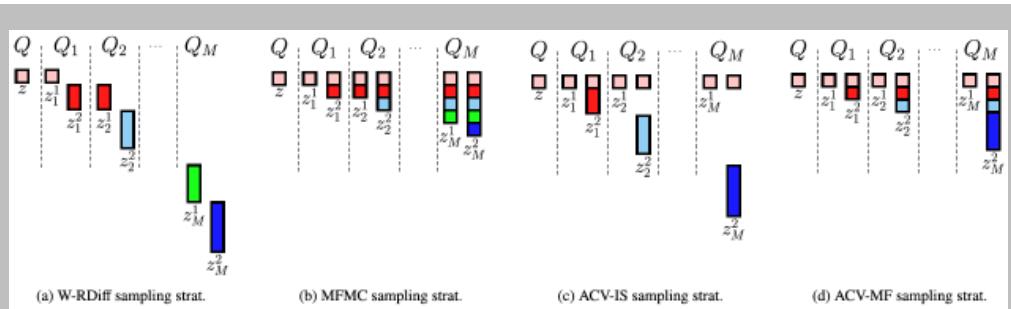
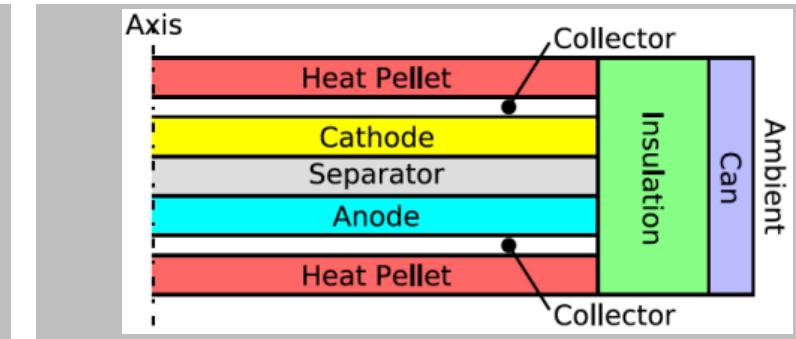


Exceptional service in the national interest



Model Tuning for Multifidelity Sampling in Dakota

Michael S. Eldred¹, Gianluca Geraci¹, Bryan W. Reuter¹, Teresa Portone¹, John Jakeman¹, Alex Gorodetsky²

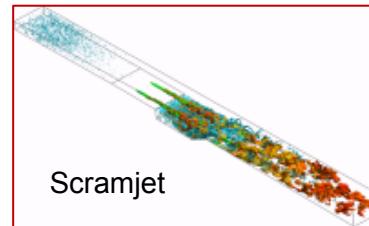
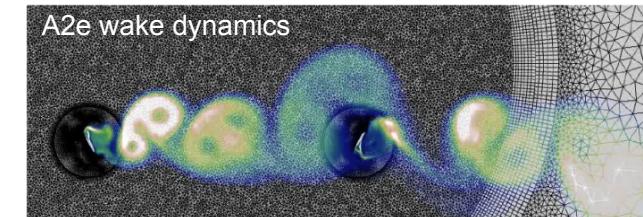
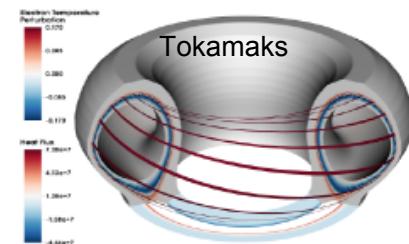
¹Optimization & Uncertainty Quantification Dept, Center for Computing Research, Sandia National Laboratories, Albuquerque NM

²Aerospace Engineering Department, University of Michigan, Ann Arbor MI

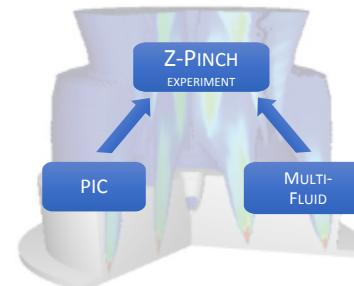
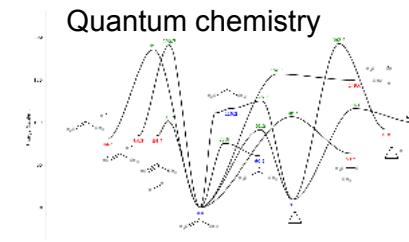
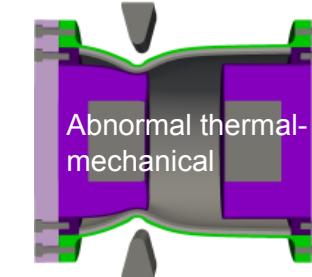
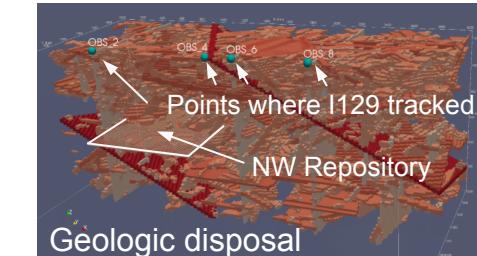
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Multifidelity Methods: Sampling UQ, Surrogate UQ, OUU

2018/2019:

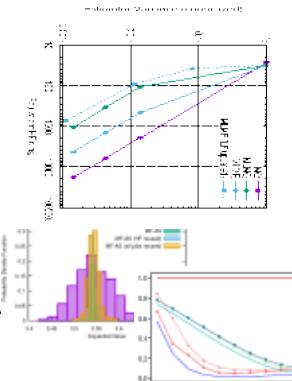


2020/2021:



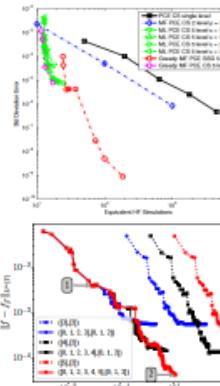
Monte Carlo UQ Methods

- *Production*: optimal resource allocation for multilevel, multifidelity, combined ([DARPA EQUiPS](#), Wind, Cardiovascular)
- *Emerging*: active dimensions ([LDRD](#), [SciDAC](#)), generalized fmwk for approx control variates ([ASC V&V](#)), goal orientation (rare events), hybrid methods for GSA
- *On the horizon*: control of time avg; model tuning / selection ([LDRD](#))



Surrogate UQ Methods (PCE, SC)

- *Production (v6.10+)*: ML PCE w/ projection & regression; ML SC w/ nodal/hierarchical interp; greedy ML adaptation ([DARPA SEQUOIA](#)), multilevel fn train (ASC V&V)
- *Emerging*: multi-index stochastic collocation; multiphysics/multiscale integration ([ASC V&V](#)); new surrogates (GP, ROM, NN) w/ error mgmt. fmwk ([LDRD](#), [SciDAC](#)); learning latent variable relationships (MFNets, [LDRD](#))
- *On the horizon*: unification of surrogate + sampling approaches ([LDRD](#))



Optimization Under Uncertainty

- *Production*: manage simulation and/or stochastic fidelity
- *Emerging*: Derivative-based methods ([DARPA SEQUOIA](#))
 - Multigrid optimization (MG/Opt)
 - Recursive trust-region model mgmt.: extend TRMM to deep hierarchies
- Derivative-free methods ([DARPA Scramjet](#))
 - SNOWPAC (w/ MIT, TUM) with goal-oriented MLMC error estimates
- *On the horizon*: Gaussian process-based approaches: multifidelity EGO; Optimal experimental design (OED)

Key mission feedbacks

Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas

- Extensions for complex multidimensional hierarchies → *multi-index collocation, multiphysics / multiscale*
- Investments in non-hierarchical MF methods → *ACV and MFNets*

Popular MF approaches neglect important practicalities

- "Oracle" correlations assumed → *iterated versions of MFMC, ACV* to reduce cost from pilot over-estimation
- Imperfect data → *embedded cross validation* in regression-based surrogate MF
- Dissimilar parameterizations → *shared subspaces* to link and correlate diverse models
- Stochastic simulations, simulation/surrogate error estimation → *extended error management framework*
- Heterogeneous ensemble management → *integration with HPC workflow managers, R&D in ensemble AMT*
- Free hyper-parameters in LF approximations → *model tuning*

MF methods most often utilize a fixed model ensemble determined by expert judgment

- Experts are often inaccurate in this context
 - SMEs from a physics discipline often have high predictivity standards and tend to over-estimate the LF accuracy required
- Leads to non-optimal correlation / cost trade-off and sub-optimal MF UQ

→ *Initial explorations of hyper-parameter model tuning, within the context of particular estimators (ACV, MFMC, ...)*

Background: hierarchical/paired ML/MF sampling methods of interest

Multilevel Monte Carlo

$$\mathbb{E} [Q_M^{\text{HF}}] = \mathbb{E} [Q_{M_0}^{\text{HF}}] + \sum_{\ell=1}^L \mathbb{E} [Q_{M_\ell}^{\text{HF}} - Q_{M_{\ell-1}}^{\text{HF}}]$$

$$\hat{Q}_M^{\text{HF,ML}} = \sum_{\ell=0}^L \hat{Y}_{\ell,N_\ell}^{\text{HF,MC}} = \sum_{\ell=0}^L \frac{1}{N_\ell} \sum_{i=1}^{N_\ell} Y_\ell^{\text{HF},(i)}$$

Minimize cost s.t. error balance:

$$N_\ell^{\text{HF}} = \frac{2}{\varepsilon^2} \left[\sum_{k=0}^L (\text{Var}(Y_k^{\text{HF}}) C_k^{\text{HF}})^{1/2} \right] \sqrt{\frac{\text{Var}(Y_\ell^{\text{HF}})}{C_\ell^{\text{HF}}}}$$

M. Giles, "Multilevel Monte Carlo path simulation," 2008.

Control Variate Monte Carlo

$$Q_M^{\text{HF,CV}} = Q_M^{\text{HF}} + \alpha (Q_M^{\text{LF}} - \mathbb{E} [Q_M^{\text{LF}}])$$

Classical control variate:

$$\alpha = -\rho \frac{\text{Var}^{1/2} (Q_M^{\text{HF}})}{\text{Var}^{1/2} (Q_M^{\text{LF}})}$$

$$r = \sqrt{\frac{\rho^2}{1-\rho^2} w} \quad \text{LF oversample ratio}$$

$$N = \frac{C}{1+rw} \quad \text{HF allocation}$$

Pasupathy et al, 2012; Ng and Willcox, 2014.

Multilevel-Control Variate Monte Carlo

$$\begin{aligned} \mathbb{E} [Q_M^{\text{HF}}] &= \mathbb{E} [Q_{M_0}^{\text{HF}}] + \sum_{\ell=1}^L \mathbb{E} [Q_{M_\ell}^{\text{HF}} - Q_{M_{\ell-1}}^{\text{HF}}] \\ &\simeq \sum_{\ell=0}^L \left(\hat{Y}_{M_\ell}^{\text{HF,MC}} + \alpha_\ell \left(\hat{Y}_{M_\ell}^{\text{LF,MC}} - \hat{\mathbb{E}}[Y_{M_\ell}^{\text{LF}}] \right) \right) \end{aligned} \quad \left\{ \begin{array}{l} r_\ell^* = \sqrt{\frac{\rho_\ell^2}{1-\rho_\ell^2} w_\ell}, \quad \Lambda_\ell = 1 - \rho_\ell^2 \left(\frac{r_\ell - 1}{r_\ell} \right) \\ N_\ell^{\text{HF},*} = \frac{2}{\varepsilon^2} \left[\sum_{k=0}^{L_{\text{HF}}} \left(\frac{\text{Var}(Y_\ell^{\text{HF}}) C_\ell^{\text{HF}}}{1-\rho_\ell^2} \right)^{1/2} \Lambda_\ell \right] \sqrt{\left(1 - \rho_\ell^2 \right) \frac{\text{Var}(Y_\ell^{\text{HF}})}{C_\ell^{\text{HF}}}} \end{array} \right.$$

G. Geraci, E., G. Iaccarino, "A multifidelity control variate approach for the multilevel Monte Carlo technique," CTR Res Briefs 2015.

