

Cloud Segmentation & Motion Tracking in Sky Images

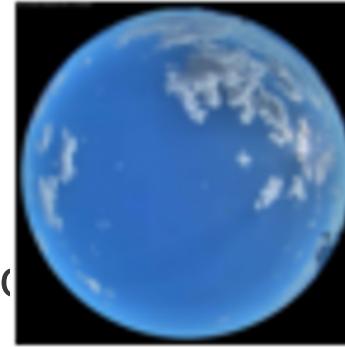
A Case Study using Machine Learning for PV

Applications

Ben Pierce, Sandia National Labs

Introduction & Objective

- ❖ Forecasting in the near future useful for PV to balance inputs to the grid
- ❖ Short term power prediction impacted by cloud behavior.
 - ❖ Clouds in front of Sun = change in irradiance received

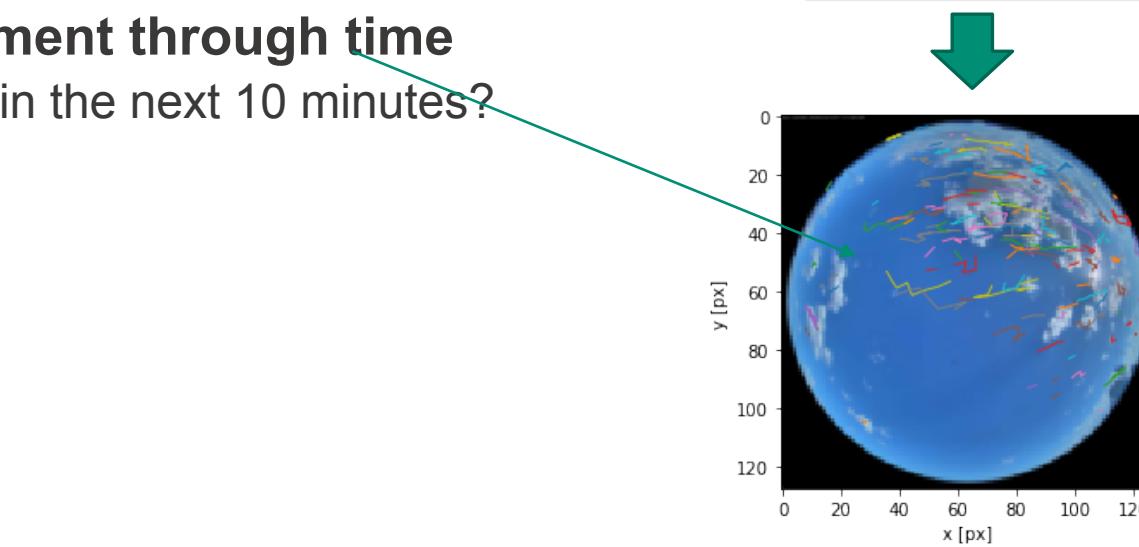


Task I: Identify clouds from image

- ❖ Easy for humans
- ❖ Hard to do automatically due to various sky conditions

Task II: Track & predict cloud movement through time

- ❖ Will there be clouds in front of the Sun in the next 10 minutes?



Part I: Cloud Segmentation

Cloud Segmentation

- ❖ Need some method to isolate clouds within an image
 - ❖ “Segmentation”
- ❖ Multiple classical (i.e. non-ML methods)
 - ❖ Differ in various ways
 - ❖ Sensitive to changes in image type
 - ❖ Camera distortion
 - ❖ Luminosity
 - ❖ Obstructions
- ❖ Filtering approach
 - ❖ Find some image transform to isolate clouds
- ❖ **How do we find a general, robust model that can adapt to the data?**



HSV

Otsu

R/B Chan.

Clustering

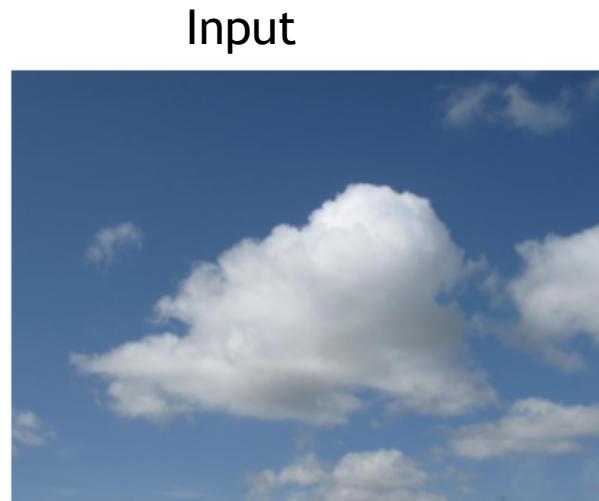
Method	Authors	Source	Date
Grey Level Threshold	Otsu	[2]	1979
RGB Ratio Threshold	Long <i>et al</i>	[3]	2006
Hue-Saturation-Value Threshold	Pierce <i>et al</i>	[1]	2022
Color channel K-means	Shirazi <i>et al</i>	[4]	2021

