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Experimental overview

gas out \
front

flange

/ reactor body

Goal: study the low-temperature oxidation of propane
« Measure the evolution of highly reactive intermediates and products

High-pressure photolysis reactor (HPR) experiment
* Premixed mixture flows into a constant pressure reactor
« Photolysis laser fires instantaneously irradiating the gas \
mixture
« Chemical precursor breaks down initiating reactions
« (Gas mixture exhausts out, sampled by a synchrotron
tunable vacuum-ultraviolet (VUV) photoionization mass
spectrometer
« Measurement of time-of-flight mass spectrum
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Time-of-flight mass spectrum at a fixed VUV

L. Sheps, |. Antonoy, K. Au. Sensitive mass spectrometer for time-resolved gas-phase chemistry studies at energy (1.3 eV) and kinetic time (60 ms)

high pressures. The Journal of Physical Chemistry A 123.50 (2019) 10804-10814.

ORELUK — SNL MAY 11, 2022 1/13



Modeling the HPR experiment

Data model: z(d, z): ion-count data
d : design conditions §(d,x): true physical process
A(d,x) = £(d, 2) + (@) ! el P
: model parameters f(6,d,x): physics and instrument model
Z(dv "B) — f(ea d? .’L') ry 5(33) + 6(33‘) a : spatial/temporal
coordinates d(x): model error

x = |r,t, E|
0(z) ~ GP(ps(x), Es(x, x')), e(x) ~N(0,s(x)?)

e(x): observation noise

* Physics model
« Zero-dimensional reactor
« Chemical model
« CO0-C3 mechanism, Miller et al. 2021 e
« 171 species / 1143 reactions
* Instrument model W
* Maps species concentrations to ion counts Experimental measurement tensor
« Spectrum peaks are idealized with Gaussian z(d, x) € R?P000X 240X

mass-to-charge ratio

Miller et al., Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models. PECS (2021).
Oreluk et al., Bayesian model calibration for vacuum-ultraviolet photoionisation mass spectrometry. Combustion Theory and Modelling (2022).

ORELUK — SNL MAY 11, 2022



 ldentify key operating conditions d to study specific chemical rate constant
measurements (model parameters 0)

d ={T,p, Xc,ny X0, Xpre}

Why is this important?

« QOperation of the real experiment is costly and laborious
* Initial setup time for the apparatus
 Dalily calibration experiments

* Limited time to run experiments
« Advanced Light Source, Lawrence Berkeley National Laboratory
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Bayesian optimal experimental design

Objective
Find a set of experimental conditions that maximizes the expected utility U(d)

— Utility function models and compares the desirability of outcomes
— Target experiments to learn specific chemical rate constant measurements

d* = arg max U(d) " Notation )

d : design conditions

6 : model parameters

’LL(y, d7 (9)]?(6)7 y!d)dﬁdy y : data
/yey /ee@ \_ -

/ / u(y,d,0)p(0ly, d)p(y|d)dody
yey Joco

=
o
||

D.V. Lindley, On a measure of the information provided by an experiment, The Annals of Mathematical Statistics 27 (1956) 986—1005.
Kathryn Chaloner and Isabella Verdinelli, Bayesian experimental design: A review. Statistical Science (1995) 273-304.
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Choice of utility function

Select a utility function that reflects the goals of our experiment

« Parameter inference

« Information gain of an experiment is closely related to minimizing the parameter uncertainty
« Kullback-Leibler divergence can be used to measure what we can learn from the experimental data

(0ly, d)
p(0)

ulyd,0) = Dicw (p(01: ) 1p(0)) = [ p(Oly, ) 1og [p ] a6
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Choice of utility function

Select a utility function that reflects the goals of our experiment

« Parameter inference

« Information gain of an experiment is closely related to minimizing the parameter uncertainty
« Kullback-Leibler divergence can be used to measure what we can learn from the experimental data

p(0ly, d)
p(0) ] 40

ulyd,0) = Dicw (p(01: ) 1p(0)) = [ p(Oly, ) 1og [

Nested Monte Carlo

N [ M i

1 . . 1 . .
U(d) ~ = D [logp(y™10™.d) — — > logp(y'V10'7), d)
i=0 | §=0 |

T. Rainforth et al., On nesting Monte Carlo estimators, International Conference on Machine Learning. PMLR, 2018.
K.J. Ryan, Estimating expected information gains for experimental designs with application to the random fatigue-limit model, Journal of Computational and
Graphical Statistics 12 (2003) 585-603.
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Maximizing the expected utility, U(d)

d* = argmax U(d)
deD

Bayesian Optimization
« Construct a Gaussian process model of the unknown objective function U(d)

U(d) ~ N(u(d),K(d,d))