Background: multifidelity Monte Carlo (MFMC)

Optimal LF over-sample HF samples from budget

Correlations $r_i^* = \sqrt{\frac{w_1(\rho_{1,i}^2 - \rho_{1,i+1}^2)}{w_i(1 - \rho_{1,2}^2)}}$ $m_1^* = \frac{p}{w^T r^*}$

Costs

$\alpha_i^* = \frac{\rho_{1,i}\sigma_1}{\sigma_i}$ Expectations from shared, refined

Background: approximate control variate (ACV)

\mathbf{C} = covariance matrix among Q_i
 \mathbf{c} = covariance vector among Q_i and Q

$$\underline{\alpha}^{\text{ACV-IS}} = -[\mathbf{C} \circ \mathbf{F}^{(IS)}]^{-1} [\text{diag}(\mathbf{F}^{(IS)}) \circ \mathbf{c}]$$

$$\text{Var}[\hat{Q}^{\text{ACV-IS}}(\underline{\alpha}^{\text{ACV-IS}})] = \frac{\text{Var}[Q]}{N} (1 - R_{\text{ACV-IS}}^2), \text{ where } R_{\text{ACV-IS}}^2 = \mathbf{a}^T [\mathbf{C} \circ \mathbf{F}^{(IS)}]^{-1} \mathbf{a}$$

$$\underline{\alpha}^{\text{ACV-MF}} = -[\mathbf{C} \circ \mathbf{F}^{(MF)}]^{-1} [\text{diag}(\mathbf{F}^{(MF)}) \circ \mathbf{c}],$$

$$\text{Var}[\hat{Q}^{\text{ACV-MF}}(\underline{\alpha}^{\text{ACV-MF}})] = \frac{\text{Var}[Q]}{N} (1 - R_{\text{ACV-MF}}^2), \text{ where } R_{\text{ACV-MF}}^2 = \mathbf{a}^T [\mathbf{C} \circ \mathbf{F}^{(MF)}]^{-1} \mathbf{a}$$

$\mathbf{a} = [\text{diag}(\mathbf{F}^{(IS)}) \circ \bar{\mathbf{c}}]$ and $\mathbf{F}^{(IS)} \in \mathbb{R}^{M \times M}$ has elements

$$\mathbf{F}^{(IS)}_{ij} = \begin{cases} \frac{r_i-1}{r_i} \frac{r_j-1}{r_j} & \text{if } i \neq j \\ \frac{r_i-1}{r_i} & \text{otherwise} \end{cases}.$$

$\mathbf{a} = [\text{diag}(\mathbf{F}^{(MF)}) \circ \bar{\mathbf{c}}]$ and $\mathbf{F}^{(MF)} \in \mathbb{R}^{M \times M}$ has elements

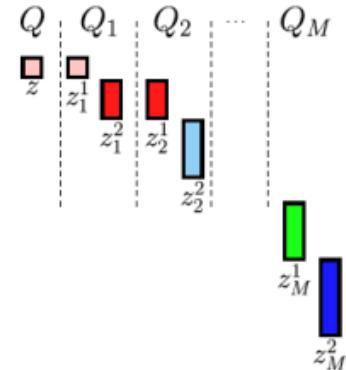
$$\mathbf{F}^{(MF)}_{ij} = \begin{cases} \frac{\min(r_i, r_j)-1}{\min(r_i, r_j)} & \text{if } i \neq j \\ \frac{r_i-1}{r_i} & \text{otherwise} \end{cases}.$$

$$\min_{N, \underline{r}, K, L} \log(J_{\text{ACV}}(N, \underline{r}, K, L)) \quad \text{subject to } N \left(w + \sum_{i=1}^M w_i r_i \right) \leq C, \quad N \geq 1, \quad r_1 \geq 1$$

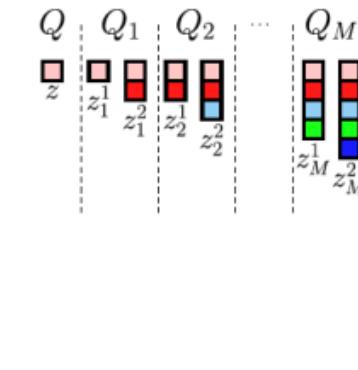
Summary: multilevel / multifidelity estimators of interest

$$\tilde{Q}(\underline{\alpha}, \underline{z}) = \hat{Q}(\underline{z}) + \sum_{i=1}^M \alpha_i \left(\hat{Q}_i(z_i^1) - \hat{\mu}_i(z_i^2) \right) = \hat{Q}(\underline{z}) + \sum_{i=1}^M \alpha_i \Delta_i(z_i) = \hat{Q} + \underline{\alpha}^T \underline{\Delta}$$

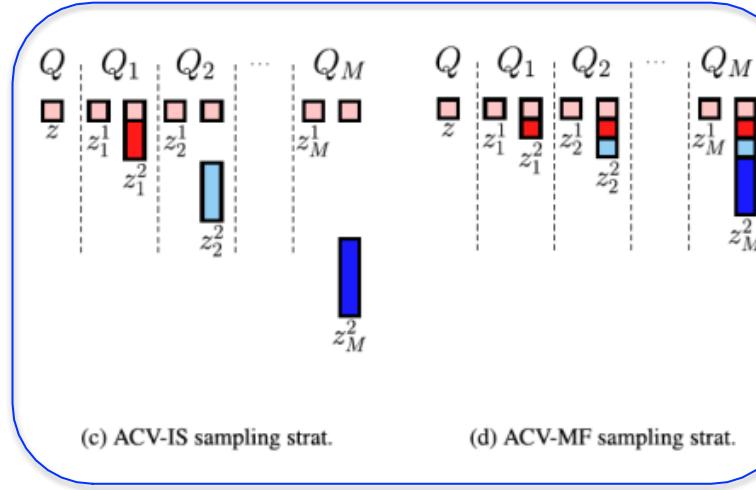
Sample set definitions for estimators



(a) W-RDiff sampling strat.

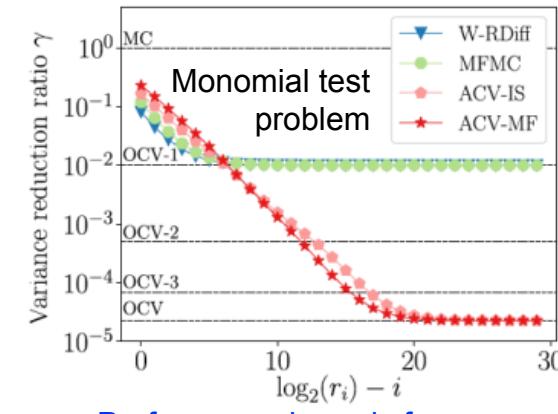


(b) MFMC sampling strat.



(c) ACV-IS sampling strat.

(d) ACV-MF sampling strat.



Performance bounds for recursive vs. non-recursive

- Recursive limited by variance reduction of perfect μ_1 (OCV-1)
- Non-recursive exploits gap between OCV-1 and OCV

Estimator	Type	Sample allocation
MLMC	1D: hierarchical, recursive	Analytic
CVMC	1D: HF,LF pair	Analytic
MLCV MC	2D: HF,LF pair + resolutions	Analytic
MFMC	1D: hierarchical, recursive	Analytic, Numerical
ACV	Ensemble of unordered models	Numerical

Model Tuning Approaches: All-At-Once and Bi-Level

Model tuning performed to maximize performance of a particular estimator (e.g. MLMC, MFMC, ACV) using tunable hyper-parameters associated with one or more low-fidelity models (HF reference is immutable)

AAO optimization (in Python): hyper-parameters integrate as additional decision vars for minimizing EstVar

$$\arg \min_{\theta, \mathbf{r}, N} \frac{Var[Q]}{N} (1 - R^2(\theta, \mathbf{r})) \quad s.t. \quad N \left(w + \sum_{i=1}^M w_i(\theta) r_i \right) \leq C$$

- Potential for greater efficiency: one integrated optimization solve
 - Need to emulate lower-level $\rho(\theta), w(\theta)$ to avoid expensive pilot re-analysis for every change in θ

Bi-level optimization (in Dakota): inner loop optimization solve for each outer loop θ iterate

$$\arg \min_{\theta} \left[\arg \min_{\mathbf{r}, N} \frac{Var[Q]}{N} (1 - R^2(\theta, \mathbf{r})) \quad s.t. \quad N \left(w + \sum_{i=1}^M w_i(\theta) r_i \right) \leq C \right]$$

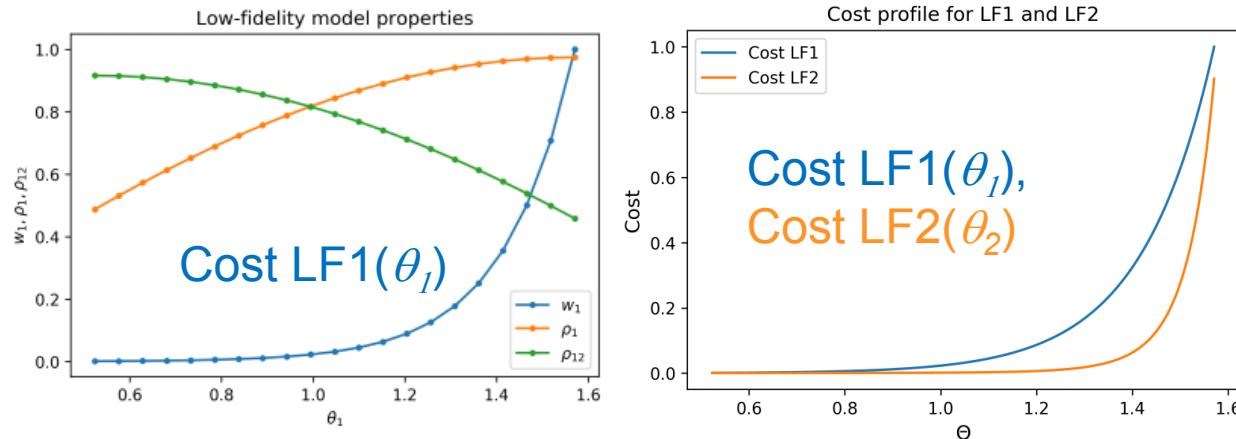
- For nested numerical solution, outer loop must now contend with inner-loop solver noise
 - Noise and expense can be mitigated using pilot projections, with some loss of accuracy
- Can choose to emulate at a higher level, requiring fewer emulators (e.g. EGO, TRMM to min $EstVar^*(\theta)$)
 - Plug and play with surrogate-based methods (EGO, TRMM), MINLP, etc.
- For analytic cases (e.g., ML, CV, MLCV, ordered MF), AAO collapses to single level $\arg \min_{\theta}$
- Neither case requires application of \mathbf{r}^* since we only require $EstVar^*$ for tuning (not final expectations)
- An evaluation cache further streamlines expense (e.g., HF pilots) with care in managing θ dependencies

Exploration of model tuning for a parameterized model problem

“Tunable Model” Definitions (JCP 2020)

$$\begin{aligned}
 Q(\theta) &= \sqrt{11} [\cos(\theta) x^5 + \sin(\theta) y^5] \\
 Q_1(\theta_1) &= \sqrt{7} [\cos(\theta_1) x^3 + \sin(\theta_1) y^3] \\
 Q_2(\theta_2) &= \sqrt{3} [\cos(\theta_2) x + \sin(\theta_2) y]
 \end{aligned}$$

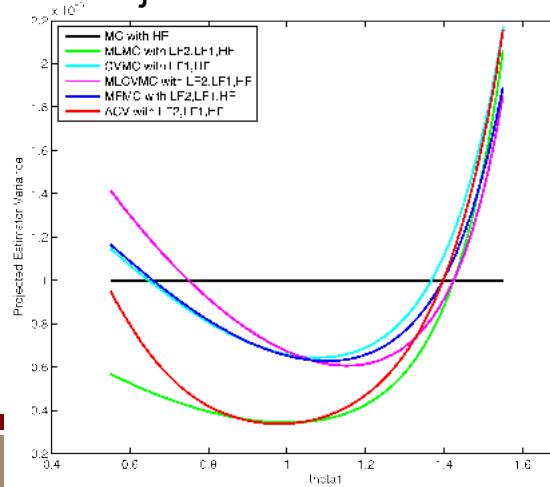
Start with tuning 1 parameter (θ_1) for mid-fidelity
high / low hyper-parameters fixed: $\theta = \pi/2$, $\theta_2 = \pi/6$



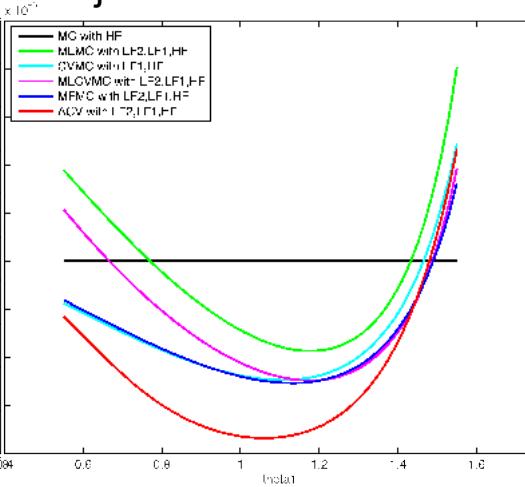
Bi-level optimization (in Dakota):

$$\arg \min_{\theta} \left[\arg \min_{\mathbf{r}, N} \frac{Var[Q]}{N} (1 - R^2(\theta, \mathbf{r})) \quad s.t. \quad N \left(w + \sum_{i=1}^M w_i(\theta) r_i \right) \leq C \right]$$

