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Introduction

 Distance-2 Maximal Independent Set (MIS-2)
 Enables coarsening suitable for algebraic multigrid (AMG) aggregation

 Efficient implementation in Kokkos, including 4 new algorithmic improvements

 Portable, performant and scalable across all major HPC architectures
 Intel, ARM CPUs
 NVIDIA, AMD GPUs
 5x speedup vs. ViennaCL, 6x vs. CUSP
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Distance-2 Maximal Independent Set (MIS-2)

 Select a subset of vertices from undirected graph

 Satisfy two properties:
1. Distance-2: no two vertices in set can be within 2 edges of each other
2. Maximal: not possible to add more vertices to set without violating property 1.
 Maximum independent set: largest maximal set, is NP-hard

Red: in MIS-2
Orange: distance-1 conflict
Yellow: distance-2 conflict
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Distance-2 Maximal Independent Set (MIS-2)

 Yields a straightforward graph coarsening suitable for aggregation-based Algebraic 
Multigrid (AMG) preconditioner [1]
 Red vertices become cluster roots
 Orange vertices join with the adjacent root
 Yellow vertices join with an adjacent orange arbitrarily

 For all graphs, this assigns every vertex to a cluster

Red: in MIS-2
Orange: distance-1 conflict
Yellow: distance-2 conflict

4/27



MIS-2 Parallel Greedy Algorithm (Bell et al.) [1]

 Computes distance-k MIS (we fix k=2)

 All vertices initially have status UNDECIDED (grey).

 Assign each vertex a tuple T: (status, random priority, #ID)

 Also set Tmin = T: the minimum tuple in a radius-k neighborhood (initially k = 0)

[1] Bell, S. Dalton, and L. Olson, “Exposing fine-grained 
parallelism in algebraic multigrid methods”, SISC 2012.
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MIS-2 Parallel Greedy Algorithm (Bell et al.)

 For i = 1…k, Tmin := min(Tmin among neighbors)

 Compared lexicographically: status, priority, ID

 IN-SET < UNDECIDED < OUT-SET

 i = 1:

IN-SET

UNDECIDED

OUT-SET
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MIS-2 Parallel Greedy Algorithm (Bell et al.)

 For i = 1…k, Tmin := min(Tmin among neighbors)

 Compared lexicographically: status, priority, ID

 IN-SET < UNDECIDED < OUT-SET

 i = 2:

IN-SET

UNDECIDED

OUT-SET
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MIS-2 Parallel Greedy Algorithm (Bell et al.)

 Vertices with T = Tmin must be in the set:

 Tuples are unique (ID guarantees this)

 In any radius-k neighborhood, only one vertex can have the minimum

 Otherwise, if Tmin = IN-SET, then definitely excluded from set

IN-SET

UNDECIDED

OUT-SET
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MIS-2 Parallel Greedy Algorithm (Bell et al.)

 Next iteration’s Tmin (i = 1…2 loop not shown):

IN-SET

UNDECIDED

OUT-SET
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MIS-2 Parallel Greedy Algorithm (Bell et al.)

 Vertices with T = Tmin must be in the set:
 Tuples are unique
 In any radius-k neighborhood, only one vertex can have the minimum

 Otherwise, if Tmin = IN-SET, then definitely excluded from set

 Done in 2 iterations – no UNDECIDED vertices remain

IN-SET

UNDECIDED

OUT-SET
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MIS-2: Implementation in 
Kokkos
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MIS-2: Efficient Kokkos Implementation

 Kokkos [2]: “[parallel] programming model for high performance on all major HPC 
platforms”

 Build application for any major CPU and GPU architecture (Nvidia, AMD, Intel, 
Power, ARM, …)

 Implement MIS-2 for graph portion of Kokkos Kernels [2a]
 Parallel, portable linear algebra and graph library

 Implementation Issues:
 How and when to choose random priorities?
 How to represent the (state, priority, ID) tuples?
 How to improve memory access patterns for GPUs?