« Use an acquisition function a(d) to select new samples
« Gaussian Process upper confidence bound (UCB)

o(d) = pi—1(d) + v/ Bror—1(d) at iteration ¢t and o;_1(d) = /K (d, d)

« EXxploits regions with a high mean and explores regions of high uncertainty

- Select next sample as: d; = arg max a4 (d)
deD

- Evaluate utility function at U (d;)

N. Srinivas, A. Krause, S. Kakade, & M. Seeger. Gaussian process optimization in the bandit setting:
No regret and experimental design. arXiv preprint arXiv:0912.3995 (2009).
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Challenges

Computational limitations

» High-fidelity physics-based simulations can be expensive to evaluate

« Assuming no reuse of data, NM model evaluations to estimate U(d)

- Memory limitations storing a (N x J) sparse matrix, with ] = 5.1 x 108

« Constructing a surrogate model addresses the costly run-time
« Total number of outputs remains problematic

Can we find low-dimensional representations of
the high-dimensional output?
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Reducing output dimensionality

Goal: Map high-dimensional model output to a lower-dimensional space while
minimizing loss of information

Truncated SVD

At a fixed design d,
e Draw n sample of 8() ~ p(8)

e Evaluate model f(0,d,x) + §(x) + ¢(x)

e Construct output matrix Z = USVT, where Z € R™ J = 5.1 x 10®
e Retain only top K singular values of S

e Low-rank approximation: Zx = UgS KV[?

Transformation:
ansto atio Q(97d7m)zz(d7m)VK

9(8,d,@) = [/(8,d,) + §(x) + ()] Vic
(1><VK) (1;]) (JxK)
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Reducing output dimensionality

Construct K surrogate models, one for each of the low-dimensional QOls
9x(0) =~ qx(0,d,x), fork=1,..., K

How should we represent the likelihood in the low-dimensional space?
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Reducing output dimensionality

Construct K surrogate models, one for each of the low-dimensional QOls

9x(0) =~ qx(0,d,x), fork=1,..., K

. Recall, z(d, ZB) — €(d, ;(;) + e(az) / 2
A(d.2) = F(0.d.2) + 5(z) + () §(x) ~ GP(us(x),Zs(x, x)), e(x) ~ N(0,s(x)?)
Therefore, p=Elz] = f(0,d,x) + ps(x)

> = Var[z] = Bs(z, ') + diag(s(z)?)

Given a linear transformation of z,

pq = Elg] = pVi
¥, = Var[q] = ;! TV
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Example: Simplified HPR model

Original data model,

z(d, x): ion-count data

Z(d: ‘B) = E(d: :B) T E(m) ¢(d,z): true physical process
Z(d: CB) — f(G’ d, QL') Y 5(33) T 6(3’:) f(0,d,x): physics and instrument model
x = [r,t, E] d(x): model error

¢(x): observation noise

0(z) ~ GP(us(x), Ls(w,x)), e(x) ~ N(0,s(z)?)

Simplifying assumption:
Only a small subset of the model parameters are considered uncertain
* 4 /1143 reaction rates uncertain, all other reactions are at their nominal (mean) values

1) O+H, -OH+H

2) CyHg + H — CH;CH,CH, + H,

3) O, + CH3CH,CHy — OH + C—-CH,OCH(CH,;)
4) CH;CH(OOH)CH, — OH + C—-CH,OCH(CHj)
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Results
e Initial
ﬁed design parameters: xc, = 83 ><10"7\

%  Proposed
XOZ = 2.5)(10_2
Xpre = 1.9x107*

# of utility samples: N = 1x10*, M =1 x10*

Optimization method: Bayesian Optimization
Acquisition function: UCB, with /8, = 2.5

Dimension reduction: K = 20 components

25 Latin-Hypercube samples  (black points)

gproposal samples (red crosses)
Solid surface is the mean function of a Gaussian process model

representing U(d). Evaluations from expected utility function are shown
as black points or red crosses. Optimal design at (T, p) = (598.4 K, 40 bar)
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Results

(©)p(:10,4) " o
Bayes’ theorem: p(0|z,d) = ARl %l s Y ‘ (A)
p(z|d) | |
o 0 01
E 4 (B) 44 (C)
4 2 9(')1 2 4

300 400 500 600 700 800
Temperature (K)
Heatmap of the estimated utility function using a Gaussian process mean function.
Data sets are generated at each of the design points (A, B, C).

