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Multifidelity Methods: Sampling UQ, Surrogate UQ, OUU Nanonal
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Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC) Optimization Under Uncertainty
Production: optimal resource : ; * Production (v6.10+): * Production: manage simulation
allocation for multilevel, ) ML PCE w/ projection & regression; L3 and/or stochastic fidelity
multifidelity, combined (DARPA #I—°= / ML SC w/ nodal/hierarchical interp; 1| )
EQUIPS, Wind, Cardiovascular) Ty =y - greedy ML adaptation (DARPA o * Emerging:
_ _ _ _ . /j/ E—Ez SEQUOIA), multilevel fn train (ASC V&V) .| Derivative-based methods (DARPA SEQUOIA)

Emerging: active dimensions - b * Multigrid optimization (MG/Opt)
(LDRD, SciDAC), generalized g * Emerging: multi-index stochastic * Recursive trust-region model mgmt.:
fmwk for approx control variates | - - -'-:'5_| collocation; multiphysics/multiscale extend TRMM to deep hierarchies
(ASC V&V), goal orientation (rare & w—— integration (ASC V&V); new surrogates = Derivative-free methods (DARPA Scramiet)
events), hybrid methods for GSA" - (GP, ROM, NN) w/ error mgmt. fmwk " * SNOWPAC (w/ MIT, TUM) with goal-

o (LDRD, SciDAC); learning latent variable = oriented MLMC error estimates
On the horizon: control of time relationships (MFNets, LDRD) T
avg; model tuning / selection : o * On the horizon: Gaussian process-based
(LDRD) * On the horizon: unification of surrogate approaches: multifidelity EGO; Optimal

+ sampling approaches (LDRD) experimental design (OED)

Feedback from these mission deployments have an essential influence on the research roadmap



Key mission feedbacks

Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
« Extensions for complex multidimensional hierarchies - multi-index collocation, multiphysics / multiscale
* Investments in non-hierarchical MF methods - ACV and MFNets

Popular MF approaches neglect important practicalities

* "Oracle” correlations assumed > iterated versions of MFMC, ACV to reduce cost from pilot over-estimation
* Imperfect data > embedded cross validation in regression-based surrogate MF

« Dissimilar parameterizations - shared subspaces to link and correlate diverse models

« Stochastic simulations, simulation/surrogate error estimation - extended error management framework

« Heterogeneous ensemble management - integration with HPC workflow managers, R&D in ensemble AMT
* Free hyper-parameters in LF approximations - model tuning

MF methods most often utilize a fixed model ensemble determined by expert judgment

* Experts are often inaccurate in this context
« SMEs from a physics discipline often have high predictivity standards and tend to over-estimate the LF accuracy required

» Leads to non-optimal correlation / cost trade-off and sub-optimal MF UQ
—> Initial explorations of hyper-parameter model tuning, within the context of particular estimators (ACV, MFMC, ...)




Background: hierarchical/paired ML/MF sampling methods of interest (o
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Multilevel Monte Carlo Control Variate Monte Carlo
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G. Geraci, E., G. laccarino, “A multifidelity control variate approach for the multilevel Monte Carlo technique,” CTR Res Briefs 2015.
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Background: multifidelity Monte Carlo (MFMC) Leberacories

Optimal LF over-sample HF samples from budget
Correlations . wi(pi; = Pliv1) «_ D
Costs TN T (= p2,) O S e
1,i01 : ,
a; = PLi%1 > Expectations from shared, refined
j
Background: approximate control variate (ACV) C = covariance matrix among Q,
¢ = covariance vector among Q; and Q
VIS = —[co F”S’:_l [diag (FO9) o] VM — [0 FMP) - [diag (FMP) oc).
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Peherstorfer, Willcox, Gunzburger, “Optimal Model Management For Multifidelity Monte Carlo Estimation”, SISC, Vol. 38, No. 5.

