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● Selective area p-type doping for diodes and transistors

● PN junction formation by P-GaN regrowth on etched n-GaN
– Ex-situ processing to remove residual etch damage

– In-situ XeF2 to remove residual etch damage

● PN junction formation by regrowth in Al0.3Ga0.7N diodes
– Planar, non-selective area PN junctions

– PN junctions with selective area p-type Al0.3Ga0.7N doping

● Summary
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F - Clock 
Frequency 

 Power is converted between voltage, 
current, & frequency (DC & AC)  

Example:  (Step down )DC to DC Buck converter

 Power management is based 
on diodes and transistors

Switching transistor
● Vertical current flow for high-

current & voltage
● Voltage dropped across thick drift 

layer
● D-MISFET, JFET, MOSFET ..etc..

Diode
● Vertical current flow
● SBD, PIN, and MPS diodes

Active electrical power switching for power management
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Practical high-voltage diodes and transistor require selective 
area p-type doping

● Reverse-bias PN junction key to multi-kilovolt blocking voltage (Vbr)
 Must have low reverse leakage current

● P-layers formed by ion implantation and annealing for Si and SiC device
 p-implant into GaN is challenging but advancing
 

 Form the p-well by ICP etch epitaxial regrowth of p-GaN

Double-well Metal-Insulator-Semiconductor 
Field-Effect-Transistor (D-MISFET)
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Merged PIN Schottky (MPS) diode

p-well formed by 
selective area doping
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Challenges to selective area regrowth of PN junctions 

• Electrically active impurities (Si, O, etc.)

• Damage to crystal structure from ICP etch resulting in extended (?) 
and point defects (e.g. vacancies).

• Incorporation rates of impurities and growth rates depend on crystal plane

• Use maskless approach to regrowth — avoid growth and mask removal problems

Regrowth
Interfaces

Highly reactive 
Non-polar planes

 p-GaN

c-plane

n- GaN
(drift layer)

Etch p-well

Sources of current leakage at regrown PN interface

 Start simple, p-GaN regrowth on c-plane drift layers

Etch 
damage
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Current-voltage characteristics of continuously grown and 
etched/regrown diode

• Quality of PN junction revealed within first 
10-20V in reverse bias

>103 x higher
leakage current

( -10 V)

Reverse IV Characteristics of GaN PN diodes

Pickrell, J. Elec. Mat., 2019

Differences between continuous diodes and etch and regrown diodes
 High reverse leakage near 0 V
 High Si concentration at regrowth interface

SIMS:  Regrowth of p-GaN on 
ICP etched n-drift layer

• Si spike found on surfaces 
exposed to air

Etched & regrown diode

Continuous 
growth
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Sub-surface etch damage from ICP etching

● ICP, ECR etched GaN drift layers

● PEC oxidation + TMAH oxide etch 
to remove sub-surface etch 
damage

● Fabricate SBDs

● Sub-surface etch damage:
● ECR etching ~ 230 nm
● ICP etching ~ 70nm

● Photo-assisted electrochemical (PEC) etching (Matsumoto, Jpn. J. Appl. Phys. 2018)

Reverse IV Characteristics of GaN SBDs (-10V)

  Sub-surface ICP etch damage ~ 50-300 nm
  Either prevent sub-surface etch damage or remove it

● Following PEC, IVs matched 
SBDs on as-grown GaN ● SBDs on ICP etched GaN 

have 104 x higher leakage
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Reactive ion etch (REI) to “clean up” damage from ICP etch 

Blanket etching of n-drift layer
• RIE etch - low damage etch used for 

gate recess for HEMTs
• RIE 270 nm — remove sub-surface ICP 

etch damage
• Finish with KOH, 10 min., 80 °C, DI rinse, 

N2 dry

Add reactive ion etch 
(RIE) after ICP etch

(270 nm)  

  Test low-damage RIE “clean-up” etch to 
remove sub-surface ICP etch damage

• Very high levels of Si, C & O at 
regrowth interface

Regrown 
p-GaN

SIMS of Regrown PN Diode
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IV characteristics of ICP+RIE etched / regrown diodes 

• 1 nA (6 mA/cm2) @ 500 V
• ASU:  20 mA/cm2 @ 500 V (etched regrowth) 
• Cornell:  2 mA/cm2 @ 500 V (w/o etch regrowth)

Reverse IV Characteristics Forward IV Characteristics

f = 150 mm

1 nA

• Low leakage < 2 V
• Ideality factor ~ 1.3

 Low leakage etched and regrown diodes demonstrated 
with RIE removal of sub-surface ICP etch damage
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Use in-situ etching to remove sub-surface ICP etch damage to GaN

CBr4                                CCl 4                                     TBCl  

Æ Rough etched surfaces regardless of reactor conditions, chemistry or GaN 
crystal (HVPE, on sapphire) when surface is exposed to air.

 Better surfaces follow J. Han’s 
(APL 2019) conditions:  

• pressure
• temperature
• low NH3

 No reduction of Si spike with  
listed halide sources

• Typical poor surface  
observed for many 
etch conditions

• Rough surface if 
etching HVPE GaN, 
ICP etched GaN…

• Surfaces exposed   
to air (months)  

• Si always present by 
SIMS, > 1e19 cm-3)
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In-situ TBCl etching of GaN grown without exposure to air

Æ Very different morphology for TBCl @ 
930C depending on exposure to air

Æ Starting GaN surface (air exposure Si) 
is more important than etch conditions?

Æ Focus on Si removal as “surface prep”

TBCl etching of GaN epi surface following growth (No exposure to air)

 Smooth etch for epi on HVPE GaN and GaN on sapphire

SEM1.TBCl etch back 
of epi-GaN

SIMS:
No C, O

2. SEM

 Rough etch once through 
re-growth interface for epi 
on HVPE GaN

 Smooth etch for epi on HVPE GaN 
not exposed to air

SEM

TDs  being decorated by TBCl 
etch of GaN/sapphire

1.