TABLE I
UNSUPERVISED PREPROCESSING METHODS

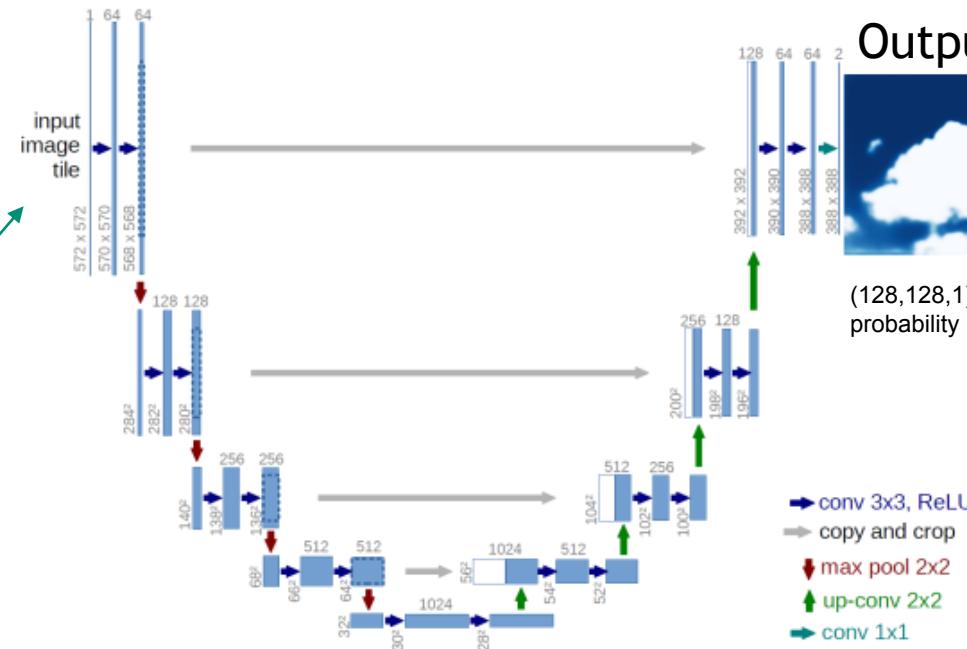
Training UNet

- ❖ CNNs are **supervised**
 - ❖ Require labeled **training data**
- ❖ Problem: training data is **expensive** to get
 - ❖ Manual (human) labeling
- ❖ Idea: use (all) classical methods as training data
 - ❖ Learn from strengths/weakness from all methods
- ❖ Challenge: **Can UNet model learn from flawed, auto-generated training data**
 - ❖ Also: does this process generalize well to different sources of data?

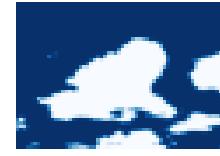
Adjust UNet by taking gradient with respect to L



RGB (128,128,3)

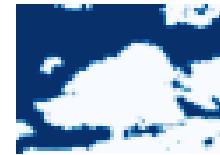


Otsu



R/B Chan.