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelit



Summary: multilevel / multifidelity estimators of interest

Sandia
National

Laboratories
M M = qg0lve ~¥— W-RDiff
- ~ - A ~ 2 . MFMC
Q(E+E}ZQ{Z)+Z(X! (Ql ( ) :u'i ( )) ZQ{I)—I_Z"II-&'!-{ZI-}:Q_{_ETE E 10-1 Monomial test ACV-IS
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Sampleset | AiAfl Rl ] [Ii | oA 05 o w %
definitions for 2| M i I R = loga(ri) -
timators I 21 Performance bounds for
estl b recursive vs. non-recursive
”I =2, + Recursive limited by variance
2 reduction of perfect u, (OCV-1)
_ _ o | _ | « Non-recursive exploits gap
(a) W-RDiff sampling strat. (b) MFMC sampling strat. \c] ACV-IS sampling strat. (d) ACV-MF sampling strat. between OCV-1 and OCV
MLMC 1D: hierarchical, recursive Analytic
CVMC 1D: HF,LF pair Analytic
MLCV MC 2D: HF,LF pair + resolutions Analytic
MFMC 1D: hierarchical, recursive Analytic, Numerical
ACV Ensemble of unordered models Numerical

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity UQ,” JCP 408 (2020)



Model Tuning Approaches: All-At-Once and Bi-Level () et

Model tuning performed to maximize performance of a particular estimator (e.g. MLMC, MFMC, ACV) using
tunable hyper-parameters associated with one or more low-fidelity models (HF reference is immutable)

AAOQO optimization (in Python): hyper-parameters integrate as additional decision vars for minimizing EstVar

arg min Var|@Q]
6.r,N N

M
(1 - R*@,r)) st. N (w—kai(H)n) <C
i=1

« Potential for greater efficiency: one integrated optimization solve
* Need to emulate lower-level p(@),w(6) to avoid expensive pilot re-analysis for every change in 6

Bi-level optimization (in Dakota): inner loop optimization solve for each outer loop & iterate
Var[Q] (

arg min |arg min

(i) r,N i—1

M
1—-R*#,r)) st. N (w + Z wi(ﬁ')n-) <C

« For nested numerical solution, outer loop must now contend with inner-loop solver noise
* Noise and expense can be mitigated using pilot projections, with some loss of accuracy

« Can choose to emulate at a higher level, requiring fewer emulators (e.g. EGO, TRMM to min EstVar*(6))
* Plug and play with surrogate-based methods (EGO, TRMM), MINLP, etc.

* For analytic cases (e.g., ML, CV, MLCV, ordered MF), AAO collapses to single level argmin,,
* Neither case requires application of r* since we only require EstVar* for tuning (not final expectations)

- * An evaluation cache further streamlines expense (e.g., HF pilots) with care in managing 8 dependencies -_
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Exploration of model tuning for a parameterized model problem @ Iiboratories
“Tunable Model” Definitions (JCP 2020)

Lol model properies Gost profe for LFL and Lr2
Q) = VII [ cos(f) «° +sin(9) o° | . L

Q:1(61) = V7 [ cos(b) ® +sin(6;) y* | (o] CostLF1(0),

Qa(62) = V3 [ cos(fla) x+sin(f) y ] . -

Start with tuning 1 parameter (6,) for mid-fidelity 00] e b

high / low hyper-parameters fixed: 0 = /2, 6, = /6 S T TR YRR

Bi-level optimization (in Dakota):
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Tunable problem with multiple hyper-parameters

Online / iterated mode with pilot = 100

o0 Less robust: significant
performance loss for non

-optimal theta

CIMLMC

g oooa- T

o002

H 0.4 04 2,

MFMC Online ¢ lterated Selver Owverride

More consistent but

* Mitigation: Dakota
switches to average(p)-
reordered models with
pyramid constraint

* Excepting discontinuity
from discrete switch,
generally unimodal

Exstifur’

susceptible to mis-ordering:
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Less robust: significant
performance loss for non
-optimal theta

g MLGVMC

Larger region of good perf.,

.. best solution is better, and

__ ' insensitive to model ordering:

..+ Multimodal: two LF1,LF2

% configurations achieve best

. performance overall

._ %+ Generally an algorithmic
.4 strength (as for adapting to

over-estimated pilot), but an

optimizer challenge

) o4 04 #

Efficient global optimization (EGO):
Online / iterated pilot = {10,25,100,250}
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Deployment for Thermally-Activated Battery Simulation (TABS) Laboraories

Thermal batteries use a molten salt electrolyte that is solid at room temp, enabling a long shelf-life
* Activation involves igniting pyrotechnic pellets to heat the battery / melt the electrolyte

