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MPI Sessions 
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• In the MPI 4.0 standard
• Sessions API supported in MPICH 4 release stream 

and Open MPI 5.0 release stream (not yet released)
• Complete implementation of MPI 4 Sessions API 
• Requires PMIx 4 or newer (for Open MPI)
• Set of examples are available at  

https://github.com/hppritcha/mpi_sessions_tests

MPI_Session_init

Query runtime for process sets

MPI_Group_from_session_pset

MPI_Comm_create_from_group

https://github.com/hppritcha/mpi_sessions_tests


MPI Persistent Collectives
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• Released in the MPI 4 standard at Barcelona MPI Forum Meeting (9/18)
• Aims to accelerate applications with repetitive collective  operations
• Initialization call for a persistent collective operation is non-local, all members of  

the communicator being supplied to the initialization operation must eventually  
invoke this initialization call

• The info argument to these initialization calls can be used to specify MPI  
implementation specific optimizations.



MPI Persistent Collectives
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• Starting/completion semantics
• MPI_*_init creates a request and may be used zero or  more times to start the 

corresponding collective operation using MPI_Start or  MPI_Startall.
• This request must be inactive before starting a persistent collective operation

• Starting a persistent collect operation makes it active
• Only one outstanding collective operation on a request

• Loosens ordering constraints
• Ordering matters for MPI_*_init not MPI_Start*.

• MPI_Wait, MPI_Test, etc. completes the  operation but does not free the 
request



Partitioned Communication
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• Share “ownership” of a buffer between MPI and user code 
• Similar to RMA Windows

• Uses a persistent buffer ‘partitioned’ into smaller chunks
• User informs MPI when data is ‘ready’ to send. 

• User code must manage memory epochs 
• Once a partition is marked ready, it’s data can not be changed

• Thread agnostic with a minimal synchronization overhead  



Early Bird Communication

• New type of overlap

• Data can be transferred before the last compute thread is finished

• Can consolidate some messaging overhead

• Targeted for accelerator use in a future version of the MPI standard
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Example (send side)
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Example (receive side)
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Partitioned communication (MPI 4.0) implementation status

• General implementation layered on top of MPI
– https://github.com/tonyskjellum/MPIPCL

• Available in MPICH since v4.0a1 release

• Available in Main branch of OpenMPI
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https://github.com/tonyskjellum/MPIPCL

