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Multifidelity Methods: Sampling UQ, Surrogate UQ, OUU
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Optimization Under Uncertainty

• Production: manage simulation 
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.: 
extend TRMM to deep hierarchies

Derivative-free methods (DARPA Scramjet)
• SNOWPAC (w/ MIT, TUM) with goal-
oriented MLMC error estimates

• On the horizon: Gaussian process-based 
approaches: multifidelity EGO; Optimal 
experimental design (OED)

Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC)

• Production (v6.10+):  
ML PCE w/ projection & regression; 
ML SC w/ nodal/hierarchical interp; 
greedy ML adaptation (DARPA 
SEQUOIA), multilevel fn train (ASC V&V)

• Emerging: multi-index stochastic 
collocation; multiphysics/multiscale 
integration  (ASC V&V); new surrogates 
(GP, ROM, NN) w/ error mgmt. fmwk 
(LDRD, SciDAC); learning latent variable 
relationships (MFNets, LDRD)

• On the horizon: unification of surrogate 
+ sampling approaches (LDRD)

• Production: optimal resource 
allocation for multilevel, 
multifidelity, combined (DARPA 
EQUiPS, Wind, Cardiovascular)

• Emerging: active dimensions 
(LDRD, SciDAC), generalized 
fmwk for approx control variates 
(ASC V&V), goal orientation (rare 
events), hybrid methods for GSA

• On the horizon: control of time 
avg; model tuning / selection 
(LDRD)

Robust

Feedback from these mission deployments have an essential influence on the research roadmap



Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
• Extensions for complex multidimensional hierarchies  multi-index collocation, multiphysics / multiscale
• Investments in non-hierarchical MF methods  ACV and MFNets

Popular MF approaches neglect important practicalities
• "Oracle” correlations assumed  iterated versions of MFMC, ACV to reduce cost from pilot over-estimation
• Imperfect data  embedded cross validation in regression-based surrogate MF
• Dissimilar parameterizations  shared subspaces to link and correlate diverse models
• Stochastic simulations, simulation/surrogate error estimation  extended error management framework
• Heterogeneous ensemble management  integration with HPC workflow managers, R&D in ensemble AMT
• Free hyper-parameters in LF approximations  model tuning

Key mission feedbacks

MF methods most often utilize a fixed model ensemble determined by expert judgment
• Experts are often inaccurate in this context

• SMEs from a physics discipline often have high predictivity standards and tend to over-estimate the LF accuracy required
• Leads to non-optimal correlation / cost trade-off and sub-optimal MF UQ
 Initial explorations of hyper-parameter model tuning, within the context of particular estimators (ACV, MFMC, ...)



Background: hierarchical/paired ML/MF sampling methods of interest

Pasupathy et al, 2012; Ng and Willcox, 2014.

Minimize cost s.t. error balance:

M. Giles, “Multilevel Monte Carlo path simulation,” 2008.

Multilevel Monte Carlo

Multilevel-Control Variate Monte Carlo

Control Variate Monte Carlo

Classical control variate:
LF oversample ratio

G. Geraci, E., G. Iaccarino, “A multifidelity control variate approach for the multilevel Monte Carlo technique,” CTR Res Briefs 2015.

HF allocation



Background: multifidelity Monte Carlo (MFMC)

Correlations
Costs

Expectations from shared, refined

Optimal LF over-sample HF samples from budget

Peherstorfer, Willcox, Gunzburger, “Optimal Model Management For Multifidelity Monte Carlo Estimation”, SISC, Vol. 38, No. 5.
Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)

Background: approximate control variate (ACV) C = covariance matrix among Qi
c = covariance vector among Qi and Q



Summary: multilevel / multifidelity estimators of interest

Sample set 
definitions for 
estimators

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity UQ,” JCP 408 (2020)

Monomial test 
problem

Performance bounds for 
recursive vs. non-recursive
• Recursive limited by variance 
reduction of perfect m1 (OCV-1)

• Non-recursive exploits gap 
between OCV-1 and OCV

Estimator Type Sample allocation
MLMC 1D: hierarchical, recursive Analytic
CVMC 1D: HF,LF pair Analytic
MLCV MC 2D: HF,LF pair + resolutions Analytic
MFMC 1D: hierarchical, recursive Analytic, Numerical
ACV Ensemble of unordered models Numerical