Simulation involves multiple coupled physics: i Cathode 2 g
* Energetic material burning, heat transfer, electrolyte phase change, capillary-driven ) Separator = E =X
rr
two-phase porous flow, ion transport, electrochemical reactions, electrical transport 5 Anode S =1
— estreler N
| Collector
Model fidelity options already well-defined by the TABS team, with an ongoing V&V focus:
* Model fidelities can be defined by an active subset of these physics
* Resolutions determined by radial/axial spatial resolution and time-stepping controls
Summary of model fidelity modes.
Mode Descriptive name Physics included
Dimension Temperature-dependent Electrochemistry Thermal activation Two-Phase porous flow
1 Thermal 2D v X v X
2 Electrochemical 1D e v e X
35B Thermal-Electrochemical (Skip-Bum) 2D o v X X
3 Thermal-Electrochemical 2D v v s X
4 Full-Physics 2D v v v v

T.G. Voskuilen, H.K. Moffat, B.B. Schroeder, S.A. Roberts, “Multi-fidelity electrochemical modeling of thermally activated battery cells,” Journal of Power Sources, 488 (2021).



MF UQ for Single-cell LCCM model

HF 50x100 LF 50x100
HF 25x50 LF 25x50
HF 13x26 LF 13x26

* 45 random inputs = MF sampling approaches insensitive to dimensionality
* 7 Qol: rise time, V(1.5), V(4.005), V(4.51), max {voltage, anode temp, cath temp}
« Solution verification to configure modes and solver
1.75 4 mximum
voltage at 1.81
1507 t=1.5s \
1.25 mid-pulse 179 i
k)
oo voltage v ;}‘
0.75 1 E
0.50 - 157 Mid-pulse “;
nAxial, nRadial E) 14 =1, nEadiz
0.25 — 13,26 voltage 3 — 1% 7a
' ——- 25,50 1.4- 4 t T
oood 4 .. 50, 100 : PO S REE
(I) i é ZI-Z All 5 EIS 4.CI|00 4.0|02 4.604
time [s]

4.006
time [s]

4.008

4.010

For the TABS-SC and model tuning studies, we select mode 3 as LF and mode 4 as HF:
« Spatial radial/axial resolution set includes at {13x26, 25x50, 50x100} for both modes

asCaly

(dh)
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Fine temporal resolution settings used for mode 4, coarse temporal resolution settings for mode 3 are hyper-parameter tuning targets
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Deployment of Model Tuning for Thermally-Activated Battery Simulation National
Optimize performance for down-selected estimators (MLCV and ACV, budget 1000)

MLCV HF 50x100 |« LF 50x100 ACV HF 50x100
T
HF 25x50 [« LF 25x50
f LF 13x26 | | LF 25x50 | | LF 50x100 | | HF 13x26 | | HF 25x50
HF 13x26 [« LF 13x26
Hand-tuned: refine across discrete combinations until r > 0.9 obtained for all Qol

Hand-tuned hyper-parameters: Hand-tuned hyper-parameters:

0.01 initial time step 0.01 initial time step

0.10 predictor-corrector tol 0.10 predictor-corrector tol

0.10 nonlinear residual tol 27.3x 0.10 nonlinear residual tol 24 8x
Projected MLCV Estimator Variance: .050092 Projected ACV Estimator Variance: .053138
Single fidelity accuracy for equiv cost: 1.3668 (969 HF) Single fidelity accuracy for equiv cost: 1.3178 (1005 HF)
Single fidelity cost for equiv accuracy: 26,440 HF (Estvar 0.050092) Single fidelity cost for equiv accuracy: 24,925 HF (EstVar .053138)

EGO-tuned: global minimization of variance of selected estimator (max iter = 80)

Optimal hyper-parameters: Optimal hyper-parameters:

0.0084097 initial time step 0.0067487 initial time step

0.0061138 predictor-corrector tol 0.0010880 predictor-corrector tol

0.028493 nonlinear residual tol 39.7x 0.046707 nonlinear residual tol 143x
Projected MLCV Estimator Variance: .034396 Projected ACV Estimator Variance:  0.0092395
Single fidelity accuracy for equiv cost: 1.3654 (970 HF) Single fidelity accuracy for equiv cost: 1.3192 (1004 HF)
Single fidelity cost for equiv accuracy: 38,506 HF (EstVar 0.034396) Single fidelity cost for equiv accuracy: 143,340 HF (EstVvar 0.0092395)
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Multifidelity methods are proving their value in a broad variety of mission deployments
« Eliminate exclusive reliance on the most expensive models and employ approximations in a principled manner

Realistic deployments of multifidelity methods encounter a variety of challenges
* Here we target the challenge of optimally configuring multiple LF models, given hyper-parameters that trade accuracy vs. cost