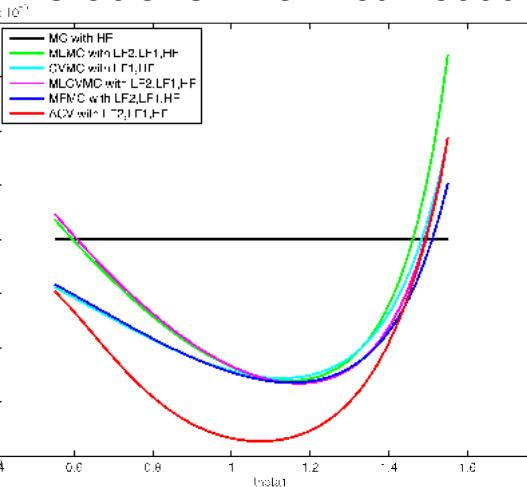
Projection: Online Pilot = 25



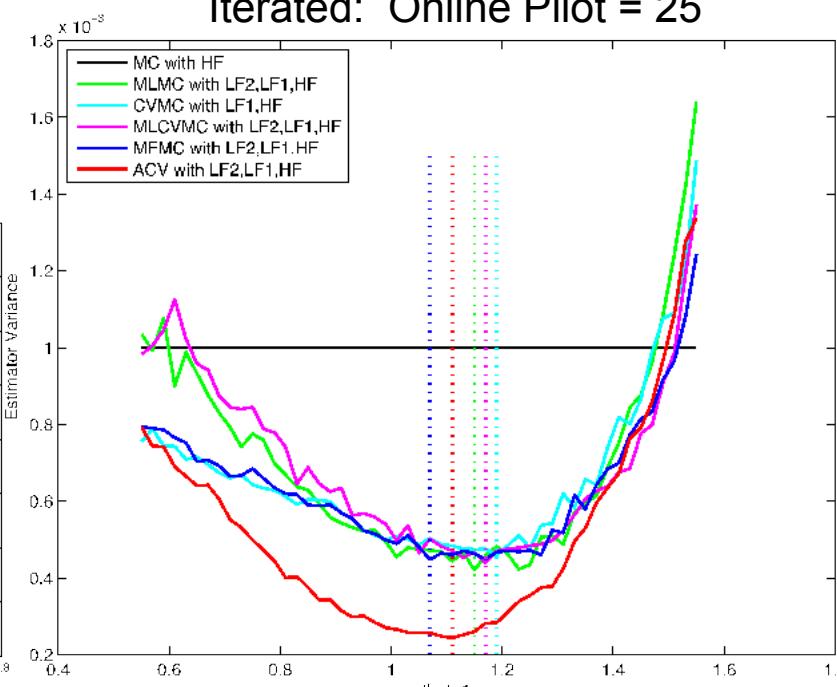
Projection: Online Pilot = 100



Oracle: Offline Pilot = 5000

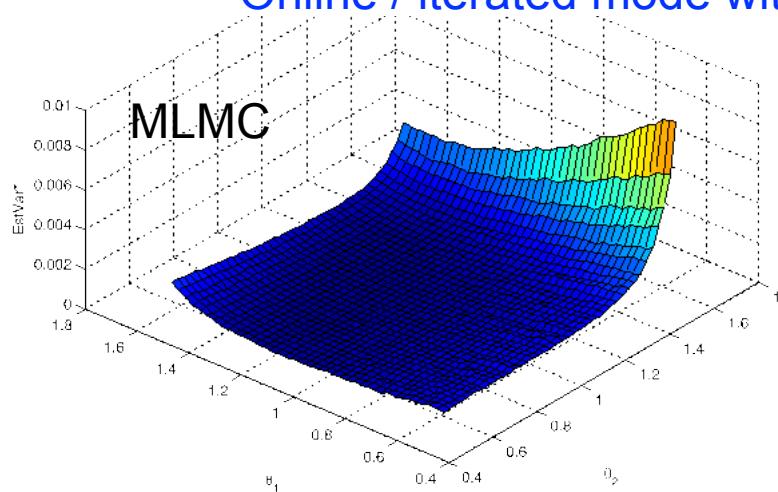


Iterated: Online Pilot = 25

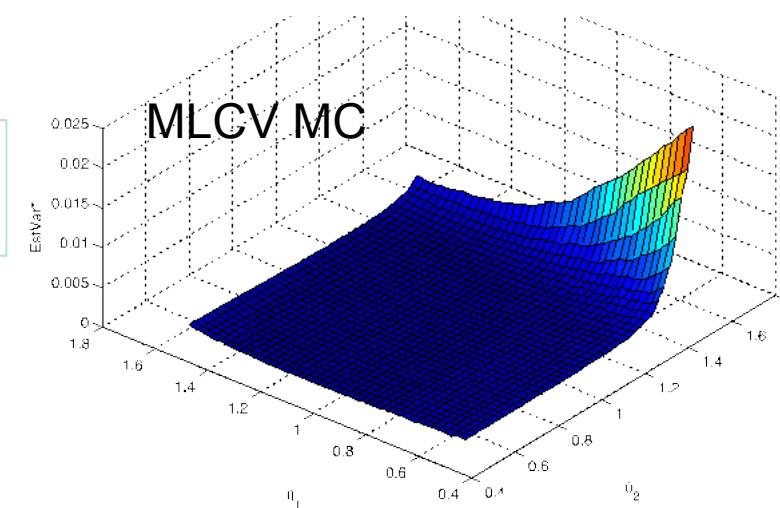


Tunable problem with multiple hyper-parameters

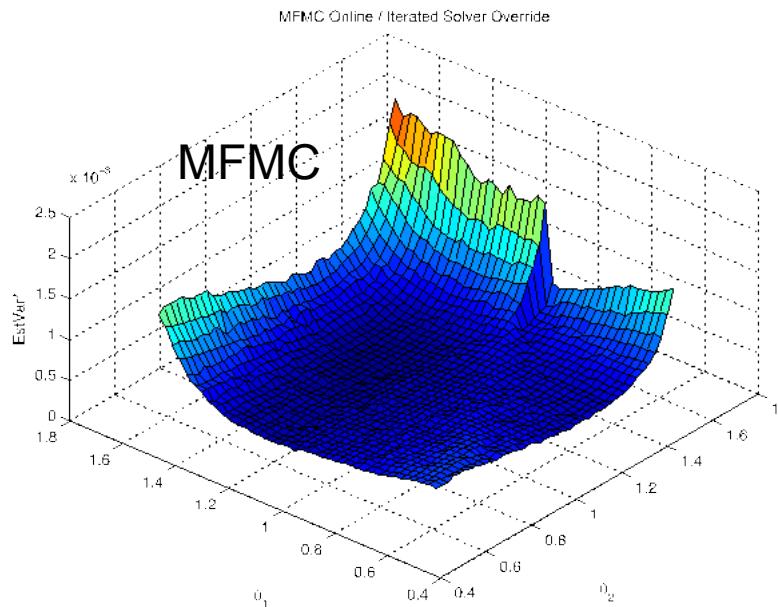
Online / iterated mode with pilot = 100



Less robust: significant performance loss for non-optimal theta

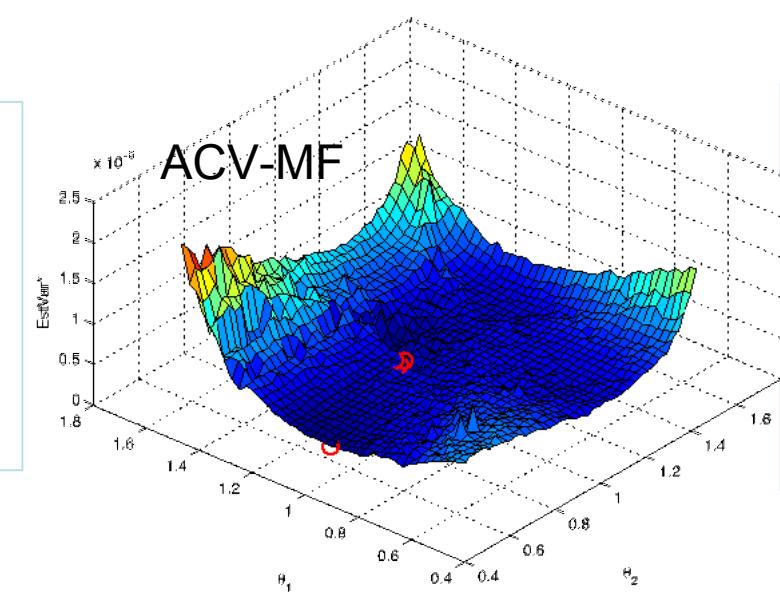


Less robust: significant performance loss for non-optimal theta



More consistent but susceptible to mis-ordering:

- Mitigation: Dakota switches to average(ρ)-reordered models with pyramid constraint
- Excepting discontinuity from discrete switch, generally unimodal



Larger region of good perf., best solution is better, and insensitive to model ordering:

- Multimodal: two LF1,LF2 configurations achieve best performance overall
- Generally an algorithmic strength (as for adapting to over-estimated pilot), but an optimizer challenge

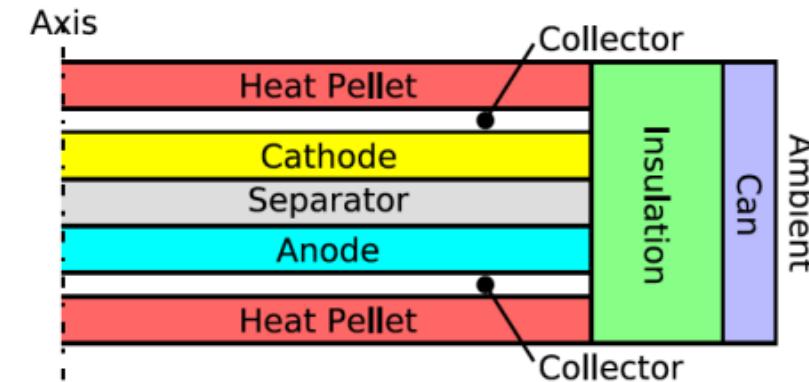
Deployment for Thermally-Activated Battery Simulation (TABS)

Thermal batteries use a molten salt electrolyte that is solid at room temp, enabling a long shelf-life

- Activation involves igniting pyrotechnic pellets to heat the battery / melt the electrolyte

Simulation involves multiple coupled physics:

- Energetic material burning, heat transfer, electrolyte phase change, capillary-driven two-phase porous flow, ion transport, electrochemical reactions, electrical transport



Model fidelity options already well-defined by the TABS team, with an ongoing V&V focus:

- Model fidelities can be defined by an active subset of these physics
- Resolutions determined by radial/axial spatial resolution and time-stepping controls