6



Model Tuning Approaches: All-At-Once and Bi-Level 

Model tuning performed to maximize performance of a particular estimator (e.g. MLMC, MFMC, ACV) using 
tunable hyper-parameters associated with one or more low-fidelity models (HF reference is immutable)

AAO optimization (in Python): hyper-parameters integrate as additional decision vars for minimizing EstVar

• Potential for greater efficiency: one integrated optimization solve
• Need to emulate lower-level r(q),w(q) to avoid expensive pilot re-analysis for every change in q

• For analytic cases (e.g., ML, CV, MLCV, ordered MF), AAO collapses to single level argminq
• Neither case requires application of r* since we only require EstVar* for tuning (not final expectations)
• An evaluation cache further streamlines expense (e.g., HF pilots) with care in managing q dependencies

Bi-level optimization (in Dakota):   inner loop optimization solve for each outer loop q  iterate

• For nested numerical solution, outer loop must now contend with inner-loop solver noise
• Noise and expense can be mitigated using pilot projections, with some loss of accuracy

• Can choose to emulate at a higher level, requiring fewer emulators (e.g. EGO, TRMM to min EstVar*(q))
• Plug and play with surrogate-based methods (EGO, TRMM), MINLP, etc.



Exploration of model tuning for a parameterized model problem

Start with tuning 1 parameter (q1) for mid-fidelity
high / low hyper-parameters fixed: q  = p/2, q2 = p/6

“Tunable Model” Definitions (JCP 2020)

Cost LF1(q1)

Cost LF1(q1), 
Cost LF2(q2)

Bi-level optimization (in Dakota):

Projection: Online Pilot = 25 Projection: Online Pilot = 100 Oracle: Offline Pilot = 5000

Iterated:  Online Pilot = 25



Tunable problem with multiple hyper-parameters
Online / iterated mode with pilot = 100

Less robust: significant 
performance loss for non
-optimal theta

MLMC

MFMC

MLCV MC

More consistent but 
susceptible to mis-ordering: 
• Mitigation: Dakota 
switches to average(r)-
reordered models with 
pyramid constraint

• Excepting discontinuity 
from discrete switch, 
generally unimodal

Larger region of good perf., 
best solution is better, and 
insensitive to model ordering: 
• Multimodal: two LF1,LF2 
configurations achieve best 
performance overall

• Generally an algorithmic 
strength (as for adapting to 
over-estimated pilot), but an 
optimizer challenge

Less robust: significant 
performance loss for non
-optimal theta

Efficient global optimization (EGO):
Online / iterated pilot = {10,25,100,250} 

ACV-MF



Deployment for Thermally-Activated Battery Simulation (TABS) 

Thermal batteries use a molten salt electrolyte that is solid at room temp, enabling a long shelf-life
• Activation involves igniting pyrotechnic pellets to heat the battery / melt the electrolyte 

Simulation involves multiple coupled physics: 
• Energetic material burning, heat transfer, electrolyte phase change, capillary-driven 

two-phase porous flow, ion transport, electrochemical reactions, electrical transport

Model fidelity options already well-defined by the TABS team, with an ongoing V&V focus:
• Model fidelities can be defined by an active subset of these physics
• Resolutions determined by radial/axial spatial resolution and time-stepping controls

T.G. Voskuilen, H.K. Moffat, B.B. Schroeder, S.A. Roberts, “Multi-fidelity electrochemical modeling of thermally activated battery cells,” Journal of Power Sources, 488 (2021). 