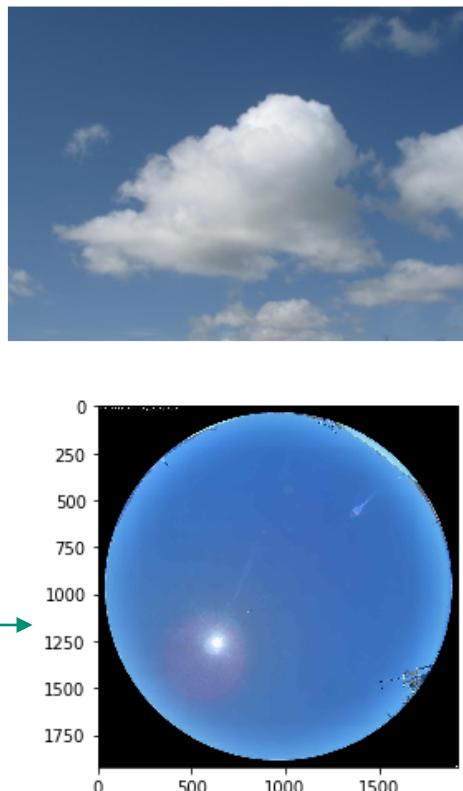
Clustering



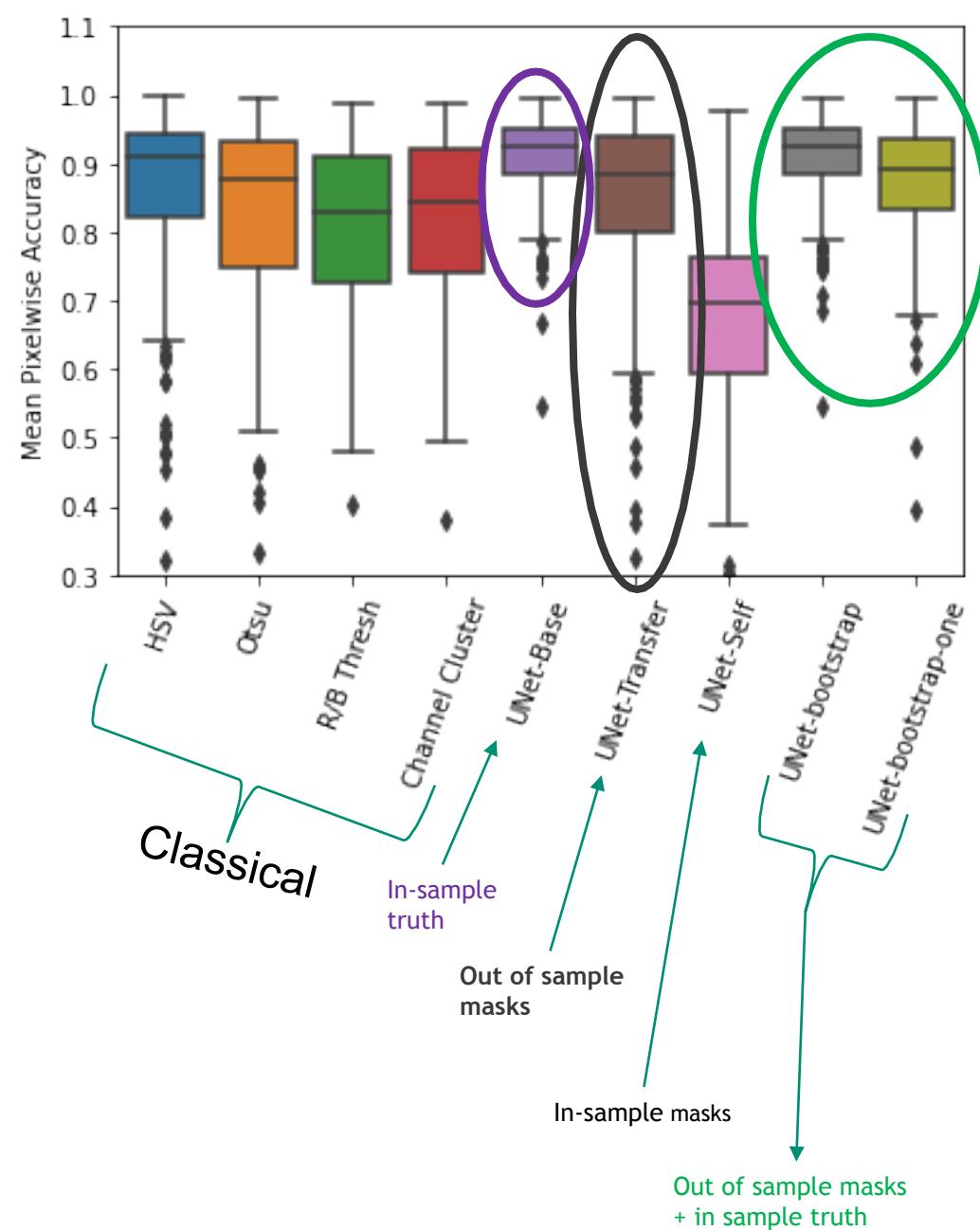
(128,128,1) Binary {0,1}

Results

- ❖ Three subsets
 - ❖ In sample truth
 - ❖ In sample masks
 - ❖ Out of sample masks
- ❖ Masks predicted via classical algo.
- ❖ Differences
 - ❖ Cameras
 - ❖ Cloud types
 - ❖ Locations



- ❖ When trained, model **performs better** than previous state of the art
- ❖ Model **can generalize** out of sample
 - ❖ Location & camera independent
- ❖ Masks created by classical algo. can be used to **boost initial performance** w/o ground truth training data



Part II: Motion tracking & prediction

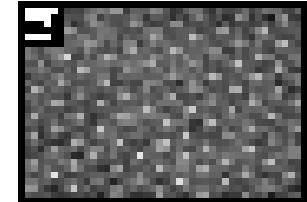
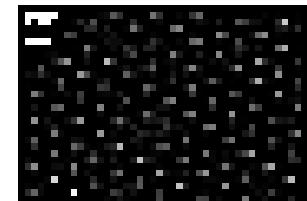
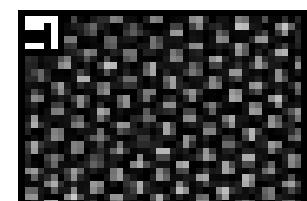
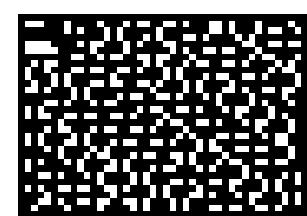
Motion tracking & prediction

❖ Crocker and Weeks, 1996 present a method for tracking colloidal particles

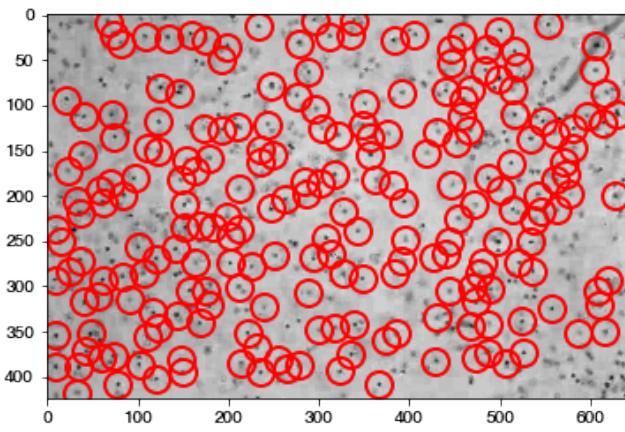
1. Isolate particles from binary mask
2. Find brightness maxima
3. Use maxima to locate centroids
4. Link through time

