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Introduction & Objective

Forecasting in the near future useful for PV to balance inputs to the grid

Short term power prediction impacted by cloud behavior.
Clouds in front of Sun = change in irradiance received

Task I: Identify clouds from image
Easy for humans
Hard to do automatically due to various sky conditions

Task II: Track & predict cloud movement through time
Will there be clouds in front of the Sun in the next 10 minutes?



Part I: Cloud Segmentation



Cloud Segmentation

Need some method to isolate 
clouds within an image
“Segmentation”

Multiple classical (i.e. non-ML 
methods)
Differ in various ways
Sensitive to changes in image 

type
Camera distortion
Luminosity
Obstructions

Filtering approach
Find some image transform to 

isolate clouds

How do we find a general, 
robust model that can adapt to 
the data?



Training UNet
CNNs are supervised
Require labeled training data

Problem: training data is expensive to get
Manual (human) labeling

Idea: use (all) classical methods as training data
Learn from strengths/weakness from all methods

Challenge: Can UNet model learn from flawed, auto-generated training data?
Also: does this process generalize well to different sources of data? 

Adjust UNet by taking 
gradient with respect to 
L
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Results
Three subsets
In sample truth
In sample masks
Out of sample masks

Masks predicted via classical 
algo.
Differences
Cameras
Cloud types
Locations

Classical In-sample 
truth

Out of sample 
masks

In-sample masks

Out of sample masks 
+ in sample truth

 When trained, model performs better 
then previous state of the art

 Model can generalize out of sample
 Location & camera independent

 Masks created by classical algo. can be 
used to boost initial performance w/o 
ground truth training data

Dataset 

1
Dataset 2



Part II: Motion tracking & 
prediction



Motion tracking & prediction

Crocker and Weeks, 1996 present a method for tracking colloidal particles
1. Isolate particles from binary mask
2. Find brightness maxima
3. Use maxima to locate centroids
4. Link though time

Implemented in open-source Python trackpy package
Easy to apply to new data
Provides exactly the statistics we need

Locate objects Object level drift Overall drift

http://soft-matter.github.io/trackpy/v0.5.0/index.html


Using motion linkages to predict future

Trackpy links particles through time

This provides us with their xy 
position over n minutes

How do we predict the future?
Numerical gradients via Taylor 

expansion/central differences

Once gradient is calculated, take 
mean with respect to x and y 
directions. 
This is projected cloud drift



Conclusions

Deep Learning achieves great accuracy on cloud segmentation, but can be 
hindered by lack of a training dataset
This can be addressed with imperfect, autogenerated labels

Transfer learning, even with imperfect labels
Can be used to ease training a deep learning model

Simple colloidal tracking algorithms can be repurposed for motion tracking 
and prediction of clouds
These methods useful to calculate projected input to grid as short-term power 
forecasts

Questions?



Extra slides for questions



Machine Learning in PV

Machine Learning (ML) is a catch-all term for a 
variety of statistical methods, including (but not 
limited to)
Regression, clustering, feature extraction, 

dimensionality reduction, etc. 
Neural Networks/Deep Learning

Many uses in PV
Power forecasting
Material performance
Fault detection

Strength: Using trends in high-dimensional 
data to  solve problems with no known closed
-form equations
No existing physics-based equations
Data in hard-to-quantify formats (e.g. images)
Large quantities of data 

Srivastava et al, Machine Learning Roadmap for Perovskite Photovoltaics

Kahn et al, Improved solar photovoltaic energy generation forecast using deep learning-based 
ensemble stacking approach



Convolutional Neural Networks
Idea: use data to learn 
general filters

Filter is called the “kernel”
Which has elements called 

“weights”

Learning task
Find weights for useful 

filters



Fully Convolutional NNs: UNet

Idea: use only conv layers to alter 
input to produce binary mask as 
output

UNet Model
Downsample, then upsample
Skip connections between mirror 

layers

Start with RGB image-> Binary 
mask of cloud/not cloud encoding



Part II: Motion tracking & prediction

Problem: how do we track clouds 
through time to predict their movements?
Can we do this in real-time on low-power 

hardware?

Inspirations from biology
Tracking animals & cells in the lab

Deep learning based approaches show 
promise, but lack
Explain-ability
Consistent performance
Speed
Brevity

This may be a situation where ML is not 
needed

Heras et al, Deep attention networks reveal the rules of collective motion in zebrafish



Effects of cloud cover on PV

Cloud cover causes radiation to 
become more diffuse
Ex: where’s your shadow?

Difficult to predict quantitatively 
without specialized sensors

Easy to observe– just look up
Sky camera

How do we make quantitative 
predictions from image data?


