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Coupled Structure/Cavity Systems

o Examples:
o Fuel Tanks

o Automobile cabins
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o Musical instruments

o General hollow structures

o Strong coupling requires:

o Near coincidence of uncoupled 100
natural frequencies |

o Mode shape similarity
o Effects:
o Split resonance peaks

o Analogous to a tuned mass
damper
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Motivation
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Structure o Coupling can cause
' Res\ﬁ’nances additional resonances in

experimental FRFs
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o Simply adding acoustic
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Idea

o Remove the acoustic part of the
coupled FRFs using an uncoupled
model of the cavity

o Inspired by transmission
simulator method?

o First: establish a generalized

coordinate assembly component an
mode synthesis method (GCA-CMS)?

for structure/cavity coupling problem

o Then: Adapt the GCA-CMS for the ;
decoupling problem
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2D, de Klerk, D. J. Rixen and S. N. Voormeeren, "General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques," AIAA Journal, vol

46(5), pp 1169-1180, 2008.



Coupling Procedure

Assemble disjoint system in generalized coordinates:

o g tied+ [ ) {ie} = {of

Transformation between physical and generalized coordinates:

et = Lol 1

V&,] Normalized gradient of acoustic modes. Modes normalized according

to:
Vo, . .
Ve, = ,fﬂ::f where  m; = p; /1 Vo; - Vo;dV

[@s]  Mass normalized structural modes



Coupling Procedure (cont’d)

Constraints enforced in terms of physical displacements:

. U A o 0
a{if o}
where [a]is the Boolean constraint matrix. In terms of generalized coordinates:
= 0 for rigid wall _
modes, so they ] @ _[U_ ] {(}_4} — [d] {E}_q} _ {0}
can’t be used ' g D] | gs | gs 0

exclusively as a

basis
Using Lagrange multipliers, the complete set of EOMs is:
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Coupling Procedure (cont’d)

Need to find a set of unconstrained DOFs. This set is related to the constrained set
by the coordinate transformation

dal _
find )0
From the constraint equations:
@] [B]{¢}={0} >  [B] isthe null space of |d]

The coupled natural frequencies and modes can then be calculated from

([f{] - ;.,-;fj_ﬂj) (6} = {0}
where

= [ s &= (K05 s



Decoupling Procedure

Disjoint system

o Ui+ el 1o

Constraint equation in generalized coordinates:

o[ ol { e a{a {0}

The decoupled natural frequencies and modes can then be calculated from

([ﬁ‘;] _ ;,ﬁ[j}f;) (6} = {0}
where
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Example: Piston/Duct Coupling

o SDOF piston coupled to a 1D
acoustic duct

o Coupled natural frequencies
determined by:

e

o Piston-to-fluid mass ratio -
o Uncoupled natural
frequency ratio
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Piston/Duct Coupling
Choice of Acoustic Basis Functions

o Using a basis of pressure-release
modes can lead to slow
convergence

o Enriching basis with a few rigid
wall modes or kinematically
admissible polynomials can speed
convergence
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Example: Piston/Duct Decoupling
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Acceleration FRF [[m/s2)/N]

Example: Plate/Box Coupling

Structure Acoustic Coupled System,
Component, A Component, B C=A+B

10 =+ Direct-FRF, Coupled |

A =+ Direct-FRF, Coupled |
10 —+— Direct-FRF, Plate Only —+— Direct-FRF, Plate Only

Acceleration FRF [(m/s2)/N]

CMS Coupled Modal-FRF CMS Coupled Modal-FRF

102 : : : ' 102 ' ' ' :
50 100 150 200 250 300 50 100 150 200 250 300
Frequency (Hz) Frequency (Hz)
30 Plate + 10 Box Modes 50 Plate + 100 Box Modes
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Example: Plate/Box Decoupling

o Coupling effect is removed and result approaches the truth plate-only FRF

Acceleration FRF [{m/s2)/N]
Acceleration FRF [{m/sE }N]

-1°E
10 —+— Direct-FRF, Plate Only
CMS Decoupled, Plate Only

-1
10 —+— Direct-FRF, Coupled
CMS Coupled Modal-FRF

1072 ' ' ' ' 1072 ' ' ' '
50 100 150 200 250 300 50 100 150 200 250 300
Freguency (Hz) Frequency (Hz)
Coupled System Decoupled Plate
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Interface Reduction

Often, the number of DOFs at fluid-structure interface is large
o Coupling (or decoupling) problem quickly becomes over-constrained

Possible to “soften” constraints by pre-multiplying by the pseudo-inverse of
the acoustic mode matrix

voulal Vo gl { 4 ={0 ]

This approach worked well for first mode in plate/box example, but failed at
higher modes



Approximate Decoupling Equation

The in vacuo natural frequency can be estimated using:

w2 —w?+p

.T~ -

W = W,
2 __ 42
Wi — W3
We Coupled natural frequency
Wy Rigid wall acoustic natural frequency
i l T T T T T T T
’{Jﬂf'ﬁ A F .
B = 1 U Coupling strength parameter
PsV
v — L? Non-dimensional component mode «:
[ [br coupling number3
1 o . o Ul..-.l-,::;:::'TI:'.‘.‘.',ZZE.’.'.‘ ntl..
L- - A— GSQI)IdAF COUpIIng CoeffICIent s g'i]’ﬁlllll;[‘l‘-[‘ll[j*il molJ lH . ”
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3Dauvis, R. B. (2017). A simplified approach for predicting interaction between flexible structures and acoustic enclosures. Journal of fluids and structures, 70, 276-294.



Decoupling Equation: Results
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Conclusions

o Desired Application: Given coupled FRFs
and uncoupled acoustic model, subtract off=.,.

acoustic part to obtain the structure-only £
FRF )
o A component mode synthesis approach Ay T R
was applied to coupling & decoupling ———————
problems AT
o Demonstrated with: €
O Piston/duct -{_‘:t:m'l '—|—[JlnreF'.-FF-:F.C:JmI9<! %D :—i—qured-FF-fF.-PIamO'lyJ .
O Plate/box 10:5-.0 100 rlrizm,._.j:; 20 :::0 -025::' 100 ;.iim.,._,.,z,ii:, 250 300
o Observed numerical issues when more 0
than a few constraint equations are S AE
g 1 21 Ei
present N 5
o Better interface reduction approaches = i /o
are needed = T P
2550 2560 2570 2580 25390 2600 2610 2620 2630 2640 2650
o Approximate expression shown to Froquency (Hz)

circumvent numerical issues 17