❖ Implemented in open-source Python [trackpy](#) package

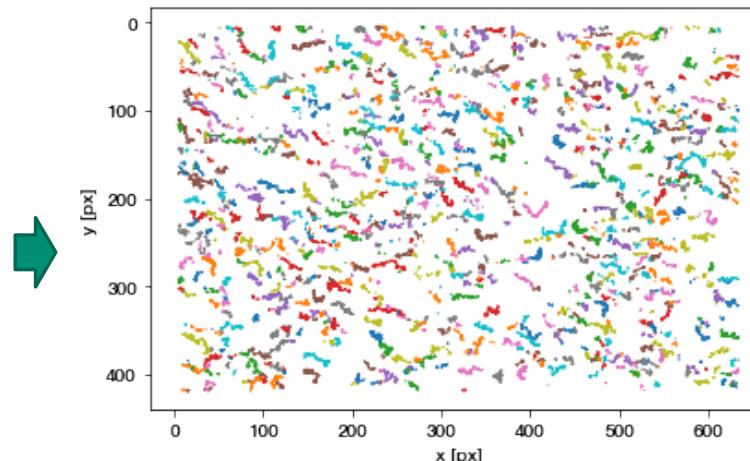
- ❖ Easy to apply to new data
- ❖ Provides exactly the statistics we need



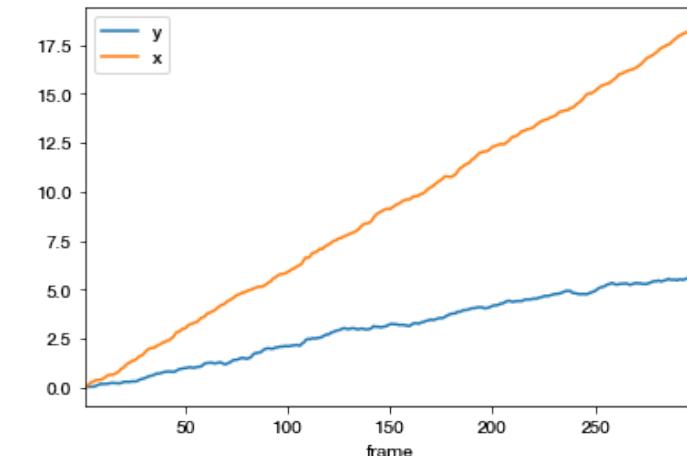
Locate objects



Object level drift

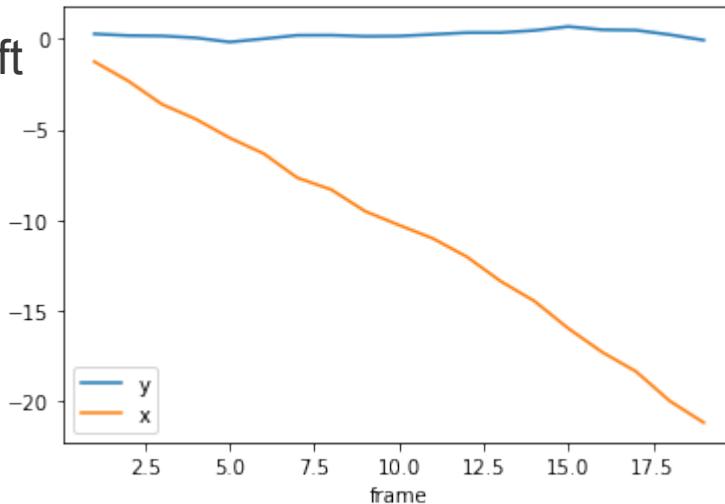
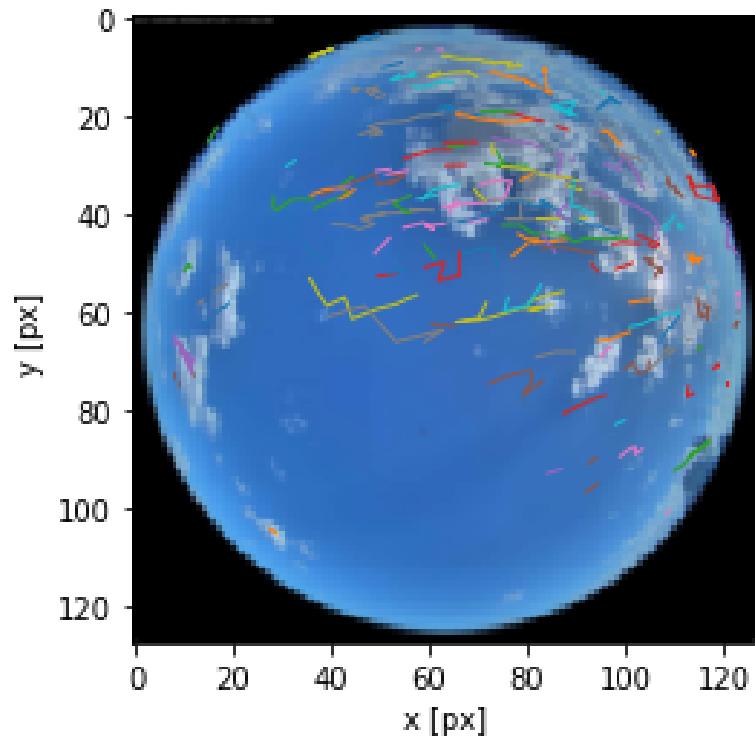


