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MOTIVATION AND INTRODUCTION

Crossed-field devices (CFDs), which have an external magnetic field perpendicular to the
electric field, are important in many applications, including high power microwaves and
directed energy. One critical quantity for characterizing CFDs is the Hull cutoff magnetic field
(HC), which corresponds to the maximum magnetic field for an electron emitted from the
cathode to reach the anode [1]. CFDs with magnetic fields above the HC are referred to as
magnetically insulated. Theory demonstrated that placing ions in the gap increased the
distance that an emitted electron traveled from the cathode [2]. Subsequent simulations
demonstrated the loss of magnetic insulation for sufficiently high pressures [3].

In this presentation, we theoretically assess the motion of electrons emitted from a cathode
in the presence of a crossed-magnetic field and account for collisions by electron mobility,
analogous to previous assessments of electron emission in a nonmagnetic diode [4]. To
address this, we perform the following:

(1) Present the changes in the HC based on how mobility changes electron velocity across
the gap.

(2) Create simulations using the 1D/3v (one-dimension in space, three-dimensions in
velocity) particle-in-cell code PDP1, which was used in the previous studies [3], and use to

compare to theory.

Implications to magnetic insulation for practical devices will be discussed.
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Derivation of Hull Cutoff magnetic field position and velocity equations

with collisional effects
. Lorentz Force Law:
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Using Newton’s 2" Law yields two differential equations:
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where eB,/m = () is the cyclotron frequency. Solving gives:

PROGRESS AND ACHIEVEMENTS

e Utilized Mathematica to recover collisional Hull Cutoff with various
mobility

* Used properties from the Navy Aegis Radar System to verify Hull Cutoff
recovery

* Derived equations for electron position and velocity [Egs. (1) and (2)]

* Analyzed mobility within both dimensional and nondimensional position
and velocity equations to understand sinusoidal relationship with mobility
values

* Confirmed time-dependent nondimensional position and velocity
equations

* Created plots using the nondimensional code to analyze sinusoidal
relationships with different mobilities, voltages, and gap distances [Fig. 2]

* Continue to characterize magnetic insulation as a function of mobility
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Figure 2. Nondimensional electron position and velocity with a mobility value that
demonstrates sinusoidal movement diminishing as time goes on.
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Figure 3. Differing dimensional electron trajectories based on
varying mobility values as outlined in the legend below.
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CONCLUSION AND FUTURE WORK

* Future work will use particle-in-cell simulations (XPDP1) to assess
pressure dependence on Hull cutoff.

* Considerations to extend to fluid model (SOMAFOAM) in the future.

* Continue to utilize Mathematica and XPDP1 assess the modification in
magnetic insulation with mobility/pressure changes.
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