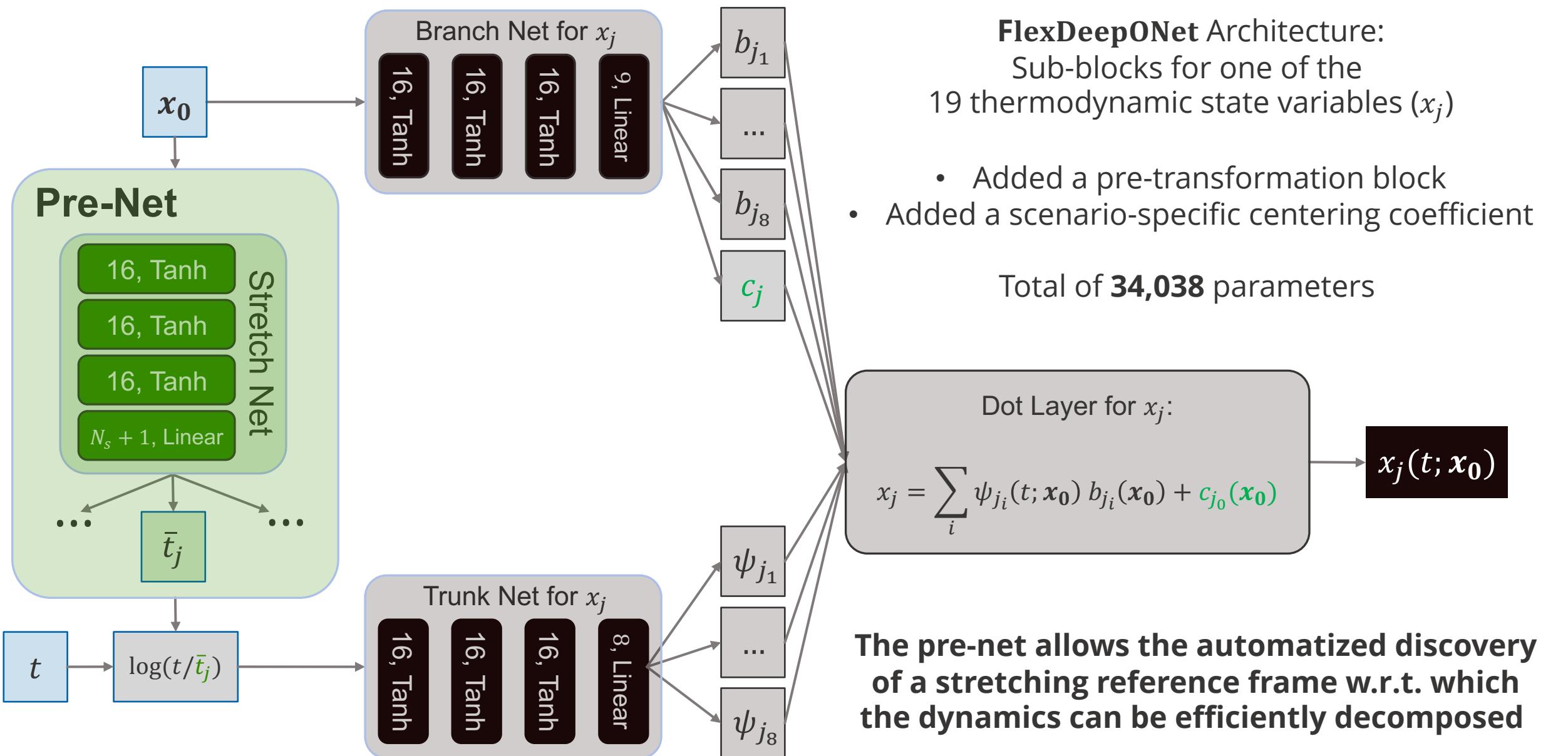
16

Scenario-Aggregated Snapshot Matrix