MF UQ for Single-cell LCCM model

• For the TABS-SC and model tuning studies, we select mode 3 as LF and mode 4 as HF: 
• Spatial radial/axial resolution set includes at {13x26, 25x50, 50x100} for both modes
• Fine temporal resolution settings used for mode 4, coarse temporal resolution settings for mode 3 are hyper-parameter tuning targets

LF 50x100

LF 25x50

LF 13x26

HF 50x100

HF 25x50

HF 13x26

voltage at 
t=4.51 s

mid-pulse 
voltage

voltage at 
t=1.5 s

Mid-pulse 
voltage

rise time

• 45 random inputs  MF sampling approaches insensitive to dimensionality
• 7 QoI: rise time, V(1.5), V(4.005), V(4.51), max {voltage, anode temp, cath temp}
• Solution verification to configure modes and solver
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Deployment of Model Tuning for Thermally-Activated Battery Simulation
Optimize performance for down-selected estimators (MLCV and ACV, budget 1000)

LF 50x100

LF 25x50

LF 13x26

HF 50x100

HF 25x50

HF 13x26

MLCV

LF 50x100LF 25x50LF 13x26

HF 50x100

HF 25x50HF 13x26

ACV

EGO-tuned: global minimization of variance of selected estimator (max iter = 80)

Hand-tuned hyper-parameters:
  0.01 initial time step
  0.10 predictor-corrector tol
  0.10 nonlinear residual tol
Projected ACV Estimator Variance:     .053138
Single fidelity accuracy for equiv cost: 1.3178 (1005 HF)
Single fidelity cost for equiv accuracy: 24,925 HF (EstVar .053138)

Optimal hyper-parameters:
  0.0067487 initial time step
  0.0010880 predictor-corrector tol

0.046707 nonlinear residual tol
Projected ACV Estimator Variance: 0.0092395
Single fidelity accuracy for equiv cost: 1.3192 (1004 HF)
Single fidelity cost for equiv accuracy: 143,340 HF (EstVar 0.0092395)

Hand-tuned hyper-parameters:
  0.01 initial time step
  0.10 predictor-corrector tol
  0.10 nonlinear residual tol
Projected MLCV Estimator Variance:  .050092
Single fidelity accuracy for equiv cost: 1.3668 (969 HF)
Single fidelity cost for equiv accuracy: 26,440 HF (EstVar 0.050092)

Optimal hyper-parameters:
  0.0084097 initial time step
  0.0061138 predictor-corrector tol

0.028493 nonlinear residual tol
Projected MLCV Estimator Variance: .034396
Single fidelity accuracy for equiv cost: 1.3654 (970 HF)
Single fidelity cost for equiv accuracy: 38,506 HF (EstVar 0.034396)

24.8x

143x

Hand-tuned: refine across discrete combinations until r > 0.9 obtained for all QoI

27.3x

39.7x



Summary Observations

Multifidelity methods are proving their value in a broad variety of mission deployments
• Eliminate exclusive reliance on the most expensive models and employ approximations in a principled manner

Realistic deployments of multifidelity methods encounter a variety of challenges
• Here we target the challenge of optimally configuring multiple LF models, given hyper-parameters that trade accuracy vs. cost

Optimization Approaches
• AAO Optimization (in Python): hyper-parameters become additional decision vars in argminr,N,q EstVar

• Solve 1 integrated optimization problem; emulate lower-level r(q), w(q); avoids optimizing on top of solver noise
• Bi-level optimization (in Dakota): argminq [ argminr,N EstVar ]

• Plug-and-play with surrogate-based optimizers to mitigate solver noise (EGO for low D, TRMM for moderate D, NLP for high D) 
• Implementation: online cost recovery w/ metadata, solution modes, evaluation cache, bypass LF increments for EstVar tuning

Numerical Experiments
• Tunable multifidelity problem:  1D (q1):   ACV > {MF,CV} > {MLCV,ML};   2D (q1, q2):  ACV > MF > {MLCV,ML}

• Robustness obtained from numerical solves: can better adapt to pilot over-estimation, model sequencing
• Surrogate-based optimization approaches (EGO, TRMM) have been effective despite some level of noise

• TABS-SC LCCM model tuning: hyper-parameters for mode 3 temporal resolution (initial Dt, pred-corr tol, nonlin res tol)
• Relative to SME hand-tuning (25x to 27x), EGO-based tuning reduced estimator variance by up to another 6x  143x total
• MLCV graph was good match, but ACV demonstrated greater tuning freedom  tuned ACV was best performer overall

Next algorithmic steps: exploration of AAO benefits, include MINLP for mixed continuous-discrete hyper-parameters

Additional deployments: stochastic simulations (PIC codes for plasma physics), EDL with NASA



