SAND2022-6299C

MPI Sessions, Persistent Collectives, and

Partitioned Communication

Matthew Dosanjh
Sandia National Laboratories

Based on slides by
Howard Prichard
Los Alamos Laboratory
ECP ===

Sandia National Laborator a multimission laboratory managed and oper: tdbth nal Techn qu&Eq qSIt fS ndia, LLC, a wholly owned
subs

tio bor
idial ny waIIt national Inc., for the USDprtmeth rgy's National Nuclear Sec yAdmlntt under contract DE-NA0003535.

MPI Sessions

* In the MPI 4.0 standard

« Sessions API supported in MPICH 4 release stream
and Open MPI 5.0 release stream (not yet released)

« Complete implementation of MPI 4 Sessions API

* Requires PMIx 4 or newer (for Open MPI)
» Set of examples are available at
https://github.com/hppritcha/mpi_sessions_tests

MPI|_Session_init

Query runtime for process sets

MPI_Group_from_session_pset

MPI_Comm_create from_group

https://github.com/hppritcha/mpi_sessions_tests

MPI| Persistent Collectives

- Released in the MPI 4 standard at Barcelona MPI| Forum Meeting (9/18)
« Aims to accelerate applications with repetitive collective operations

« |nitialization call for a persistent collective operation is non-local, all members of
the communicator being supplied to the initialization operation must eventually
Invoke this initialization call

* The info argument to these initialization calls can be used to specify MPI
implementation specific optimizations.

MPI| Persistent Collectives

« Starting/completion semantics

« MPI_* init creates a request and may be used zero or more times to start the
corresponding collective operation using MPI_Start or MPI_Startall.
* This request must be inactive before starting a persistent collective operation
» Starting a persistent collect operation makes it active
* Only one outstanding collective operation on a request
* Loosens ordering constraints
* Ordering matters for MPIl_*_init not MPI_Start*.
 MPI_Wait, MPI_Test, etc. completes the operation but does not free the
request

Partitioned Communication

« Share “ownership” of a buffer between MPI and user code
« Similar to RMA Windows
« Uses a persistent buffer ‘partitioned’ into smaller chunks
« User informs MPI when data is ‘ready’ to send.
« User code must manage memory epochs
« Once a partition is marked ready, it's data can not be changed
« Thread agnostic with a minimal synchronization overhead

Early Bird Communication

« New type of overlap

« Data can be transferred before the last compute thread is finished

« Can consolidate some messaging overhead

« Targeted for accelerator use in a future version of the MPI standard

Partitioned Send Timeline

; s o
Thread #1 Data / ,// Thread #3 Data Thread #4 Data
Transfer %{V//// Transfer i 7] Transfer
22 !
Thread #2 Data
Transfer

Traditional Single Threaded Send Timeline

Thread #1 Data | Thread #2 Data | Thread #3 Data | Thread #4 Data
Transfer Transfer Transfer Transfer

All threads have joined
and send call is issued

f:\\ EXASCALE
E\(\Q | =S

Example (send side)

ECP

EXARSCALE
COMPUTING
FROJECT

MPI_Psend_init(message, send_partitions, 1, send_type, dest, tag,
info, MPI_COMM_WORLD, krequest);
MPI_Start (krequest);
#pragma omp parallel for shared(request) mum_threads(NUM_THREADS)
for (imt 1=0; i<send_partitioms; i++)
{
/#* compute and fill partition #i, then mark ready: =/
MPI_Pready(i, &krequest);
}
while(!flag)
{
/* Do useful work =/
MPI_Test(&krequest, kflag, MPI_STATUS_ICNORE) ;
/* Do useful work =/

}
MPI_Request_free(krequest] ;|

Example (receive side)

MPI_Precv_init(message, recv_partitions, recv_partlength, MPI_DOUELE,
source, tag, info, MPI_COMM_WORLD, krequest);

MPI_Start (krequest);

#pragma omp parallel for shared{request) num_threads (NUM_THREADS)

for (imt j=0; j<recv_partitioms; j+=2)

{

int partl_complete = 0;

int part?_complete = 0;

:hila{Parti_cnmplata == 0 || part2_complete == () 0
/* test partition #j and #j+1 =/ :
MPI_Parrived({krequest, j, &flag);
if(flag &k partl_complete == () while(!flag)

i {
partl_completet++; f/* Do useful work =/
/* Do work uﬂin_g P.E_'r_-r,:i_t.iu-n j data =/ HPI_TBEt{&IETlBEt. k‘_FLEI.E, MPI_STATUS_ICHNORE) ;
} J* Do useful work #*/
if (j+1 < recv_partitioms) { }
MPI_Parrived (krequest, j+1, Eflag); MPI_Reguest_free(krequest);:
1f(flag &k part?_complete == 0)
{
part2_completet+t;
/* Do work using partitiom j+1 =/
}
1
else {
partZ_complete++;
1
¥
}

\—‘l\\{:: i | FHULEL

Partitioned communication (MP1 4.0) implementation status

e General implementation layered on top of MPI
— https://github.com/tonyskjellum/MPIPCL

e Available in MPICH since v4.0a1 release

« Available in Main branch of OpenMPI

https://github.com/tonyskjellum/MPIPCL