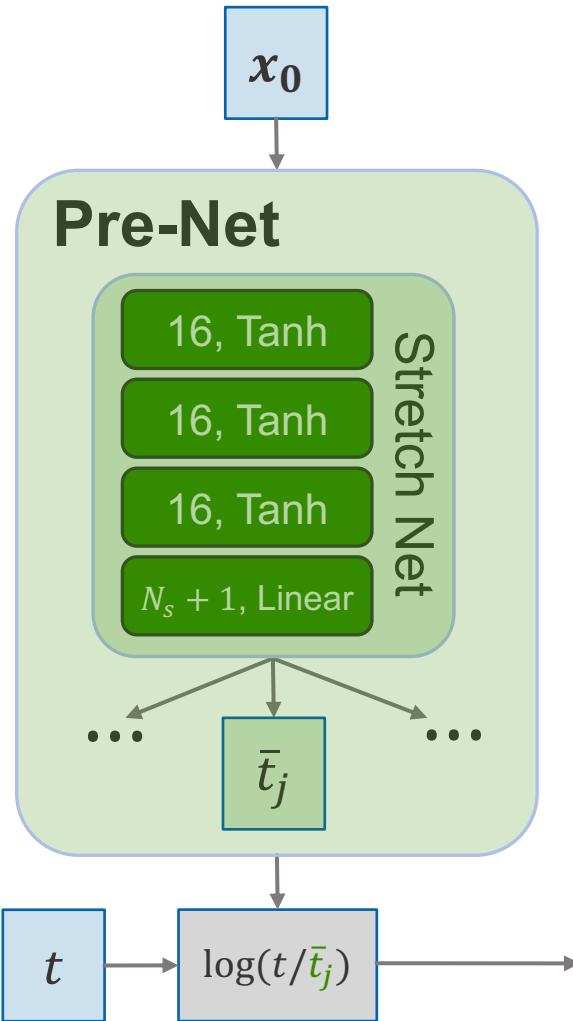
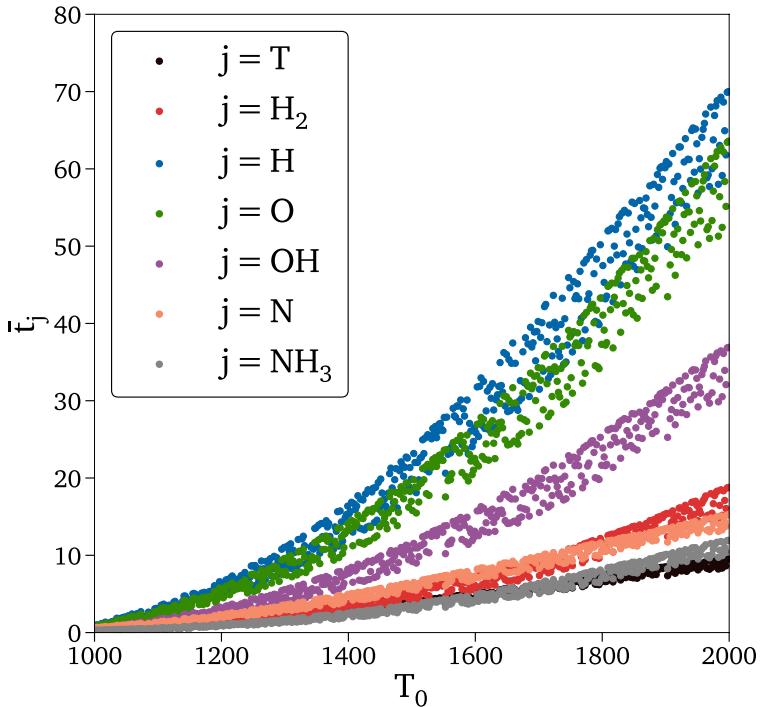