Optimization Approaches

* AAO Optimization (in Python): hyper-parameters become additional decision vars in argmin, , , EstVar
« Solve 1 integrated optimization problem; emulate lower-level p(6), w(6); avoids optimizing on top of solver noise

* Bi-level optimization (in Dakota): argmin, [ argmin,  EstVar ]
* Plug-and-play with surrogate-based optimizers to mitigate solver noise (EGO for low D, TRMM for moderate D, NLP for high D)
« Implementation: online cost recovery w/ metadata, solution modes, evaluation cache, bypass LF increments for EstVar tuning

Numerical Experiments
« Tunable multifidelity problem: 1D (6,): ACV > {MF,CV} > {MLCV,ML}; 2D (¢,, &): ACV > MF > {MLCV,ML}
* Robustness obtained from numerical solves: can better adapt to pilot over-estimation, model sequencing
« Surrogate-based optimization approaches (EGO, TRMM) have been effective despite some level of noise
« TABS-SC LCCM model tuning: hyper-parameters for mode 3 temporal resolution (initial At, pred-corr tol, nonlin res tol)
* Relative to SME hand-tuning (25x to 27x), EGO-based tuning reduced estimator variance by up to another 6x 2 143x total
« MLCV graph was good match, but ACV demonstrated greater tuning freedom - funed ACV was best performer overall

Next algorithmic steps: exploration of AAO benefits, include MINLP for mixed continuous-discrete hyper-parameters
Additional deployments: stochastic simulations (PIC codes for plasma physics), EDL with NASA
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Potential Flow

Multiple Model Forms in UQ & Opt

Discrete model choices for simulation of same physics

A clear hierarchy of fidelity (from low to high)

» Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ), inference

« Support general case of discrete model forms
« Discrepancy does not go to 0 under refinement

Hybrid RANS/LES
An ensemble of peer models lacking clear preference structure /
cost separation: e.g., SGS modeling options Potential Flow -

« With data: model selection, inadequacy characterization

 Criteria: predictivity, discrepancy complexity Reynolds ===
» Without (adequate) data: epistemic model form propagation "‘;mg:dm“fﬁ;;‘ RANS model [l RANS model made

 Intrusive, nonintrusive
* In MF context: correlation analysis, model tuning, ensemble selection

Hybrid e ke Hybrid
Y Edidy Tot
Large Eddy

oty il Wl

AN[API] [PPOJAl SuUISEAIDU]

Discretization levels / resolution controls
» Exploit special structure: discrepancy - 0 at order of
spatial/temporal convergence

Combinations for
multiphysics, multiscale



2)
3)
4)

N( shared samples > Estimate p2,,,) > Estimate r()

Iterated MFMC

Iterated ACV
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Initialize: select a small shared pilot sample N© expected to under-shoot the optimal profile

1) Sample all models

—

Estimate N(*") using prescribed { budget C || tolerance ¢ }

Compute one-sided AN for shared samples from N® to N(+1)
A. Optional: apply under-relaxation factor y

B.

WMean Error

If non-zero increment, advance (i) and return to 1)

100+

1) NO shared samples = Cov (), Cov 0 (“C”, “c”) = opt. solver > r', N’
2) Compute one-sided AN for shared samples from N® to N

A. Optional: apply under-relaxation factor y

B. If non-zero increment, advance (i) and return to 1)

Finalize: apply r* for LF eval increments, estimate o = apply controls to compute final expectation(s)

535 Dillugion wilh 5 Maodels, 3 Qol. 4x CosliLevel

MFIMC std error Pilot =5
=nfr= MFMC std error Pilat = 10

== MEMC std error Filot = 50
== MFMC std error Pilot = 100

o= MFMC std crror Pilot =25 ||

s
\\u . v
*\\.,\ LY
LY
N ?ar
SEA
PN
ERBIN
PN
.