Overall drift



Using motion linkages to predict future

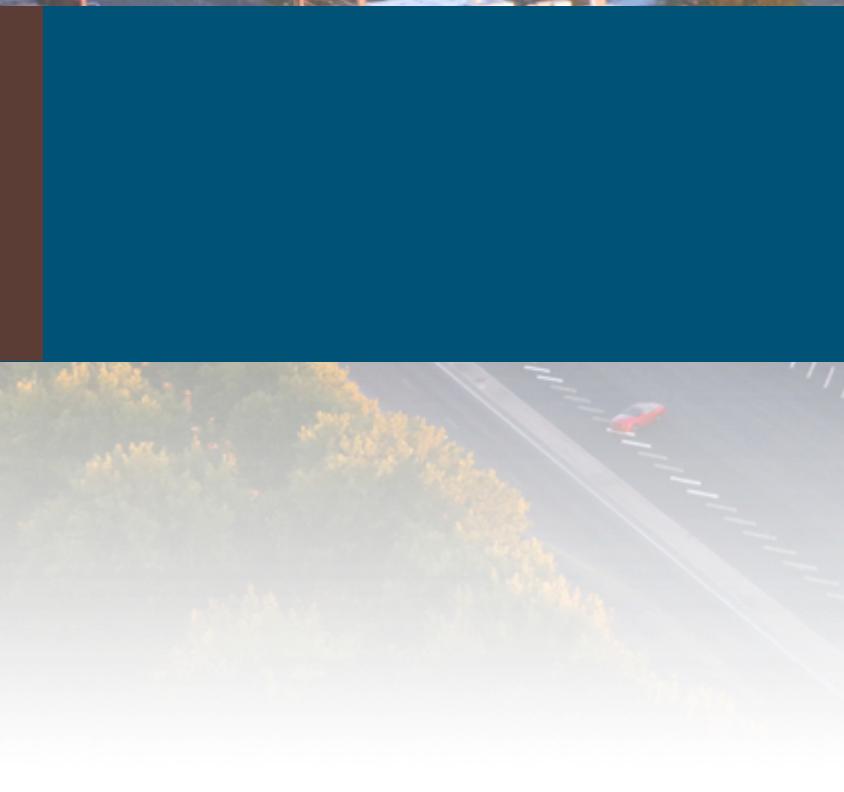
- ❖ Trackpy links particles through time
- ❖ This provides us with their xy position over n minutes
- ❖ How do we predict the future?
 - ❖ Numerical gradients via Taylor expansion/central differences
- ❖ Once gradient is calculated, take mean with respect to x and y directions.
 - ❖ This is projected cloud drift



Conclusions

- ❖ Deep Learning achieves great accuracy on cloud segmentation, but can be hindered by lack of a training dataset
 - ❖ This can be addressed with imperfect, autogenerated labels
- ❖ Transfer learning, even with imperfect labels
 - ❖ Can be used to ease training a deep learning model
- ❖ Simple colloidal tracking algorithms can be repurposed for motion tracking and prediction of clouds
- ❖ These methods useful to calculate projected input to grid as short-term power forecasts

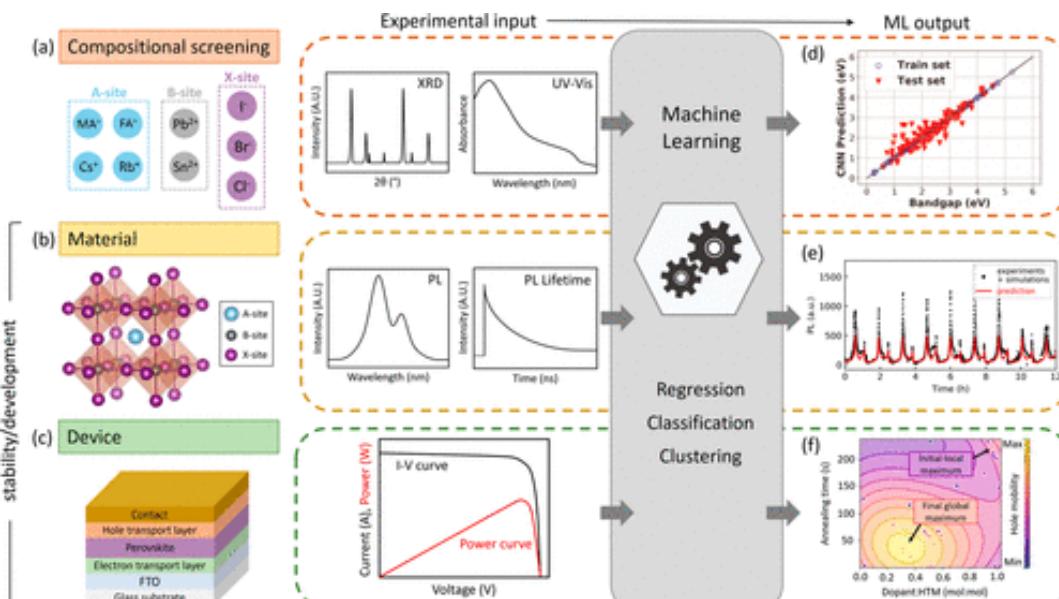
Questions?