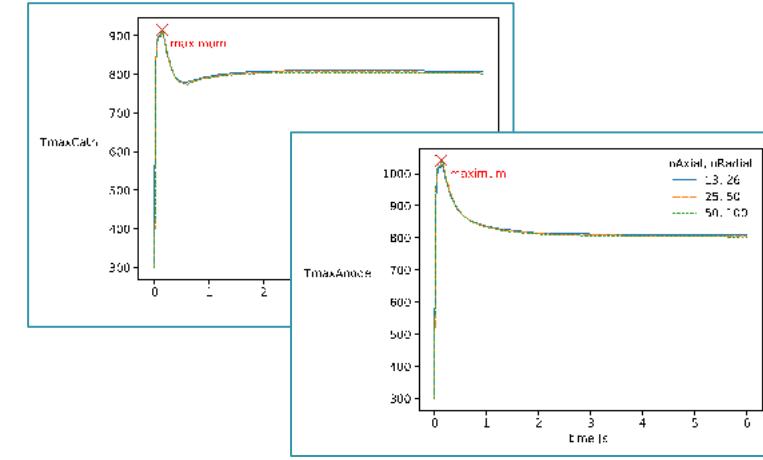
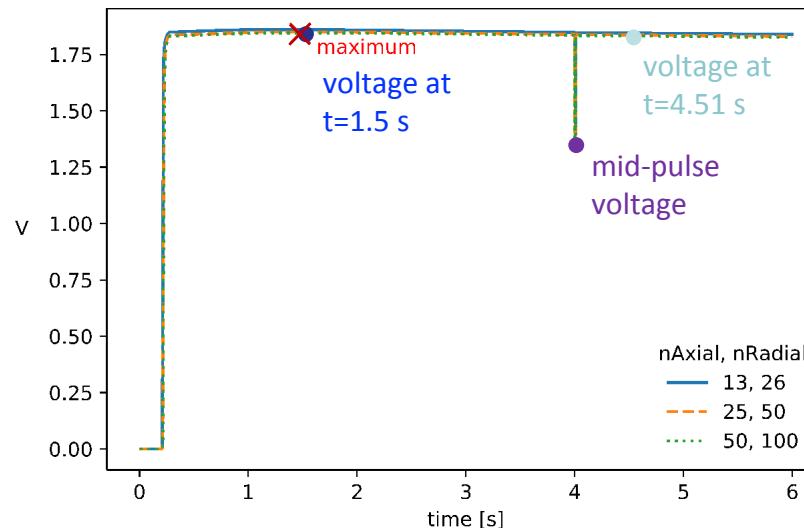
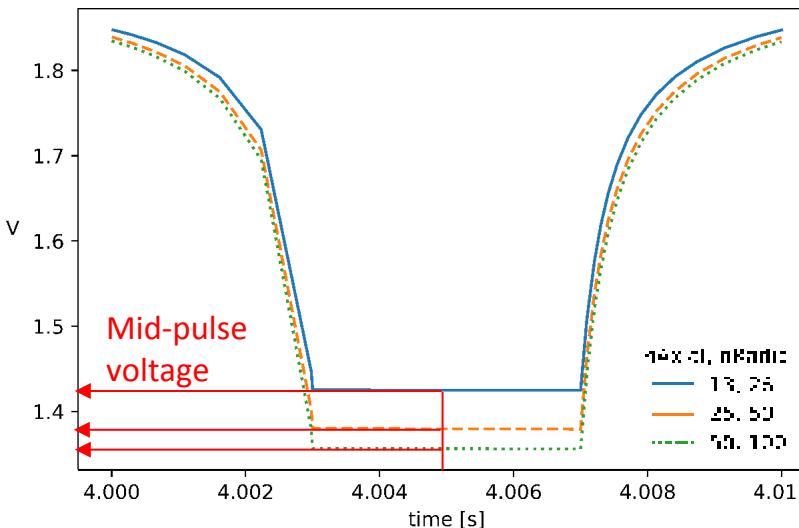
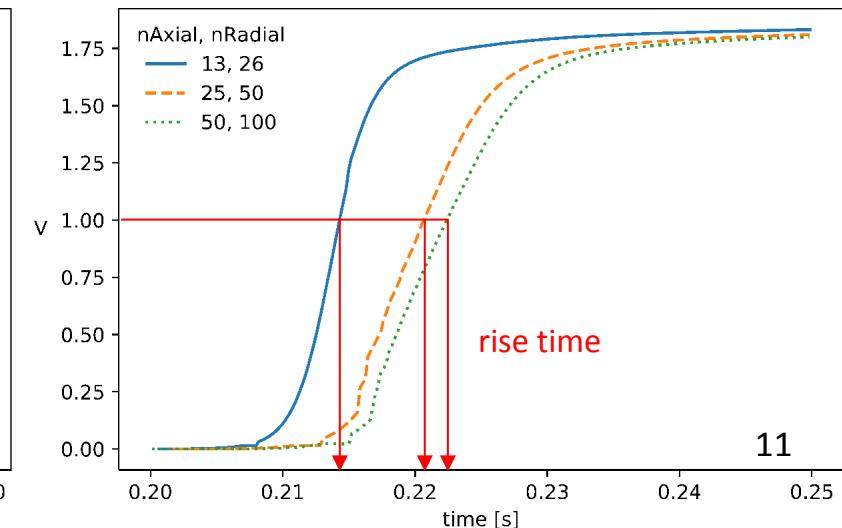
Summary of model fidelity modes.

Mode	Descriptive name	Physics included				
		Dimension	Temperature-dependent	Electrochemistry	Thermal activation	Two-Phase porous flow
1	Thermal	2D	✓	✗	✓	✗
2	Electrochemical	1D	✓ ^a	✓	✓ ^a	✗
3SB	Thermal-Electrochemical (Skip-Burn)	2D	✓	✓	✗	✗
3	Thermal-Electrochemical	2D	✓	✓	✓	✗
4	Full-Physics	2D	✓	✓	✓	✓

MF UQ for Single-cell LCCM model

- For the TABS-SC and model tuning studies, we select mode 3 as LF and mode 4 as HF:
 - Spatial radial/axial resolution set includes at {13x26, 25x50, 50x100} for both modes
 - Fine temporal resolution settings used for mode 4, coarse temporal resolution settings for mode 3 are hyper-parameter tuning targets

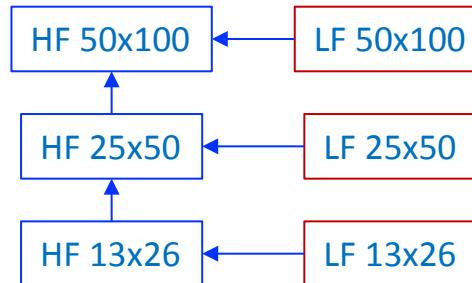
- 45 random inputs → MF sampling approaches insensitive to dimensionality
- 7 QoI: rise time, $V(1.5)$, $V(4.005)$, $V(4.51)$, max {voltage, anode temp, cath temp}
- Solution verification to configure modes and solver



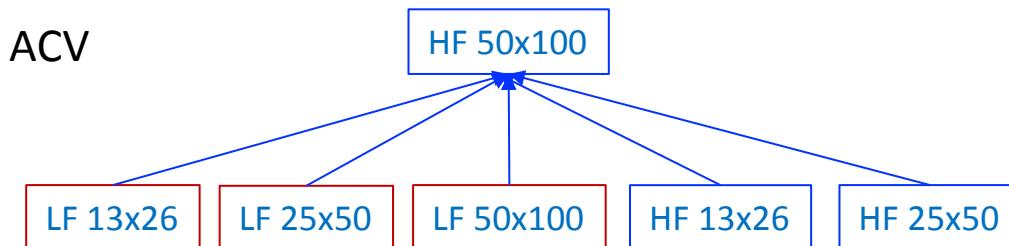
Deployment of Model Tuning for Thermally-Activated Battery Simulation

Optimize performance for down-selected estimators (MLCV and ACV, budget 1000)

MLCV



ACV



Hand-tuned: refine across discrete combinations until $r > 0.9$ obtained for all QoI

Hand-tuned hyper-parameters:

0.01	initial time step
0.10	predictor-corrector tol
0.10	nonlinear residual tol

Projected MLCV Estimator Variance: **.050092**

Single fidelity accuracy for equiv cost: 1.3668 (969 HF)

Single fidelity cost for equiv accuracy: 26,440 HF (EstVar 0.050092)

27.3x

Hand-tuned hyper-parameters:

0.01	initial time step
0.10	predictor-corrector tol
0.10	nonlinear residual tol

Projected ACV Estimator Variance: **.053138**

Single fidelity accuracy for equiv cost: 1.3178 (1005 HF)

Single fidelity cost for equiv accuracy: 24,925 HF (EstVar .053138)

24.8x

EGO-tuned: global minimization of variance of selected estimator (max iter = 80)

Optimal hyper-parameters:

0.0084097	initial time step
0.0061138	predictor-corrector tol
0.028493	nonlinear residual tol

Projected MLCV Estimator Variance: **.034396**

Single fidelity accuracy for equiv cost: 1.3654 (970 HF)

Single fidelity cost for equiv accuracy: 38,506 HF (EstVar 0.034396)

39.7x

Optimal hyper-parameters:

0.0067487	initial time step
0.0010880	predictor-corrector tol
0.046707	nonlinear residual tol

Projected ACV Estimator Variance: **.0092395**

Single fidelity accuracy for equiv cost: 1.3192 (1004 HF)

Single fidelity cost for equiv accuracy: 143,340 HF (EstVar 0.0092395)

143x

Summary Observations

Multifidelity methods are proving their value in a broad variety of mission deployments

- Eliminate exclusive reliance on the most expensive models and employ approximations in a principled manner

Realistic deployments of multifidelity methods encounter a variety of challenges

- Here we target the challenge of optimally configuring multiple LF models, given hyper-parameters that trade accuracy vs. cost

Optimization Approaches

- AAO Optimization (in Python): hyper-parameters become additional decision vars in $\text{argmin}_{r,N,\theta} \text{EstVar}$
 - Solve 1 integrated optimization problem; emulate lower-level $\rho(\theta)$, $w(\theta)$; avoids optimizing on top of solver noise
- Bi-level optimization (in Dakota): $\text{argmin}_{\theta} [\text{argmin}_{r,N} \text{EstVar}]$
 - Plug-and-play with surrogate-based optimizers to mitigate solver noise (EGO for low D, TRMM for moderate D, NLP for high D)
 - Implementation: online cost recovery w/ metadata, solution modes, evaluation cache, bypass LF increments for EstVar tuning

Numerical Experiments

- Tunable multifidelity problem: 1D (θ_1): ACV > {MF,CV} > {MLCV,ML}; 2D (θ_1, θ_2): ACV > MF > {MLCV,ML}
 - Robustness obtained from numerical solves: can better adapt to pilot over-estimation, model sequencing
 - Surrogate-based optimization approaches (EGO, TRMM) have been effective despite some level of noise
- TABS-SC LCCM model tuning: hyper-parameters for mode 3 temporal resolution (initial Δt , pred-corr tol, nonlin res tol)
 - Relative to SME hand-tuning (25x to 27x), EGO-based tuning reduced estimator variance by up to another 6x $\rightarrow 143x$ total
 - MLCV graph was good match, but ACV demonstrated greater tuning freedom \rightarrow tuned ACV was best performer overall

Next algorithmic steps: exploration of AAO benefits, include MINLP for mixed continuous-discrete hyper-parameters

Additional deployments: stochastic simulations (PIC codes for plasma physics), EDL with NASA

Extra

Multiple Model Forms in UQ & Opt

Discrete model choices for simulation of **same physics**

A clear **hierarchy of fidelity** (from low to high)

- Exploit less expensive models to render HF practical
 - *Multifidelity Opt, UQ, inference*
- Support general case of discrete model forms
 - Discrepancy does not go to 0 under refinement

An **ensemble of peer models** lacking clear preference structure /

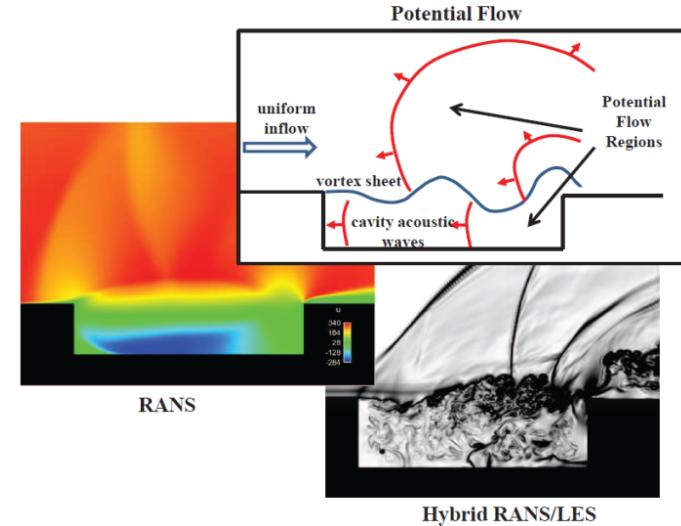
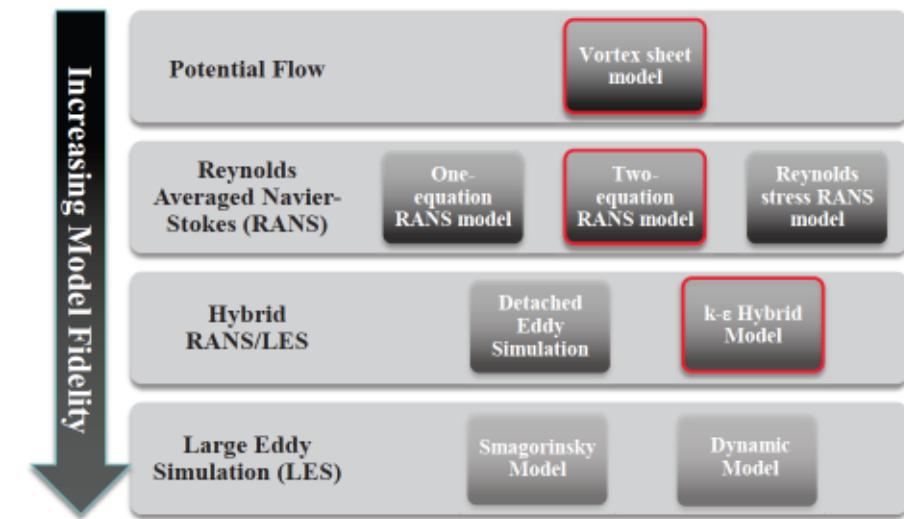
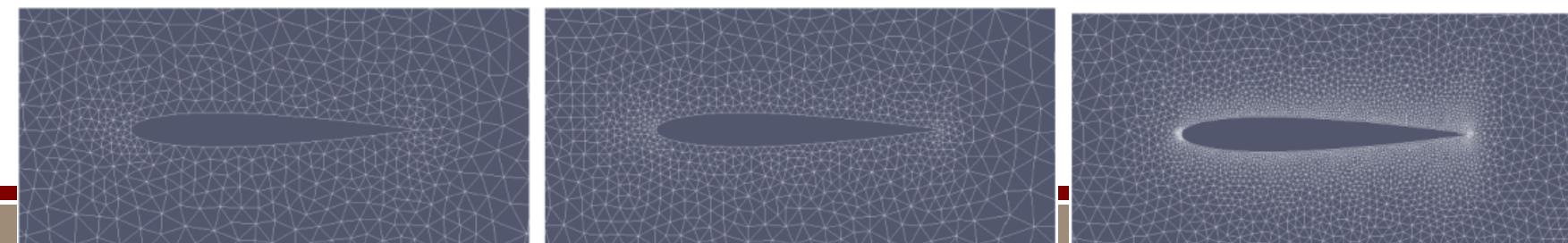
cost separation: e.g., SGS modeling options