WA,

Tawa

N

A,
R,
YR,
v,
o
g’t
At
Wy
R

Std errors averaged
across 10 seeds

10° 10}

Equivalent HF Jimulations

Performance degradation from pilot over-estimation is clearly evident

Analytic r* reduces numerical burden but also limits flexibility

85 Dillugion wilh 3 Models, 3 Qol. 4x CosliLevel
10 T

AGY MF NIP StdErr 3 Models Pilot = 5
< =lr= ACY MF NIP StdErr 3 Models Pilat = 10 |]
== ACY MF NIP StdErr 3 Modols Pilot = 25 |
== ACY MF NIP StdErr 3 Models Pilot = 50 |4
== ACY MF NIP StdErr 3 Models Pilot = 100

X
\'\‘ ‘q
' DR
Rl TR ;
N Y .
: \';‘~ “‘, ",
X Y
= “?"E A
N
107"} -q*‘:, .
Std errors averaged ‘L\"\
across 10 seeds
P T

Performance degradation from pilot over-estimation is not significant
 ACV-MF demonstrates greater flexibility / resilience:

locates near-optimal solutions that incorporate large pilots
« Starting pts on left are for budget = pilot (moves quickly from MC to ACV)




Tuning for parameterized model problem (Cont.)
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Model tuning performed within the context of a particular estimator (here, ACV-MF)

1

91 _.N,il"‘l ,.?"2 N

2
argmin - (1 — Ricv_umr (9111'1,?"2)) st. C”" =N (w + Zwiri) < Crarget = 1000
i=1

AAQ optimization (in Python):

* For ACV (and numerical MFMC), hyper-parameters integrate as additional decision vars for
minimizing estimator variance

Variance ACV-MF

0.0014 1 -®- ACV-MF b
— MC f]

0.0012 - ,;'
6
% 0.0010 - ~
> /
5 0.0008 a_ $ Mid-fidelity model (Q) is tuned
£ " / for ACV at ~ midpoint 6,* = /3
3 0.0006 ‘o P

L N s
0.0004 - "‘1‘_
Aot WSy oY g
U.Iﬁ {].IB 1.I{] 1j2 1.4 1.6
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Extension to multiple hyper-parameters National _
Cost profile for LF1 and LF2
B [y Add cost model w, for LF2(4,): introduce &, »
0.8 A B 5
log(w) = log(wiew) — log ( e ) 0~ Biow)

., 061 Whigh Qrange

S 0.4 - Wiow — 001?: Whigh — 7 Qlow — 71—/6: Q'r’a'n,ge — W/Q - glow
024 Forw,, o=y=1 (reproduces previous cost model)

Forw,, o =25 y=055 (LF2 now separated in cost throughout)

In the following, we first investigate surface contours of EstVar for the multiple approximation estimators:
« MLMC, MFMC, ACV (CVMC excluded)

Given modest hyper-parameter dim, we explore using surrogate-based approaches for global || local opt.

« Efficient Global Optimization (EGO_I)
* Trust region model management (TRMM, aka surrogate_based_local)

* GP surrogates, SQP subproblem solves, initial TR = 50% from 8@ ={1.1, 0.55}
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Tunable problem W|th multlple hyper-parameters: MLMC (i) et

Pllot prOJectlon (100) . Onllne pllot (100) / |terated

Less robust: significant performance loss for non-optimal theta (up to EstVar* = 0.01 2 10x > MC)




Tunable problem with multiple hyper-parameters: MLCV MC i) Mo

- Pilot projection (100) ~ Online pilot (100) / iterated

003 ol 0025

0025 .
002 .
0015~ .

EstVar*

001
0005

18
1.6

Less robust: significant performance loss for non-optimal theta (up to EstVar* = 0.03 - 30x > MC)




Tunable problem with multiple hyper-parameters: MFMC (analytic + mitigation)

~,  Piotprojection (100) {y, Online pilot (100)/ ierated

x10° o

EstvVar*
— (8] N
EstVar*

More consistent performance but susceptible to model mis-ordering:

« Dakota mitigates with switch to reordered numerical solve w/ pyramid constraint enforcement
« While noisier, performance relative to analytic looks promising

* Excepting discontinuity, generally unimodal




Tunable problem with multiple hyper-parameters: ACV (i) Retorar

‘ On"”epl|0’[(100) / iterated

EstVar*

Larger region of good performance, best solution is better, and insensitive to model ordering:
* Multimodal: two LF1,LF2 configurations achieve best performance overall
* Generally an algorithmic strength (as for adapting to over-estimated pilot), but a challenge for optimizers
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Onllne pllot (10 25 100 250) / iterated

Bi-Level Surrogate Optlmlzatlon results: ACV

EGO .Ni ’ $
167 W \“

Estvar®

TRMM

Es=tyvar

EGO generally outperformed TRMM for these low-D searches (lower EstVar + lower expense in 7 of 8 cases)



