
MPI Sessions, Persistent Collectives, and
Partitioned Communication

Matthew Dosanjh
Sandia National Laboratories

Based on slides by
Howard Prichard
Los Alamos Laboratory

SAND2022-6299CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

MPI Sessions

2

• In the MPI 4.0 standard
• Sessions API supported in MPICH 4 release stream

and Open MPI 5.0 release stream (not yet released)
• Complete implementation of MPI 4 Sessions API
• Requires PMIx 4 or newer (for Open MPI)
• Set of examples are available at

https://github.com/hppritcha/mpi_sessions_tests

MPI_Session_init

Query runtime for process sets

MPI_Group_from_session_pset

MPI_Comm_create_from_group

https://github.com/hppritcha/mpi_sessions_tests

MPI Persistent Collectives

5

• Released in the MPI 4 standard at Barcelona MPI Forum Meeting (9/18)
• Aims to accelerate applications with repetitive collective operations
• Initialization call for a persistent collective operation is non-local, all members of

the communicator being supplied to the initialization operation must eventually
invoke this initialization call

• The info argument to these initialization calls can be used to specify MPI
implementation specific optimizations.

MPI Persistent Collectives

6

• Starting/completion semantics
• MPI_*_init creates a request and may be used zero or more times to start the

corresponding collective operation using MPI_Start or MPI_Startall.
• This request must be inactive before starting a persistent collective operation

• Starting a persistent collect operation makes it active
• Only one outstanding collective operation on a request

• Loosens ordering constraints
• Ordering matters for MPI_*_init not MPI_Start*.

• MPI_Wait, MPI_Test, etc. completes the operation but does not free the
request

Partitioned Communication

7

• Share “ownership” of a buffer between MPI and user code
• Similar to RMA Windows

• Uses a persistent buffer ‘partitioned’ into smaller chunks
• User informs MPI when data is ‘ready’ to send.

• User code must manage memory epochs
• Once a partition is marked ready, it’s data can not be changed

• Thread agnostic with a minimal synchronization overhead

Early Bird Communication

• New type of overlap

• Data can be transferred before the last compute thread is finished

• Can consolidate some messaging overhead

• Targeted for accelerator use in a future version of the MPI standard

8

Example (send side)

9

Example (receive side)

1
0

Partitioned communication (MPI 4.0) implementation status

• General implementation layered on top of MPI
– https://github.com/tonyskjellum/MPIPCL

• Available in MPICH since v4.0a1 release

• Available in Main branch of OpenMPI

6

https://github.com/tonyskjellum/MPIPCL