Extra slides for questions

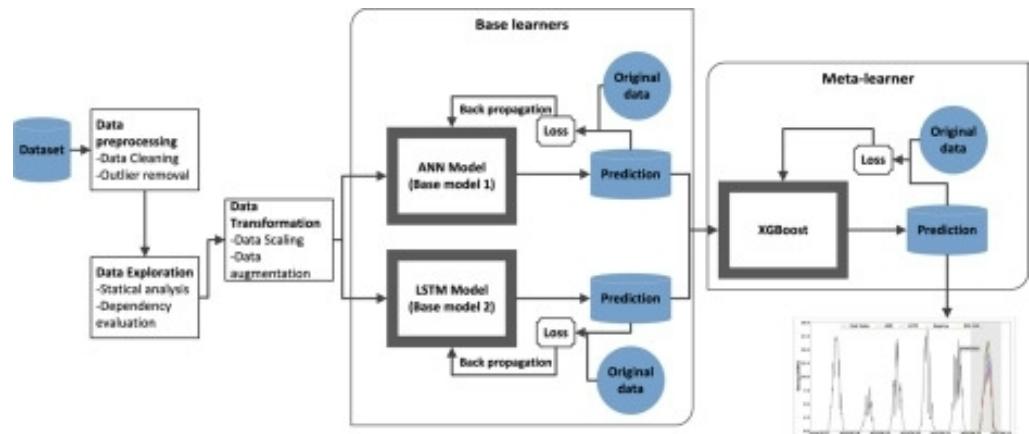
Machine Learning in PV

- ❖ Machine Learning (ML) is a catch-all term for a variety of statistical methods, including (but not limited to)
 - ❖ Regression, clustering, feature extraction, dimensionality reduction, etc.
 - ❖ **Neural Networks/Deep Learning**
- ❖ Many uses in PV
 - ❖ Power forecasting
 - ❖ Material performance
 - ❖ Fault detection
- ❖ Strength: **Using trends in high-dimensional data to solve problems with no known closed-form equations**
 - ❖ No existing physics-based equations
 - ❖ Data in hard-to-quantify formats (e.g. images)
 - ❖ Large quantities of data



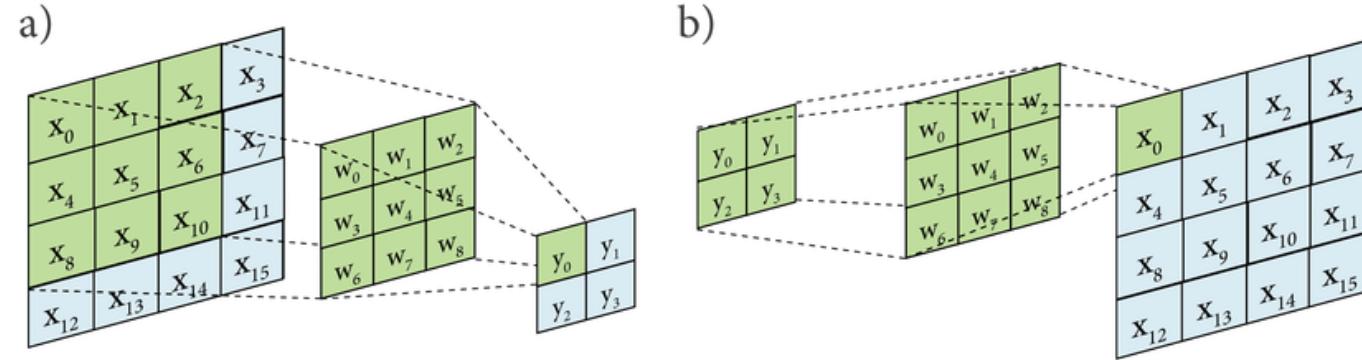
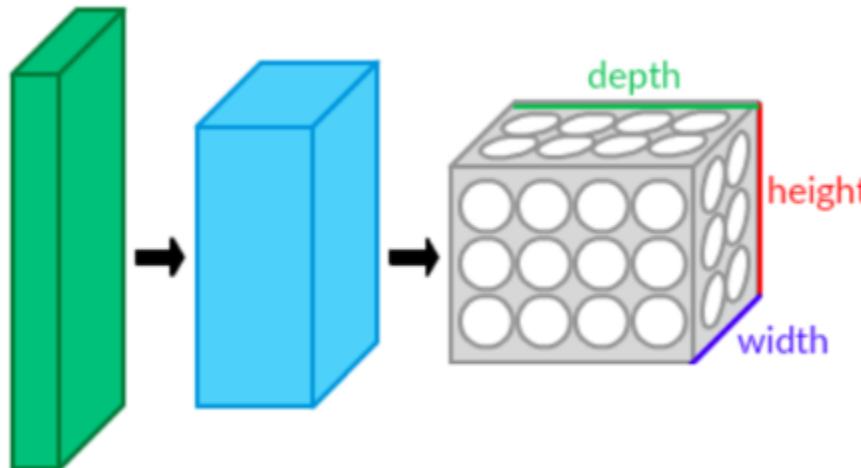
Srivastava et al, *Machine Learning Roadmap for Perovskite Photovoltaics*