- *With data*: model selection, inadequacy characterization
 - Criteria: predictivity, discrepancy complexity
- *Without (adequate) data*: epistemic model form propagation
 - Intrusive, nonintrusive
- *In MF context*: correlation analysis, model tuning, ensemble selection

Discretization levels / resolution controls

- Exploit special structure: discrepancy $\rightarrow 0$ at order of spatial/temporal convergence

Combinations for
multiphysics, multiscale



Iterated MFMC

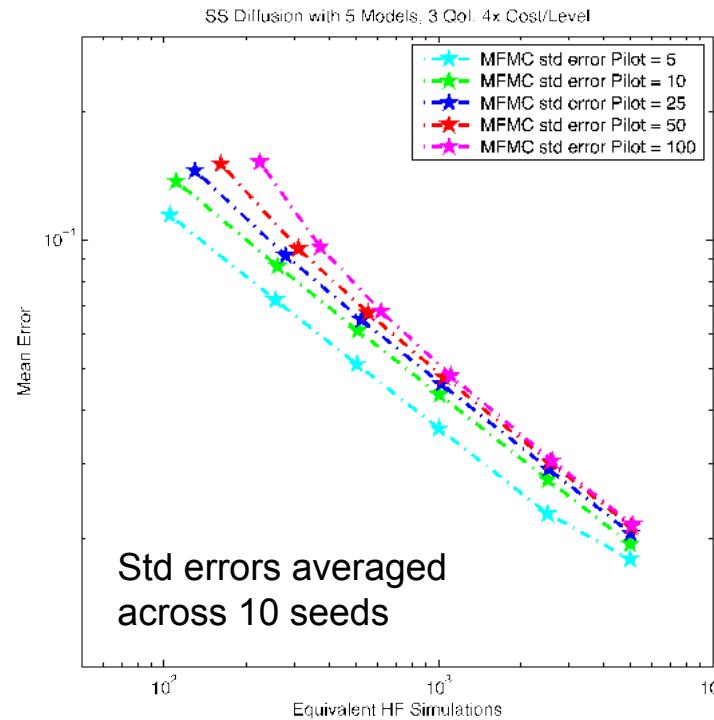
Iterated ACV

Initialize: select a small shared pilot sample $N^{(0)}$ expected to under-shoot the optimal profile

- 1) Sample all models

- 2) $N^{(i)}$ shared samples \rightarrow Estimate $\rho_{LH}^{(i)}$ \rightarrow Estimate $r^{(i)}$
- 3) Estimate $N^{(i+1)}$ using prescribed { budget C || tolerance ε }
- 4) Compute one-sided ΔN for shared samples from $N^{(i)}$ to $N^{(i+1)}$
 - Optional: apply under-relaxation factor γ
 - If non-zero increment, advance (i) and return to 1)

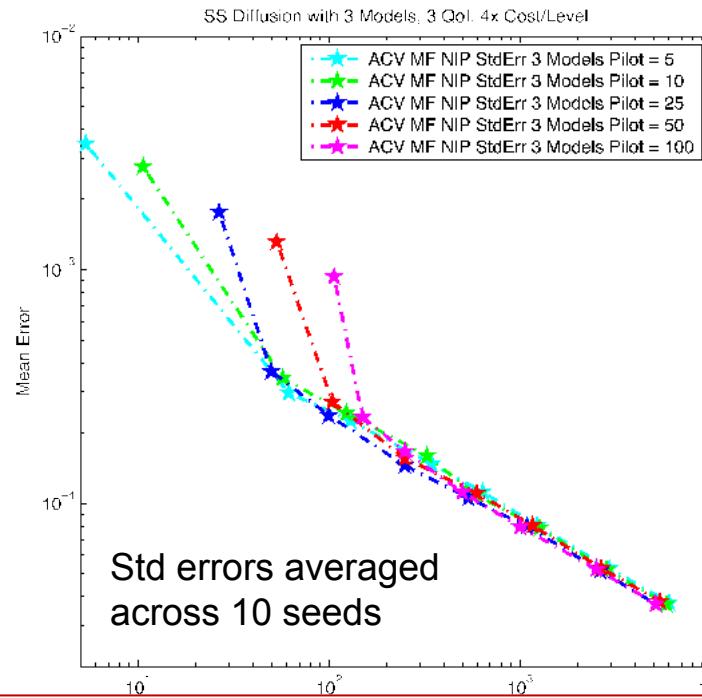
Finalize: apply r^* for LF eval increments, estimate α \rightarrow apply controls to compute final expectation(s)



Performance degradation from pilot over-estimation is clearly evident

- Analytic r^* reduces numerical burden but also limits flexibility

- 1) $N^{(i)}$ shared samples \rightarrow $\text{Cov}_{LL}^{(i)}$, $\text{Cov}_{LH}^{(i)}$ ("C", "c") \rightarrow opt. solver $\rightarrow r^*$, N^*
- 2) Compute one-sided ΔN for shared samples from $N^{(i)}$ to N^*
 - Optional: apply under-relaxation factor γ
 - If non-zero increment, advance (i) and return to 1)



Performance degradation from pilot over-estimation is *not* significant

- ACV-MF demonstrates greater flexibility / resilience: locates near-optimal solutions that incorporate large pilots
- Starting pts on left are for budget = pilot (moves quickly from MC to ACV)

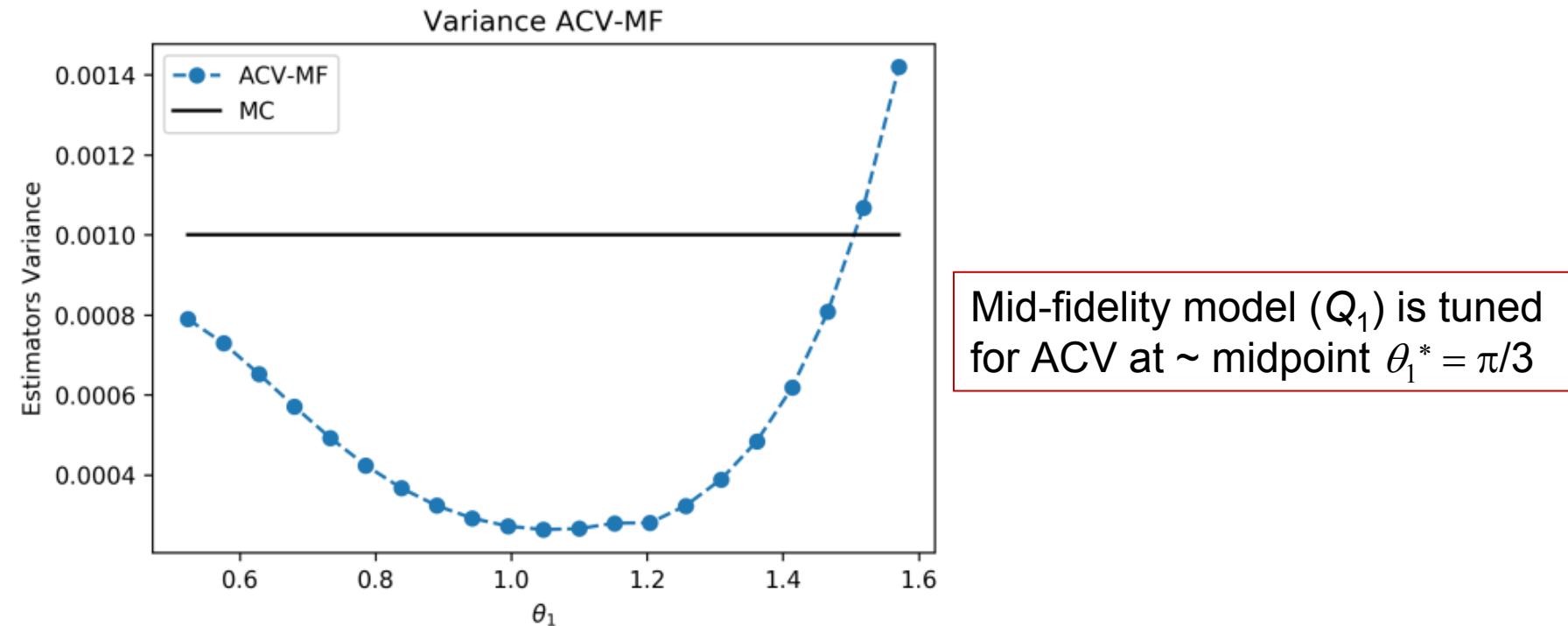
Tuning for parameterized model problem (Cont.)

Model tuning performed within the context of a particular estimator (here, ACV-MF)

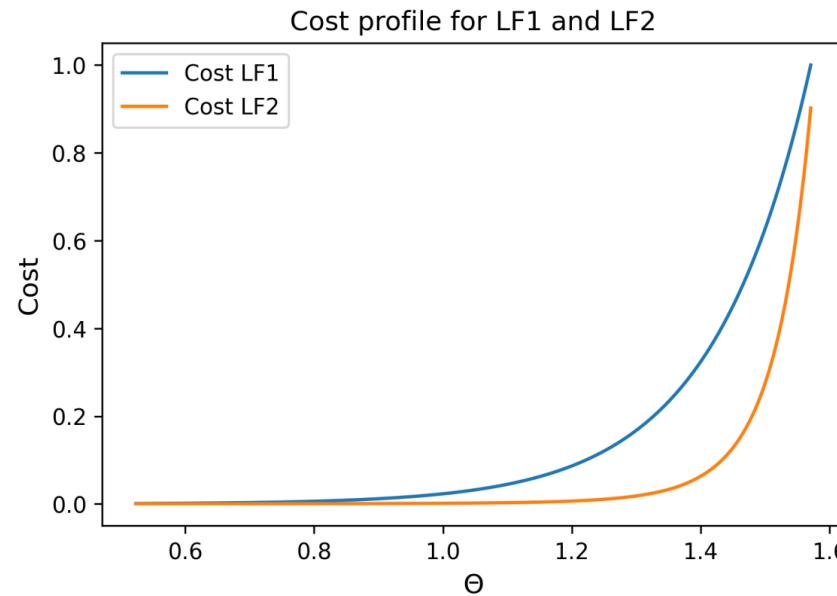
$$\operatorname{argmin}_{\theta_1, N, r_1, r_2} \frac{1}{N} \left(1 - R_{ACV-MF}^2(\theta_1, r_1, r_2) \right) \quad \text{s.t.} \quad \mathcal{C}^{tot} = N \left(w + \sum_{i=1}^2 w_i r_i \right) \leq \mathcal{C}_{target} = 1000$$

AAO optimization (in Python):

- For ACV (and numerical MFMC), hyper-parameters integrate as additional decision vars for minimizing estimator variance



Extension to multiple hyper-parameters



Add cost model w_2 for $LF2(\theta_2)$: introduce δ, γ

$$\log(w) = \log(w_{low}) - \log\left(\frac{w_{low}}{w_{high}}\right) \frac{(\theta - \theta_{low})^\delta}{\theta_{range}}$$

$$w_{low} = .001\gamma, \quad w_{high} = \gamma, \quad \theta_{low} = \pi/6, \quad \theta_{range} = \pi/2 - \theta_{low}$$

For $w_1, \delta = \gamma = 1$

For $w_2, \delta = 2.5, \gamma = 0.55$

(reproduces previous cost model)

(LF2 now separated in cost throughout)