H₂ Matrix

Application: Isobaric 0D Reactor, H₂ Ignition



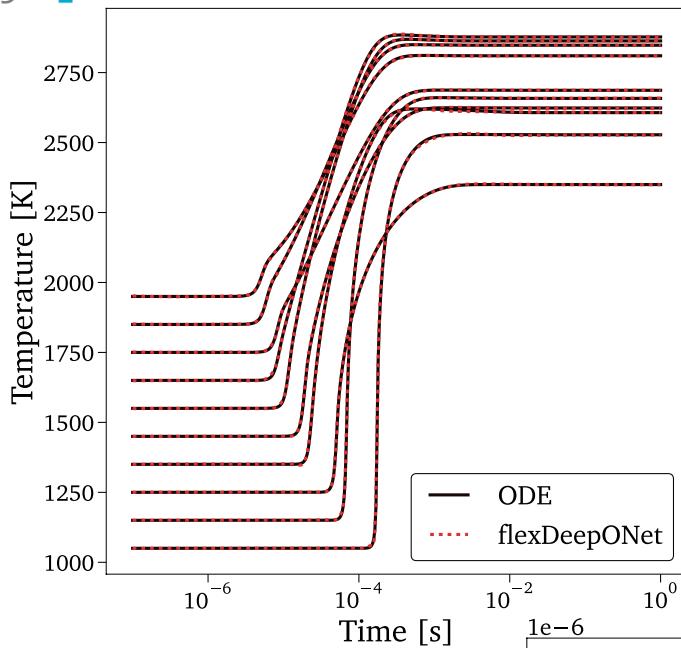
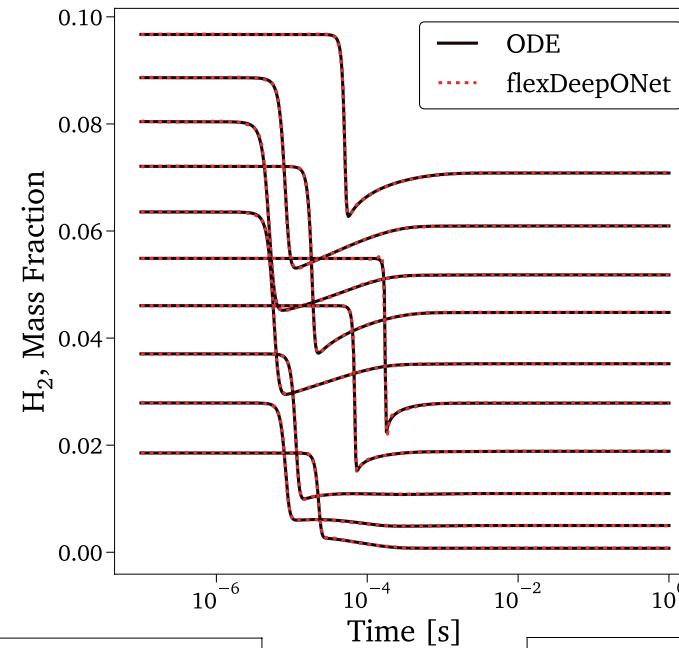
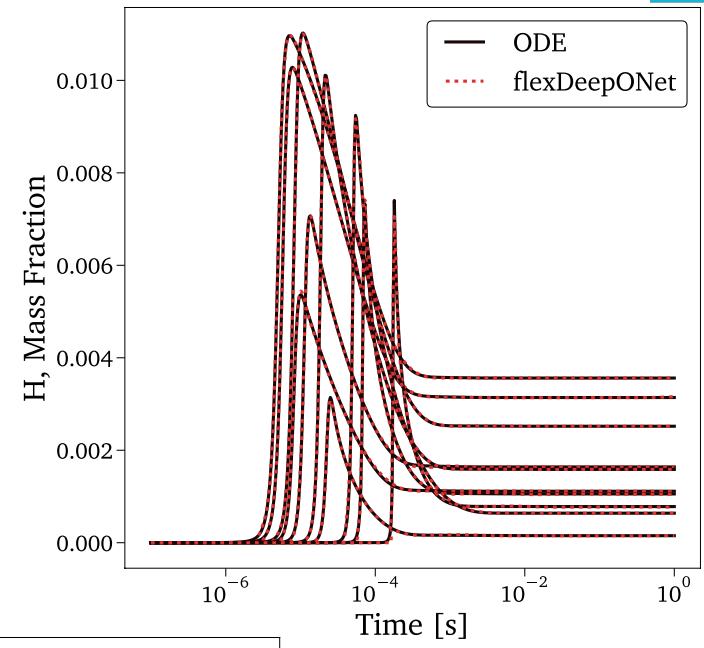
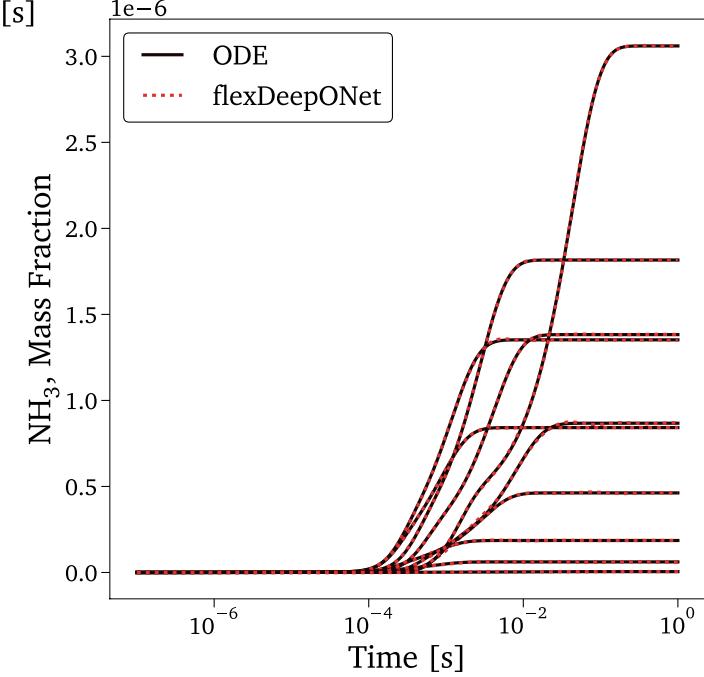
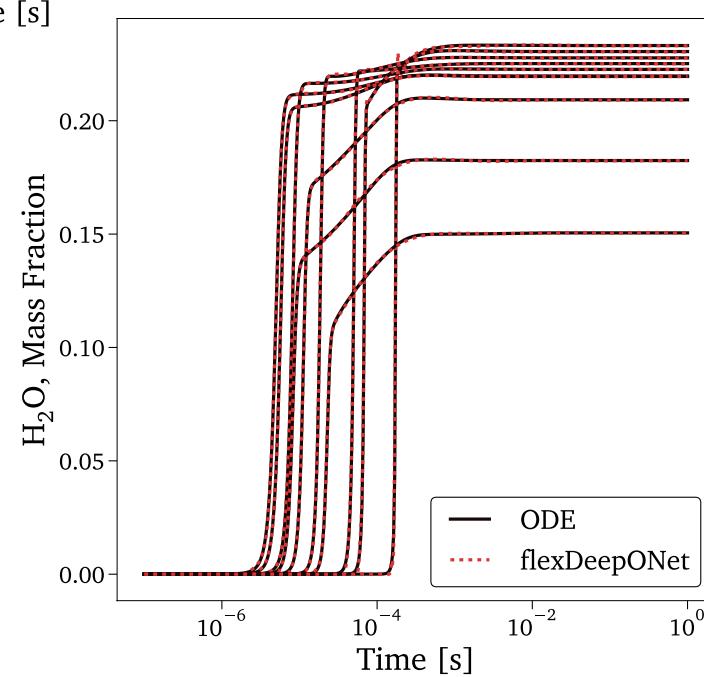
Application: Isobaric 0D Reactor, H₂ Ignition



The pre-net allows the automatized discovery of a stretching reference frame w.r.t. which the dynamics can be efficiently decomposed

Application: Isobaric 0D Reactor, H₂ Ignition

19



Summary

- In the context of a linear subspace reduced order models for reacting flows, constructed a reduced order operator surrogate model for advancing chemical state using DeepONets
- Preliminary studies show an operator surrogate built on 10 modes (of 20 in the FOM) can reconstruct solutions with little error
- Expanding to higher dimensional models, expanding the space of initial conditions to surrogate general chemical evolution
- Investigating interpretability of the DeepONet projections, utilization of different embeddings, enforcement of physics within the network, combine with manifold learning methods
- Broadly construct universal surrogates for chemistry advancement to avoid expensive time integration

Acknowledgements

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

This presentation describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.