Bayesian inference was performed to observe change in the joint
posterior density given plausible data sets at each of the design
points.
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Conclusion & Future Work

« Demonstrated feasibility of OED for a HPR experiment
« Bayesian optimization efficient in optimizing noisy objective functions

* Low-dimensional representations of the model output provides significant and
necessary computational savings to analyze high-dimensional combustion models

Future Work

« Relaxing assumption on total number of uncertain model parameters
* Preliminary work shows only ~ 40 — 100 model parameters are influential in D

* Run experiment at optimal design conditions
 Collected data can inform the model error, 6§ (x, d)
« Demonstrate benefit of OED by comparing information gain from an optimal
design to a random designs
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Modeling the HPR experiment

Data model:

z(d,x) =&(d,x) + €(x)
z(d,x) = f(0,d,x) + i(x) + e(x)

ion-count

x = |r,t, E|
0(z) ~ GP(ps(x), Es(x, x')), e(x) ~N(0,s(x)?)

* Physics model
o Zero-dimensional reactor

* Photolysis laser model

e Chemical model

« CO0-C3 chemical mechanism
171 species / 1143 reactions Solid surface is the prediction of f(6,,4p,d,x) for one of
e Instrument model the peaks in the time-of-flight spectrum (H,O,).
R Maps concentrations to ion counts Mesh surface shows the prediction with model error,
. . . . g . f(Byap,d, x) + us(x) which increases the fidelity of the
» Peaks idealized as Gaussian distributions oredictive model
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Numerical approximation

u(y,d,0) = Dxr(p(0ly, d)||p(0)) = ]@ p(0ly, d) log [p(9|y’ 9 } df = u(y,d)

p(0)
[ [ u(y, p(Oly, d)dop(y|d)dy

/( d)p(y|d)dy
y

Using p(8ly, d) = p(y|0, d)p(0)/p(y|d),
0, 248 o

_ /y /@ log p(y19, d) — log p(yd)] p(y19, d)p(6)dody




Approximating the expected utility

Numerical approximation:

log p(y' 10D, d) —log p(y'?|d)| where, 8% ~ p(6)

2 Y | |
77 y ~ p(ylo", d)

Several approaches to estimate the marginal likelihood

 Monte Carlo sampling
« Laplace approximation
* Importance sampling

« Variational methods

p(y]d) = / p(y P16, d)p(6)d6

M
1 . . .
N E p(yW10Y) . d), where, 89 ~ p(0)
7=0

N. Friel, J. Wyse, Estimating the evidence—a review, Statistica Neerlandica 66.3 (2012) 288-308.
A. Gelman, X. Meng, Simulating normalizing constants: From importance sampling to bridge sampling to path sampling, Statistical science (1998) 163-185.
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Estimating the marginal likelihood

Linear Model L
Y H s
4 y=G(0) + e A P : |
i v .
G(6) = A6 y € RIS » SEEEEE

HNN(MOaz()) v, ER% Si $ ; ' ! ;
e ~ N(0,Zc) FRNE S

k j - ~100 i .

Monte Carlo estimation o0l :

; ; # of Monte Carlo Samples
P61 = [y 216, d)p(0)a8

Monte Carlo estimate of the log marginal likelihood converges to
the true value, shown as a red dashed line, as number of

M
%% Zp(y(z‘)w(j), d), Where, Q(j) N p(@) samples goes to infinity.
j=0
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Estimating the marginal likelihood

Linear Model |\ -
/ \ -100
y=G(0) +e
G(0) = Af y € R .o :
<> —300 °
= . .
QNN(M(%EO) 9€R50 = . e s : !
= 400 * . } I
e ~ N(0,%,) = '
o) o ° ° ! .
k j — -5001 , . o .
. P,
-6001 ° .
—700 1 :
103 104 105 106
 As dimensionality increases, numerous # of Monte Carlo Samples
samples are necessary to converge to the Significant error in the estimate of the log marginal likelihood
true marginal likelihood value as compared to the lower dimensional problem at a fixed
number of samples.
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Evaluating U(d)

M
. 1 L
D@ gy — — (1) |g(4)
1 log p(2\*]6'", d) jE=1 log p(z\*|6V’, d)

2

1
U(d) =~ W

]

where 2 ~ p(z|6®), d) and p(2 |0 d) ~ N (u, ).

Rewriting the data,

N M
1 ; : 1 . .
U(d) ~ > [logp(q("')Vf? 69,d) — — > logp(¢" Vi 9(3),61)}
i=1 =il
Taking a linear combination of the data,
1 & - L 1 M o
U(d) ~ > |logp(g?|6®,d) — == Jlogp(¢"0"), d)
i=1 | j=1 ]

where ¢ ~ p(q|0®,d) and p(¢?|0@), d) ~ N (uVi, VEE V).
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Results

e Initial
%  Proposed
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Solid surface is the mean function of a Gaussian process model Proposals by the acquisition function were near the maximum,
representing U(d). Evaluations of the utility function are (T, p) = (598.4 K, 40 bar)

shown as black points or red crosses.
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