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2 Motivation

Discovery science

« Scale-resolved reacting flow simulations (e.g.
turbulent combustion, fluid plasmas) are
incredibly expensive

« Resolution of hydrodynamic scales alone is
limiting, and drastically exacerbated by the
dimension of the reaction model

- Typically use coarse grained chemical models
relying on regime specific hypotheses,
heuristics to reduce dimensionality

Predictive modeling

- Need accelerators to enable many-query
studies

- Want to predict under uncertainty

Pursue a data driven reduction for the
chemical component, and retain the
hydrodynamic model discretization

H, plasma/excited state
chemical reaction network

Chen, Proc. Comb. Inst. [2011]
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. ‘ H,-air combustion chemistry: retaining N, PCs @!

NN-based surrogate that maps
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Operator Learning: DeepOnet

- We are interested in advancing the chemical state in time, not necessarily by surrogating source terms

(Unstacked) DeepONet [2]

Universal approximation theorem of operators [1] u(x) /
U —> U(x ?) »| Branch net <’
7 R
r n " m . 9‘: U(x ) @
G(u)(y) do [ S Ehutx) + 65 |o(we-y+ )| <e
D) D VPR i URALTY G(u)(y)
& " . trunk @
branch /
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X |
[1]1 T. Chen and H. Chen - Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and ... - 1995 I

[2] L. Lu et al. - Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators - 2021 I



5 ‘ Example: Mass-Spring-Damper Test Case
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GOAL: To construct an accurate surrogate for the dynamics

[11S. Venturi and T. Casey - SVD Perspectives for Augmenting DeepONet Flexibility and Interpretability — April 2022
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https://arxiv.org/pdf/2204.12670.pdf

6 ‘ Example: Mass-Spring-Damper Test Case

Scenario-Aggregated Snapshot Matrix
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Example: Mass-Spring-Damper Test Case
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By assembling the pre-trained blocks for x and v

and by forward propagating the input inside the architecture...

(SVD — DeepONet)
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Example: Mass-Spring-Damper Test Case @!I
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Example: Mass-Spring-Damper Test Case
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Example: Mass-Spring-Damper Test Case
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Branch for v
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Vanilla DeepONet's training approach enables flexibility:

« Unstructured/sparse data

- Multi-fidelity data
« Streamed data

« Physics-informed training

« Autonomously discovered pre-transformations
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; ‘Application: Isobaric OD Reactor, H, Ignition

Hydrogen-air gas mixture, 19 state variables (i.e., temperature and 18 species mass fractions)
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GOAL: To construct an accurate surrogate for the dynamics
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Application: Isobaric OD Reactor, H, Ignition @!I
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. ‘Appllcatlon. Isobaric OD Reactor, H, Ignition @!
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Application: Isobaric OD Reactor, H, Ignition
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Scenario-Aggregated Snapshot Matrix * Highly oscillatory
_ modes
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Application: Isobaric OD Reactor, H, Ignition
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Application: Isobaric OD Reactor, H, Ignition
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Sub-blocks for one of the
19 thermodynamic state variables (x;)

« Added a pre-transformation block

« Added a scenario-specific centering coefficient

Total of 34,038 parameters
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The pre-net allows the automatized discovery

of a stretching reference frame w.r.t. which

the dynamics can be efficiently decomposed



1

X0

I

Pre-Net

16, Tanh

N, + 1, Linear

16, Tanh

16, Tanh

\ 4

JoN Uojels

L . L. I
8 Application: Isobaric OD Reactor, H, Ignition m
|

-1 1

10 10
Il Il

80

707 0.08-

60

o

o

o
Il

50+

140

o
o
+

30+

H,, Mass Fraction

20+

0.02+ ! !

0.00+

10+

T T 1 T T T T
1600 1800 2000 10_6 10_4 10 100
Ty Time [s]

- T T
1000 1200 1400

The pre-net allows the automatized discovery

v

of a stretching reference frame w.r.t. which
the dynamics can be efficiently decomposed



. ‘Application: Isobaric OD Reactor, H, Ignition
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Summary

In the context of a linear subspace reduced order models for reacting flows,
constructed a reduced order operator surrogate model for advancing chemical state
using DeepONets

Preliminary studies show an operator surrogate built on 10 modes (of 20 in the FOM)
can reconstruct solutions with little error

Expanding to higher dimensional models, expanding the space of initial conditions to
surrogate general chemical evolution

Investigating interpretability of the DeepONet projections, utilization of different
embeddings, enforcement of physics within the network, combine with manifold
learning methods

Broadly construct universal surrogates for chemistry advancement to avoid
expensive time integration

o
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