Kahn et al, *Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach*



Convolutional Neural Networks

- ❖ Idea: use data to learn general filters
- ❖ Filter is called the “kernel”
 - ❖ Which has elements called “weights”
- ❖ Learning task
 - ❖ Find weights for useful filters

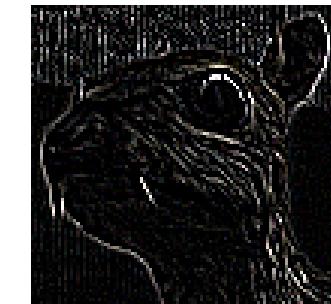


Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

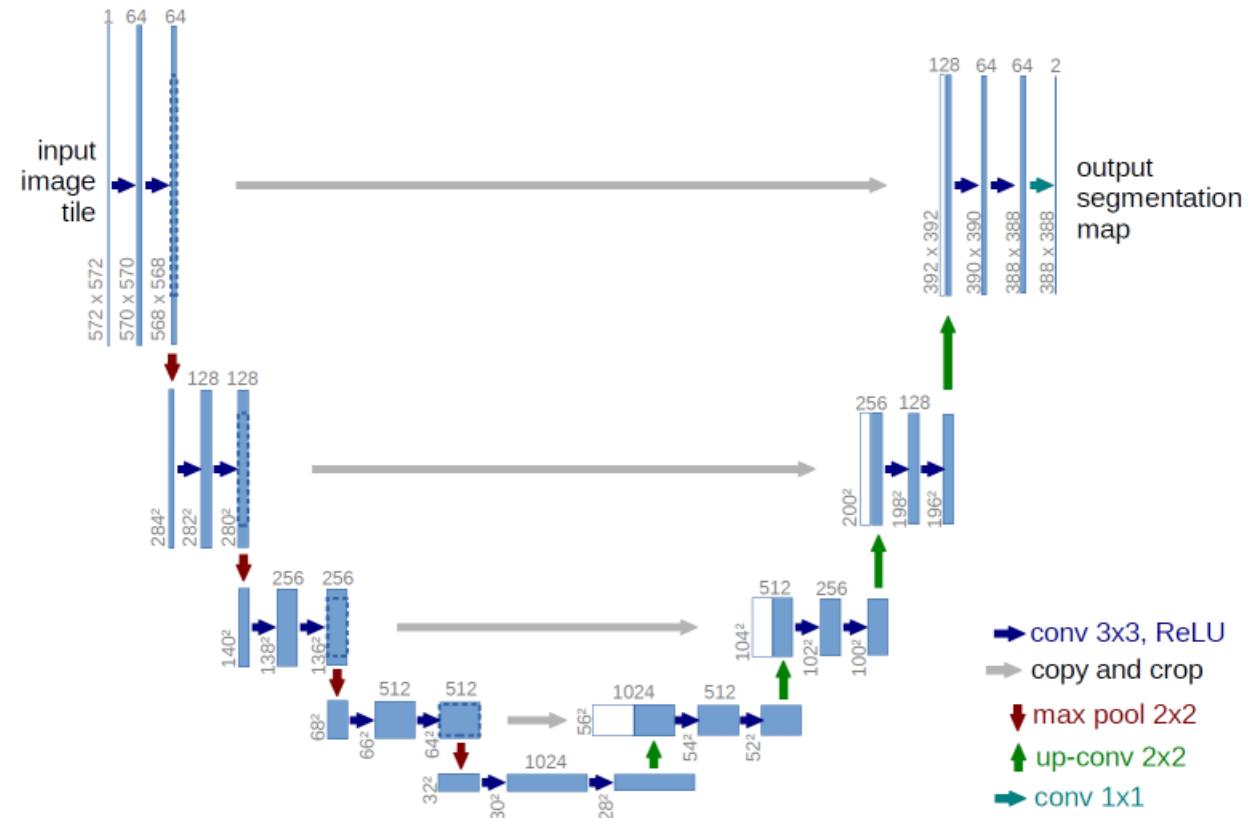


Fully Convolutional NNs: UNet

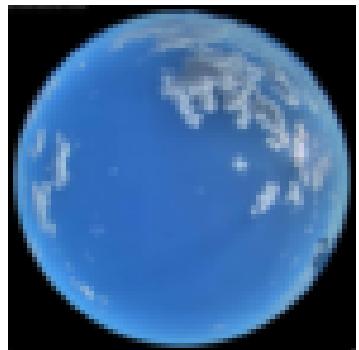
- ❖ Idea: use only conv layers to alter input to produce binary mask as output