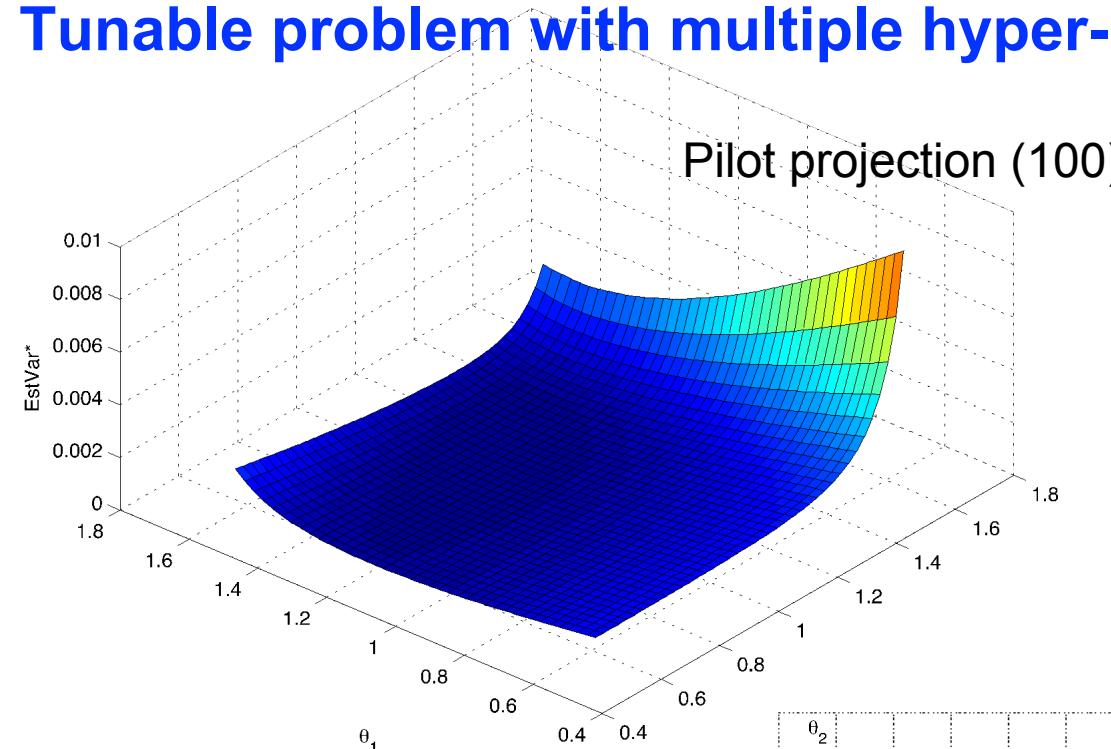
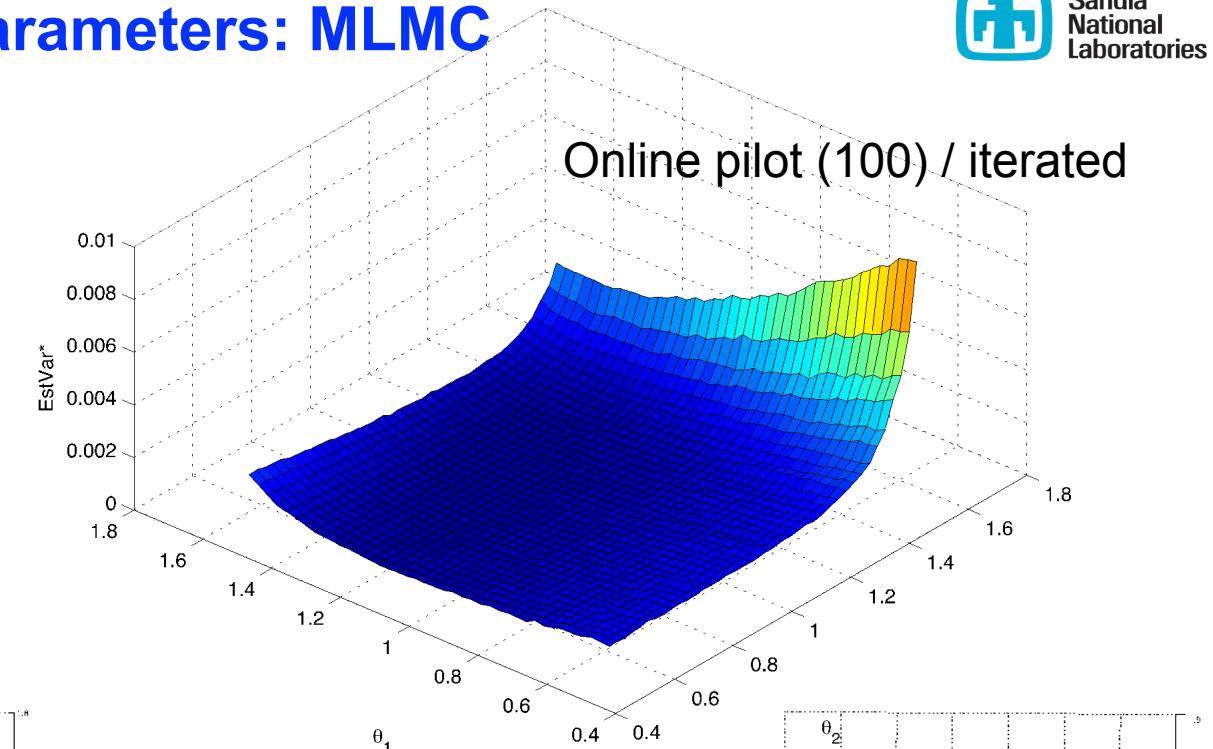
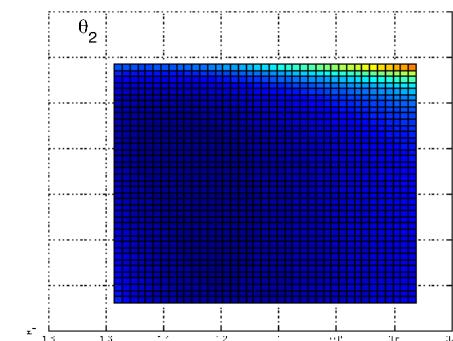
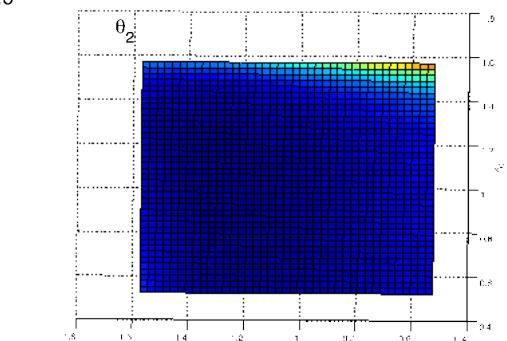
In the following, we first investigate surface contours of EstVar for the multiple approximation estimators:

- MLMC, MFMC, ACV (CVMC excluded)

Given modest hyper-parameter dim, we explore using surrogate-based approaches for global || local opt.

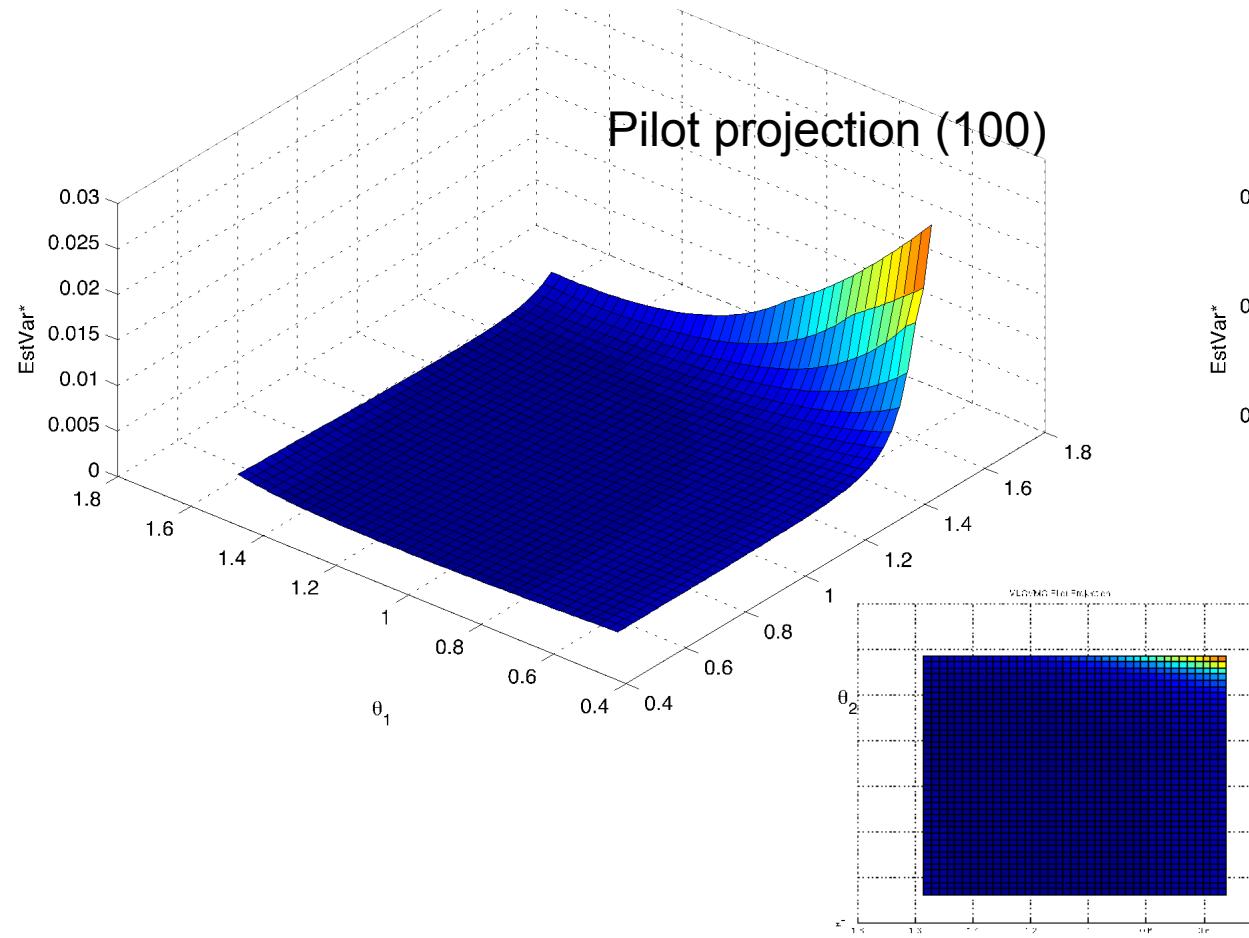
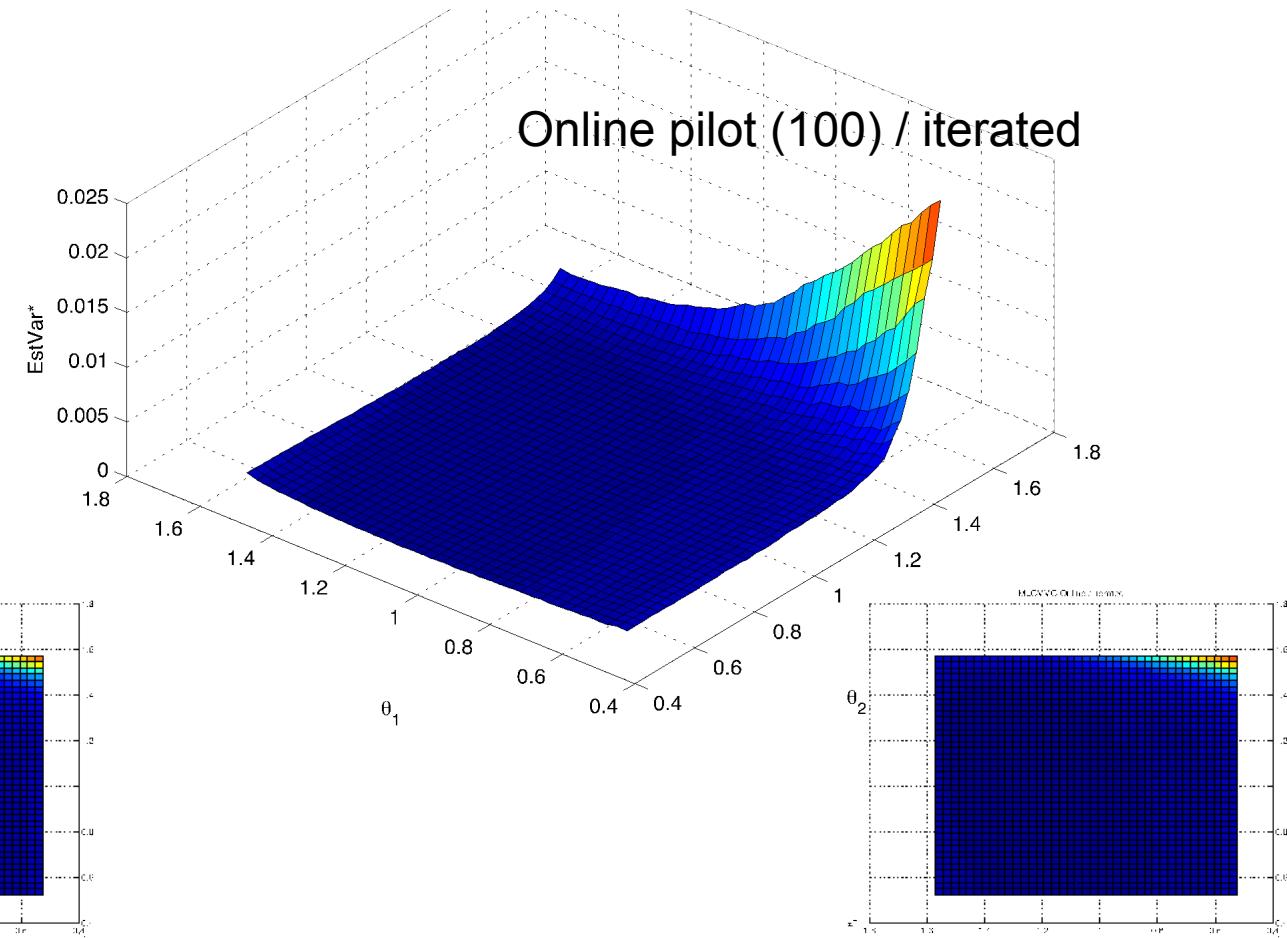
- Efficient Global Optimization (EGO)
- Trust region model management (TRMM, aka `surrogate_based_local`)
 - GP surrogates, SQP subproblem solves, initial TR = 50% from $\theta^{(0)} = \{1.1, 0.55\}$