Si at regrowth interface (SIMS)
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Removal of Si at regrowth interface using XeF2

No etch 
Process 1
Process 2

Use Si etch tool (XeF2) to remove interfacial Si prior to regrowth 

 Utilize commercial GaN/sapphire templates with 
consistently high surface Si concentration

 Expose GaN to different Si etch recipes                  
(Si etch tool with pulsed XeF2, RT process)

 Regrow GaN drift layer – (CV, SIMS)

 > 10x reduction in interfacial Si with XeF2 process in Si etch tool 
 Try XeF2 on MOCVD system

Epi-regrowth Test Structure

Æ Good diodes made with intentional Si ~ 5e11 cm -2

2XeF2 + Si → 2Xe + SiF4

Andrew Koehler 
(NRL)
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In-situ removal of Si at regrowth interface and etching using XeF2

Replicate Si etch tool (XeF2) process in MOCVD chamber 

Drysdale (2015) – XeF2 etching of Si

 Continuous XeF2 flow (1-9 torr)

Æ Essentially a MOCVD setup 
operating at ~10 torr

XeF2 etching of Si 
(25C, 10 mmoles/min.)

White Crystals,
3.8 torr @ 25C

(Dock Chemical)

MFC

XeF2 
Container

Gas Showerhead

  Si etch:  ~ 1500 Å/hr @ RT
        XeF2 is reaching surface

 Johnson (APL 2019) - XeF2/BCl3 etching of GaN
      Try etching GaN with XeF2
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In-situ XeF2 etching of GaN (Air Exposed surface)

Etch Rate of GaN vs. XeF2 FluxEtch Rate vs. Temperature

   Etch rate is linear with XeF2 flow

   Stable reflectance @ 730C, 830C

In-situ reflectance during XeF2 etching
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XeF2 etch

Slight 
roughness

SEM of XeF2 etched - ICP etched GaN (air exposed)

In-situ XeF2 etching of GaN (air exposed surface)

RMS vs. XeF2 etch depth
(ICP etched GaN)

AFM of XeF2 etched - ICP etched GaN (air exposed)



Al0.3Ga0.7N “Quasi-Vertical” REGROWN PN diode on sapphire
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─  Continuously Grown Diode 
(Elec. Letters, 2016)

─  ICP + Thermal (Best)

● PN Diode IV Characteristics

Vbr ~ 1627 V

Vbr ~ 1516 V

Reverse IV

 Regrown anode on ICP-etched drift region can produce AlGaN 
PN diodes equal to continuously grown diodes (c-plane)

Regrow 
p-anode

Forward IV



1 nA

Al0.3Ga0.7N PN Diode:  Regrowth on ICP etched drift layer 

Vrevs. > 1000 V

● Regrowth with thermal treatment reached 
Vrevs. > 1500V (@ 1mA)

● Regrowth on “as-grown” diode repeated

● ICP-etched reached Vrevs. ~1000V (@ 
1mA) 

● Very low forward current leakage indicates 
a good PN junction (TDD = low 109 cm-2)

  Regrowth of p-AlGaN on ICP-etched AlGaN yields 
kilo-volt class PN diodes with low leakage!
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Regrown junction
ICP etch only
ICP + Thermal

Reverse IV Characteristics Forward IV Characteristics

PN Diode IV Characteristics on an ICP-etched drift layer 

1 nA
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Next develop p-AlGaN regrowth in etched well

NOT significant:
• Electrically active impurities at 

regrowth interface

• Damage to crystal structure and 
point defects from ICP etch 

 Next develop p-AlGaN 
regrowth in etched well

n+ GaN (substrate)

p-AlGaN

contact

contact

n- AlGaN (drift layer)

Regrowth
Interface

(c-plane)

Regrowth on etched
c-plane

Regrowth
Interfaces

Highly reactive 
Non-polar planes

p-AlGaN

c-plane

n- AlGaN
(drift layer)

n+ GaN (substrate)

contact

Regrowth in etched p-well 

Still in question:
• Incorporation rates of impurities and 

growth rates depend on crystal plane

• Non-selective mask or etch-back

ICP etch



PN diode by regrowth of p-30%AlGaN

Forward IVReverse IV

Etched well
Planar etch

Planar etch (Y1)

P- anode regrowth in 
etched well in drift layer

ICP 
etch

P- anode regrowth on 
planar etch drift layer

ICP 
etch

 NO difference between regrowth in etched well, planar etch and 
continuous growth!  (Al0.3Ga0.7N)

 First SArG PN junction equal to continuously grown PN junction 

 Foundational element for practical power devices:                      
MPS diode and J-FET, D-MISFET transistors

Reverse leakage < 10-10 A
out to 1kV (noise floor)

Irevs~ 2e-6 A/cm-2

Vrevs ~ 1900 V
Vrevs ~ 1830 V

No forward 
leakage
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• Plasma etched and regrown PN diodes in GaN face two problems
• Due to crystalline defects induced by dry-etch process result in high revers 

leakage currents

• High levels of Si contamination are present at the regrowth surface

• Use of novel XeF2 source in MOCVD is effective at in-situ etching of GaN 
to remove residual ICP etch damage

• XeF2 is effective at removing Si contamination on the surface of GaN 
epilayers

• High performance regrown AlGaN PN diodes are tolerant to residual etch 
damage and surface Si contamination, unlike regrown GaN diodes

Funded by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy under the PNDIODES 
program directed by Dr. Isik Kizilyalli.  

Summary
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