Extra



A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of discrete model forms

• Discrepancy does not go to 0 under refinement

Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

An ensemble of peer models lacking clear preference structure / 
cost separation: e.g., SGS modeling options
• With data: model selection, inadequacy characterization

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model form propagation

• Intrusive, nonintrusive
• In MF context: correlation analysis, model tuning, ensemble selection

Discretization levels / resolution controls
• Exploit special structure: discrepancy  0 at order of 
spatial/temporal convergence

Combinations for 
multiphysics, multiscale



Iterated ACVIterated MFMC

2) N(i) shared samples  Estimate r2LH(i)   Estimate r(i) 
3) Estimate N(i+1) using prescribed { budget C || tolerance e }
4) Compute one-sided DN for shared samples from N(i) to N(i+1)

A. Optional: apply under-relaxation factor g
B. If non-zero increment, advance (i) and return to 1)

Performance degradation from pilot over-estimation is not significant
• ACV-MF demonstrates greater flexibility / resilience:

locates near-optimal solutions that incorporate large pilots
• Starting pts on left are for budget = pilot (moves quickly from MC to ACV)

Std errors averaged 
across 10 seeds

Performance degradation from pilot over-estimation is clearly evident
• Analytic r* reduces numerical burden but also limits flexibility

Std errors averaged 
across 10 seeds

1) N(i) shared samples  CovLL(i), CovLH(i) (“C”, “c”)  opt. solver  r*, N*
2) Compute one-sided DN for shared samples from N(i) to N*

A. Optional: apply under-relaxation factor g
B. If non-zero increment, advance (i) and return to 1)

Initialize: select a small shared pilot sample N(0) expected to under-shoot the optimal profile
1) Sample all models

Finalize: apply r* for LF eval increments, estimate a  apply controls to compute final expectation(s)



Tuning for parameterized model problem (Cont.)
Model tuning performed within the context of a particular estimator (here, ACV-MF)

AAO optimization (in Python):
• For ACV (and numerical MFMC), hyper-parameters integrate as additional decision vars for 
minimizing estimator variance

Mid-fidelity model (Q1) is tuned 
for ACV at ~ midpoint q1

* = p/3



In the following, we first investigate surface contours of EstVar for the multiple approximation estimators: 
• MLMC, MFMC, ACV (CVMC excluded)

Given modest hyper-parameter dim, we explore using surrogate-based approaches for global || local opt.
• Efficient Global Optimization (EGO)
• Trust region model management (TRMM, aka surrogate_based_local)

• GP surrogates, SQP subproblem solves, initial TR = 50% from q (0) = { 1.1, 0.55 }

Extension to multiple hyper-parameters

Add cost model w2 for LF2(q2): introduce d, g

For w1, d = g = 1 (reproduces previous cost model)
For w2, d = 2.5, g = 0.55  (LF2 now separated in cost throughout)
 



Tunable problem with multiple hyper-parameters: MLMC

Online pilot (100) / iteratedPilot projection (100)

Less robust: significant performance loss for non-optimal theta (up to EstVar* = 0.01  10x > MC)



Tunable problem with multiple hyper-parameters: MLCV MC

Online pilot (100) / iteratedPilot projection (100)

Less robust: significant performance loss for non-optimal theta (up to EstVar* = 0.03  30x > MC)



Tunable problem with multiple hyper-parameters: MFMC (analytic + mitigation)

Online pilot (100) / iteratedPilot projection (100)

More consistent performance but susceptible to model mis-ordering: 
• Dakota mitigates with switch to reordered numerical solve w/ pyramid constraint enforcement
• While noisier, performance relative to analytic looks promising
• Excepting discontinuity, generally unimodal



Online pilot (100) / iteratedPilot projection (100)

Larger region of good performance, best solution is better, and insensitive to model ordering: 
• Multimodal: two LF1,LF2 configurations achieve best performance overall

• Generally an algorithmic strength (as for adapting to over-estimated pilot), but a challenge for optimizers

Tunable problem with multiple hyper-parameters: ACV



Bi-Level Surrogate Optimization results: ACV

EGO

TRMM

EGO generally outperformed TRMM for these low-D searches (lower EstVar + lower expense in 7 of 8 cases)

Online pilot (10,25,100,250) / iteratedPilot projection (100)