Tunable problem with multiple hyper-parameters: MLMC



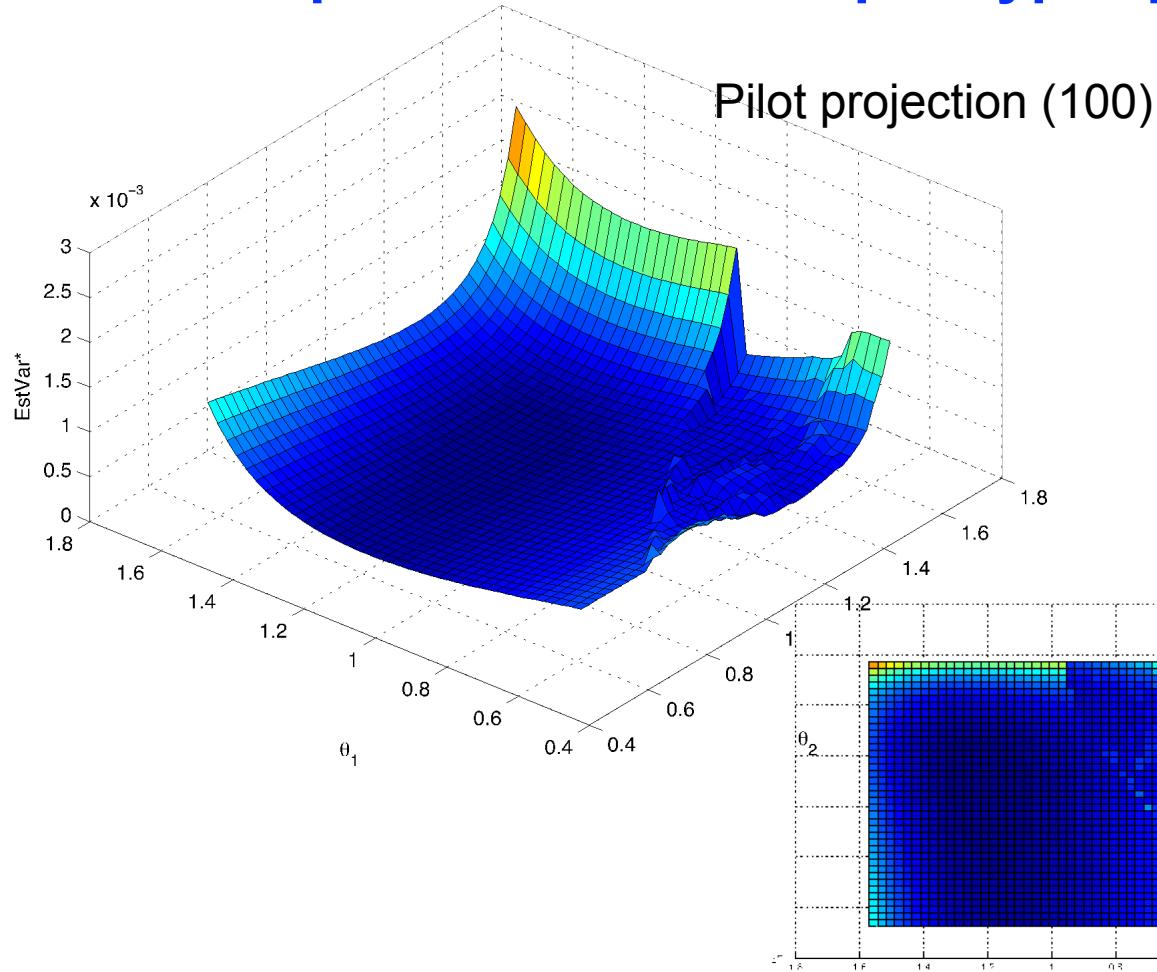
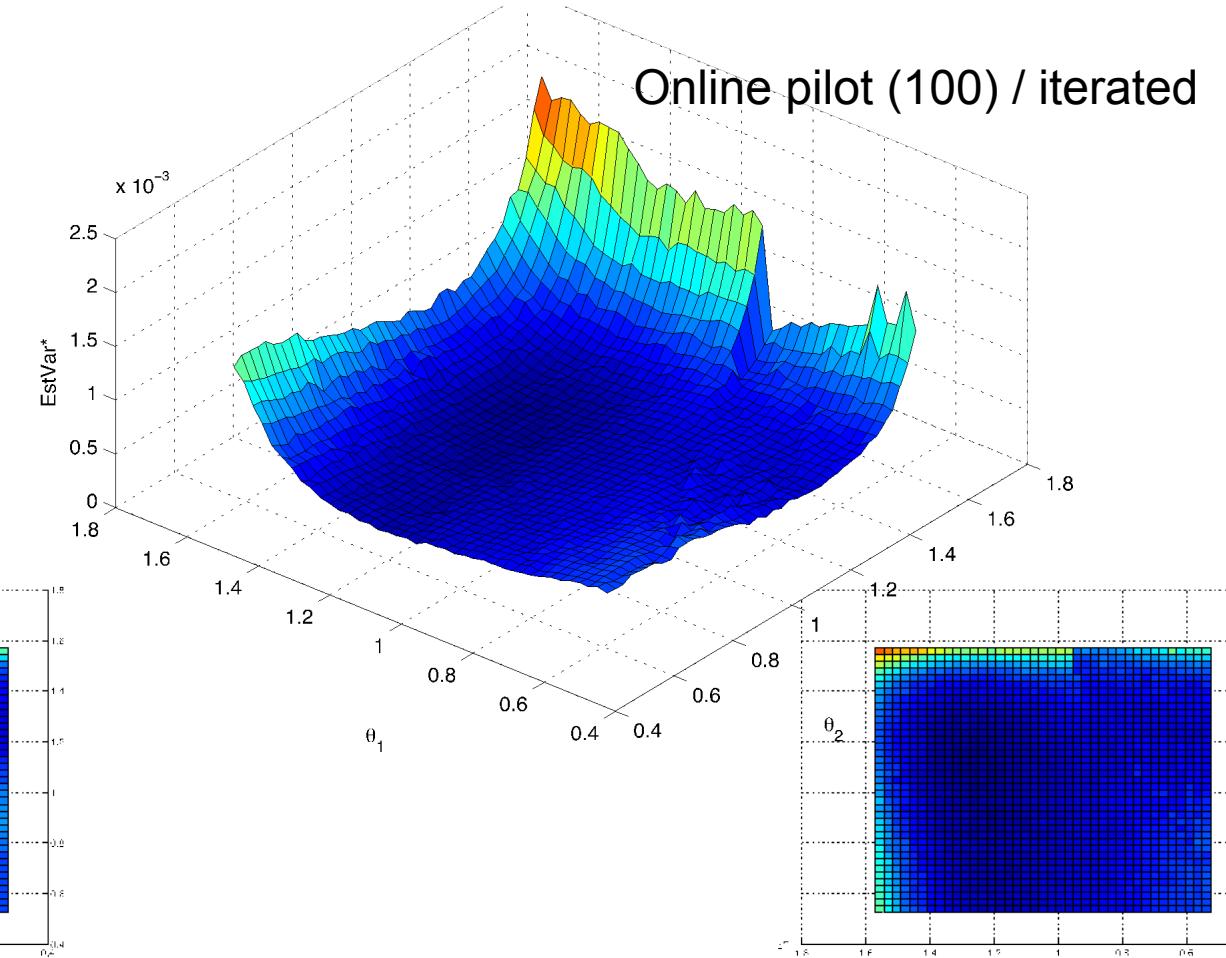
Less robust: significant performance loss for non-optimal theta (up to $\text{EstVar}^* = 0.01 \rightarrow 10x > \text{MC}$)

Tunable problem with multiple hyper-parameters: MLCV MC



Less robust: significant performance loss for non-optimal theta (up to $\text{EstVar}^* = 0.03 \rightarrow 30x > \text{MC}$)

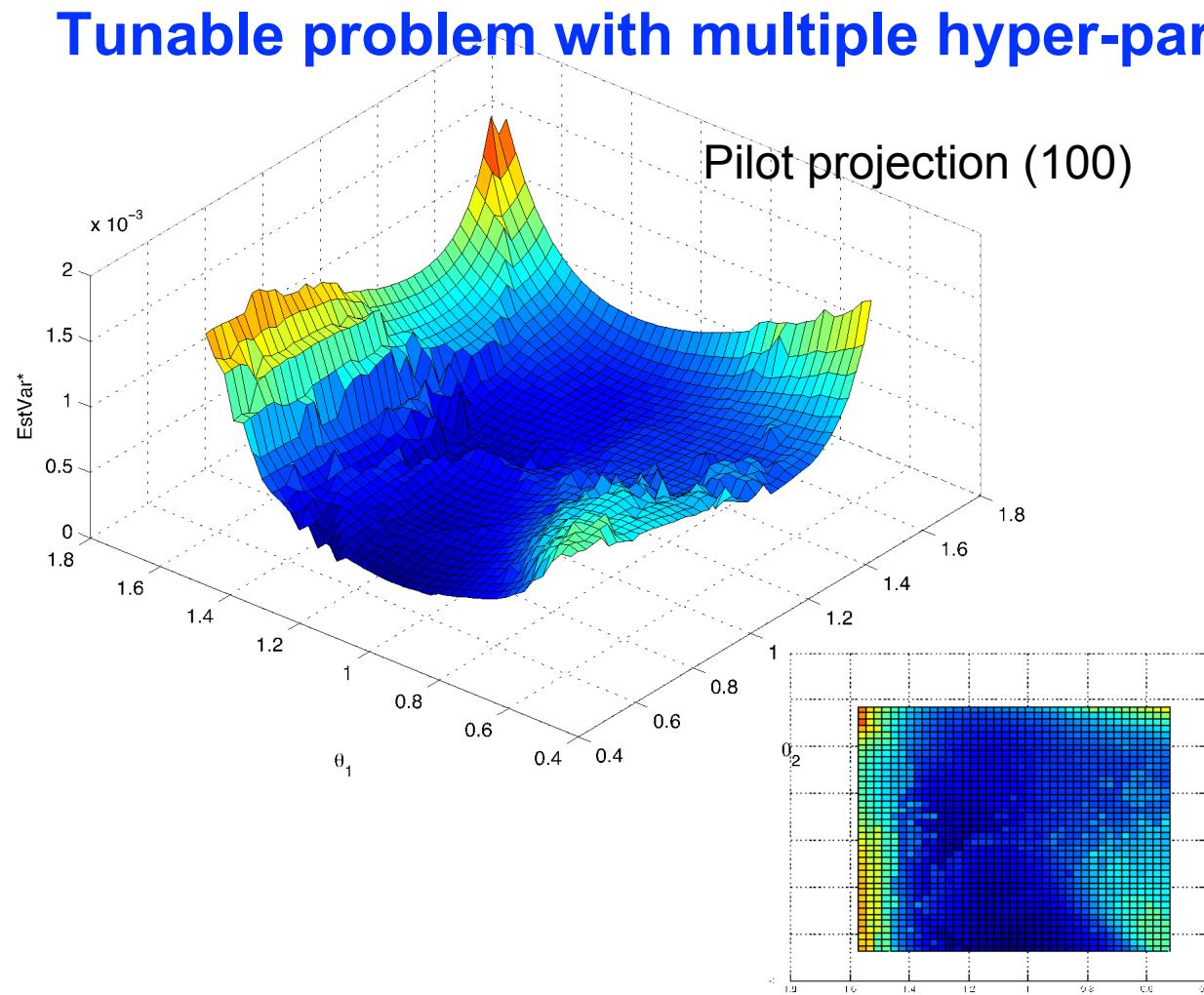
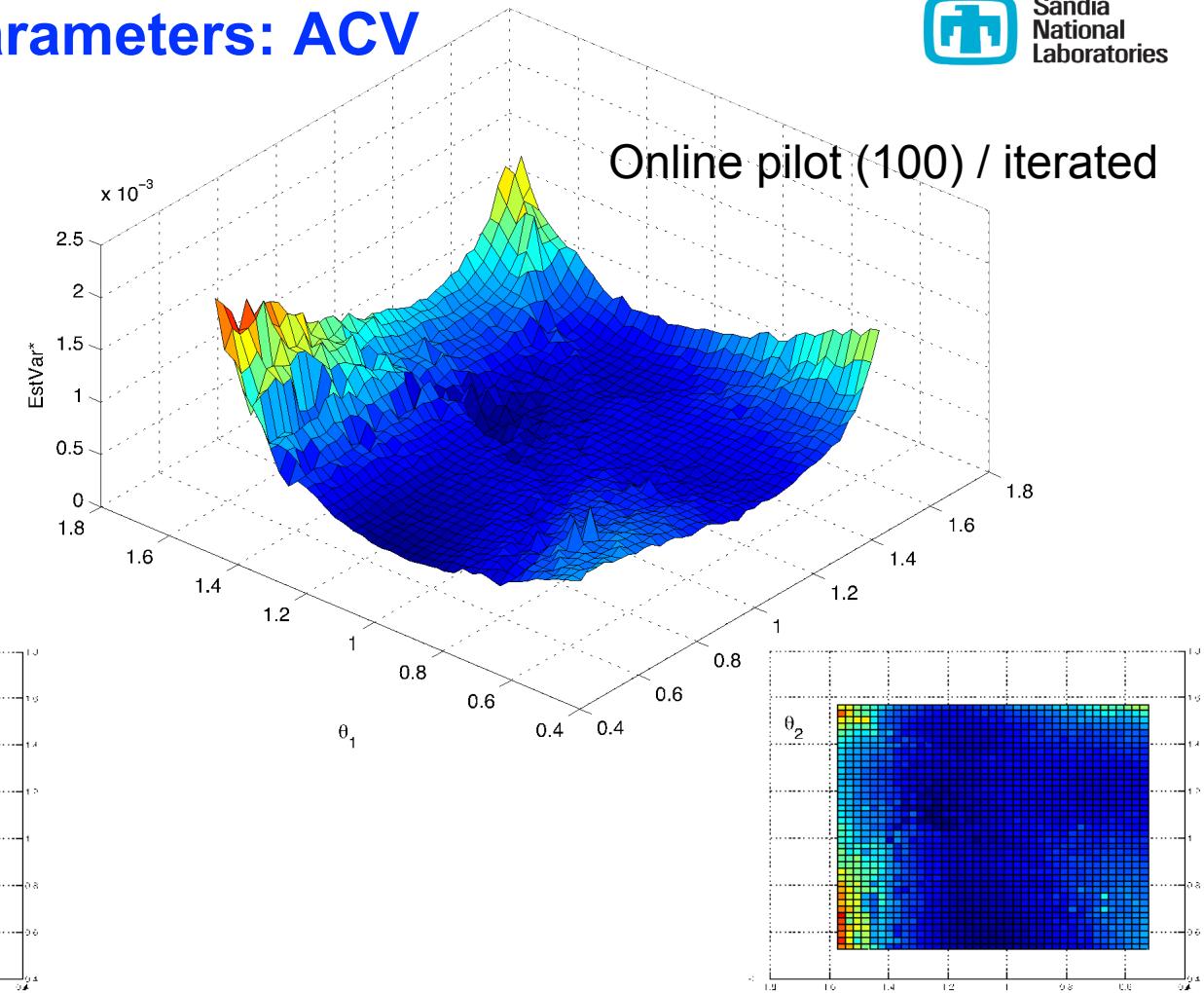
Tunable problem with multiple hyper-parameters: MFMC (analytic + mitigation)