- ❖ UNet Model

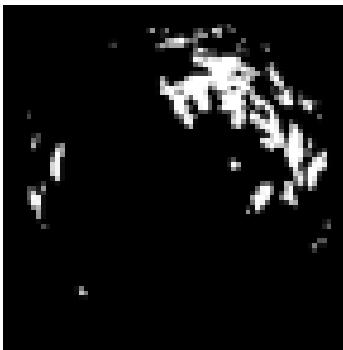
- ❖ Downsample, then upsample
- ❖ Skip connections between mirror layers
- ❖ Start with RGB image-> Binary mask of cloud/not cloud encoding



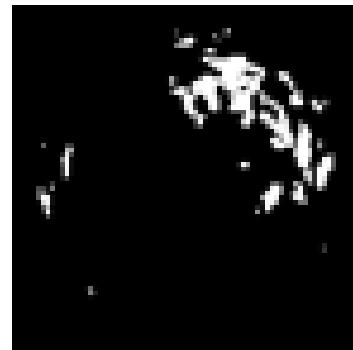
Original



HSV mask



CAE prediction



Difference

Part II: Motion tracking & prediction

- ❖ Problem: how do we track clouds through time to predict their movements?
 - ❖ Can we do this in real-time on low-power hardware?
- ❖ Inspirations from **biology**
 - ❖ Tracking animals & cells in the lab
- ❖ Deep learning based approaches show promise, but lack
 - ❖ Explain-ability
 - ❖ Consistent performance
 - ❖ Speed
 - ❖ Brevity
- ❖ This may be a situation where ML is **not** needed

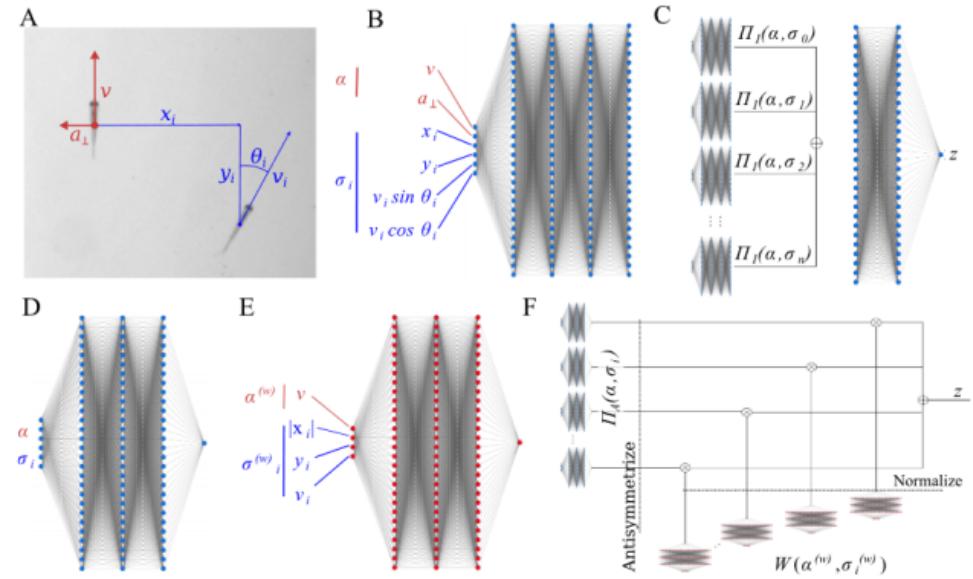


Fig 1. Deep-learning a model of collective behaviour. (A) Variables used to predict future turns. Asocial variables, those only involving the focal, in red. Social variables, those involving both the focal and a neighbour, in blue. (B) Pair-interaction subnetwork, receiving asocial variables α and social variables σ_i from a single neighbour i , and outputting a vector of 128 components. All pair-interaction networks share the same weights. (C) Interaction network, showing how the outputs of the pair-interaction subnetworks, one for each neighbour, are summed and then fed to an interaction subnetwork. The output, z , is the logit of the focal fish turning right after 1 s. (D) Pair-interaction subnetwork of the attention network. (E) Aggregation subnetwork of the attention network. Same structure as D, but the input is a restricted symmetric subset of the variables and the output is passed through an exponential function to make it positive. (F) Attention network, showing how the inputs of the pair-interaction and aggregation subnetworks are integrated to produce a single logit z for the focal fish turning right after 1 s.

<https://doi.org/10.1371/journal.ocbl.1007354.g001>

Heras et al, Deep attention networks reveal the rules of collective motion in zebrafish

Effects of cloud cover on PV

- ❖ Cloud cover causes radiation to become more diffuse
 - ❖ Ex: where's your shadow?
- ❖ Difficult to predict quantitatively without specialized sensors
- ❖ Easy to observe— just look up
 - ❖ Sky camera
- ❖ **How do we make quantitative predictions from image data?**