More consistent performance but susceptible to model mis-ordering:

- Dakota mitigates with switch to reordered numerical solve w/ pyramid constraint enforcement
- While noisier, performance relative to analytic looks promising
- Excepting discontinuity, generally unimodal

Tunable problem with multiple hyper-parameters: ACV

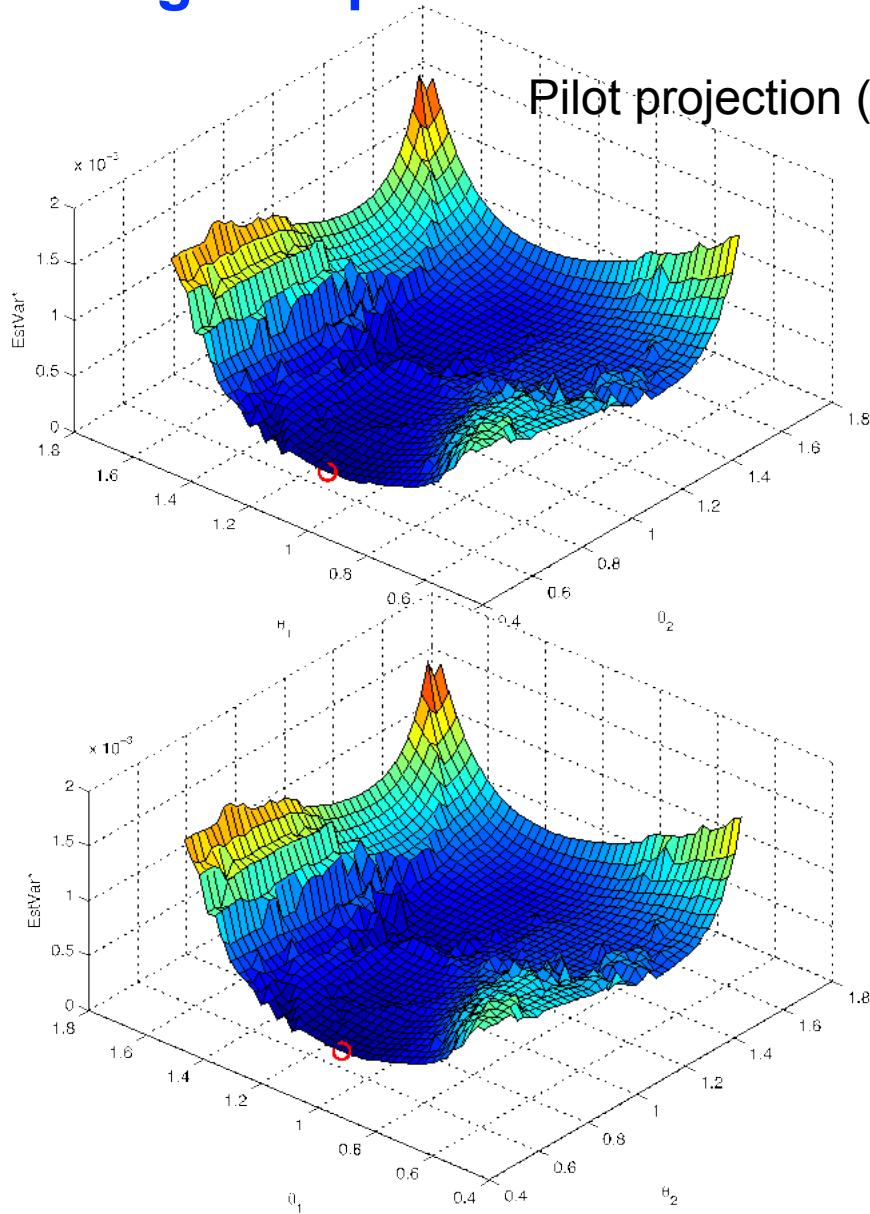


Larger region of good performance, best solution is better, and insensitive to model ordering:

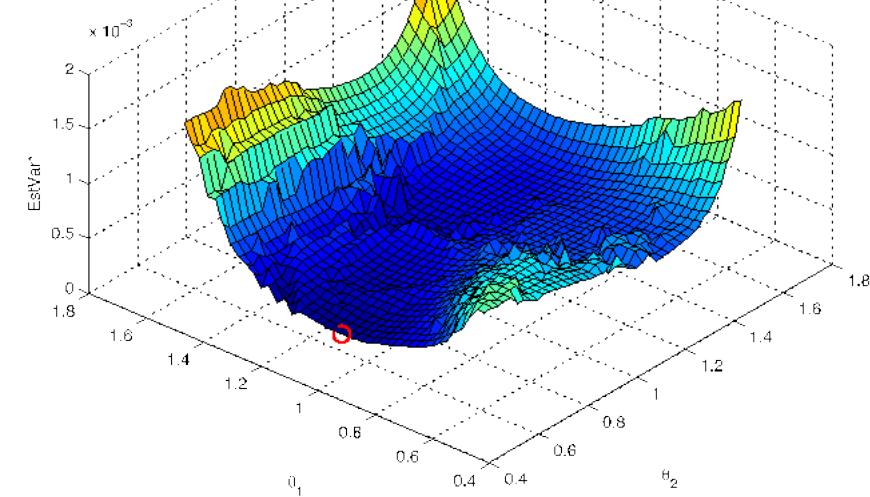
- Multimodal: two LF1,LF2 configurations achieve best performance overall
 - Generally an algorithmic strength (as for adapting to over-estimated pilot), but a challenge for optimizers

Bi-Level Surrogate Optimization results: ACV

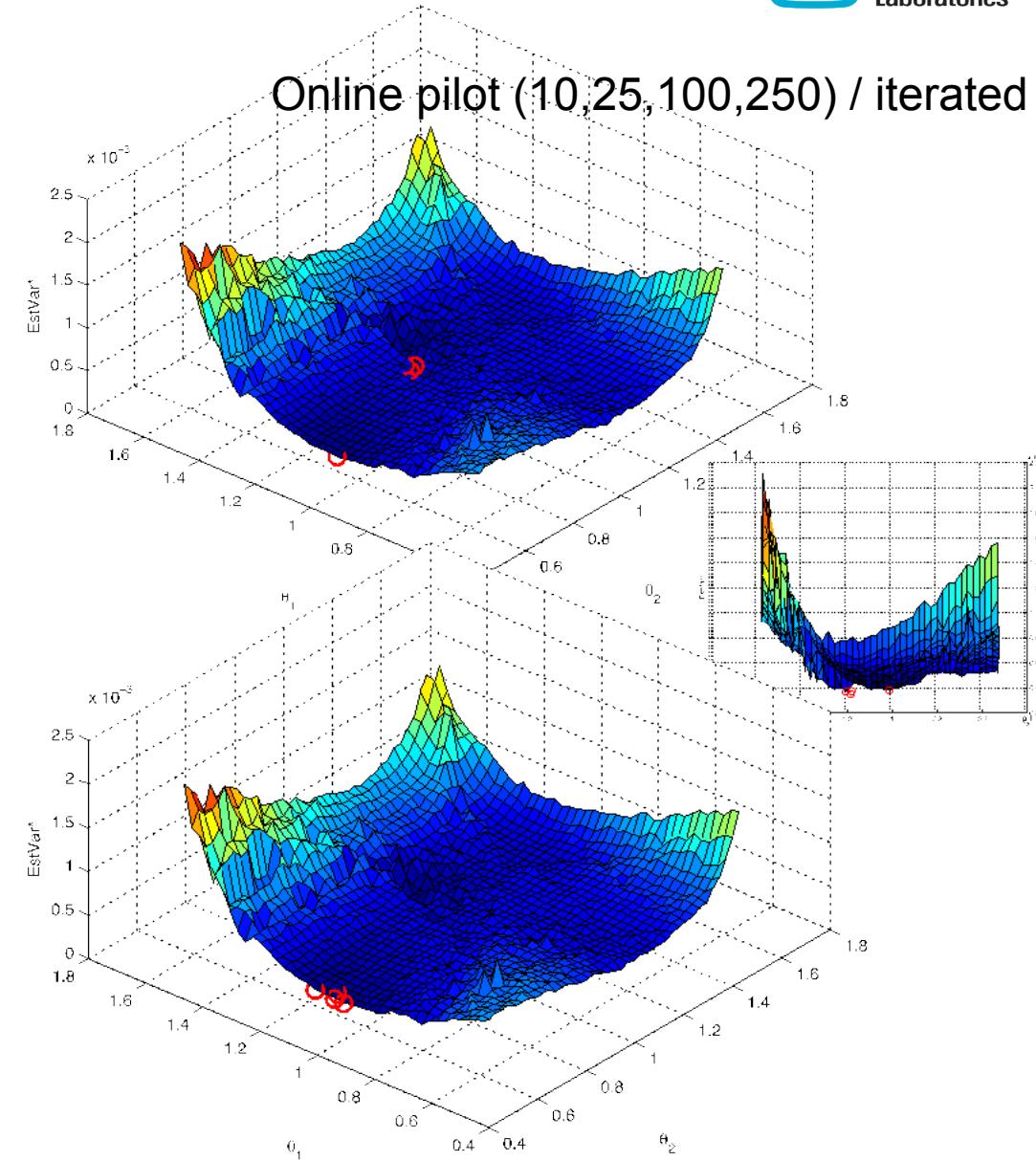
EGO



TRMM



Online pilot (10,25,100,250) / iterated



EGO generally outperformed TRMM for these low-D searches (lower EstVar + lower expense in 7 of 8 cases)