[2]: https://github.com/kokkos/kokkos
[2a]: https://github.com/kokkos/kokkos-kernels
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MIS-2: (Pseudo)random Priorities

 Want to keep determinism for reproducibility, debuggability
 AMG aggregates affect entire solver stack

 Use hash function of vertex ID and iteration
 64-bit xorshift [3] followed by linear congruential step (aka xorshift*)
 priority = hash(hash(v_id) xor hash(iteration))

 Unlucky chain of descending priorities: only one vertex can be added to set per 
iteration
 New priorities each iteration -> break dependency chains
 Iteration count also higher with plain xorshift

[3] Marsaglia, G. “Xorshift RNGs”, JSS 2003
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MIS-2: Packed Tuples

[4] M. Burtscher, S. Devale, S. Azimi, J. Jaiganesh, and E. 
Powers. "A High-Quality and Fast Maximal Independent Set 
Implementation for GPUs.” ACM TOPC 2018
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MIS-2: Prefix-sum Worklist

 Avoid unnecessary work in inner loop (i = 1…2)
 In later iterations, most vertices have already been labeled

 For each i, vertices within a radius-i neighborhood of an IN-SET vertex don’t need to 
be processed

 Maintain two separate worklists: one for i = 1, and one for i = 2
 This means the implementation only computes MIS-2, not MIS-k

 Use a parallel prefix sum (“scan”) to filter out the newly labeled vertices
 Kokkos provides high performance scan
 Scan-based worklists were used for Kokkos Kernels greedy coloring in [5]

[5] M. Deveci, E. G. Boman, K. D. Devine and S. 
Rajamanickam, "Parallel Graph Coloring for Manycore 
Architectures,” IPDPS 2016.
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MIS-2: SIMD Neighbor Processing

 Uses Kokkos 2-level parallelism

 Only for GPUs; not practical to vectorize on CPUs

 Express each loop over neighbors as a parallel loop
 A warp (NVIDIA) or wavefront (AMD) can process 32 or 64 (resp.) loop iterations 

simultaneously
 Coalesces memory accesses of CRS adjacency list

 Generally not profitable if avg. degree < 16
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MIS-2 in Kokkos: 
Performance and 
Applications
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MIS-2: Cumulative Effects of Optimizations
 15 graphs from SuiteSparse, and 2 generated by Trilinos 

(Laplace3D, Elasticity3D)

 Bell et al. is a reference implementation of Bell 2012 in 
Kokkos.

 Each implementation includes all previous optimizations too

 “Avg. degree < 16” heuristic disables SIMD for some graphs

Mean speedup from each optimization:

 RandomPriority: 1.28x

 Worklist: 2.55x

 PackedStatus: 1.72x

 SIMD: 1.37x

Total: 8.97x
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MIS-2: Performance vs. CUSP (NVIDIA V100)

 Mean 6x speedup over CUSP library
 CUSP Library [6] (Dalton/Bell are primary contributors)
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MIS-2: Performance vs. ViennaCL (NVIDIA V100)

 Measures MIS-2 plus coarsening
 Mean 5x speedup over ViennaCL (both OpenCL and 

CUDA backends) [7]
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MIS-2: GPU Portability to AMD

 No architecture-specific code needed
 Dashed line is theoretical speedup given memory bandwidths
 Solid line is actual mean speedup (V100 is more efficient with bandwidth)
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MIS-2: Intel CPU Strong Scaling

 Xeon Platinum 8160 (Skylake)
 2 sockets x 24 cores x 2 hyperthreads

 Each line is one of 17 graphs from before
 Scales to all 48 cores, but not hyperthreads
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MIS-2: ARM CPU Strong Scaling

 2 sockets x 28 cores x 2 threads
 Very good scaling to all 56 cores but not threads
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Cluster Multicolor Gauss-Seidel

 Gauss-Seidel uses sequential forward/backward substitution

 Approximate version can be parallelized by coloring vertices (red-black, multicolor)
 Same color -> not adjacent, can update in parallel
 As a preconditioner, this gives slower convergence than sequential

 Cluster strategy: coarsen graph (using MIS-2) before coloring
 Get small neighborhoods of vertices, and the neighborhoods of same color are independent
 Go over neighborhoods of a color in parallel, but do the updates sequentially within the 

neighborhoods.

 Setup faster: coarsening is much cheaper than coloring, and coarse graph is smaller

 Solve faster: faster convergence, better locality (vertices in neighborhood reused)
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Cluster Multicolor Gauss-Seidel

 Comparing regular multicolor vs cluster multicolor preconditioners
 (on the 5 problems out of 17 that converge to |Ax-b|<10-8 in fewer than 800 iterations)
 GMRES + preconditioner

 Setup time, total solve time and iterations all improved by cluster
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Conclusions

 MIS-2 based coarsening
 Suitable for algebraic multigrid aggregation
 New application in Gauss-Seidel parallel preconditioning

 Efficient implementation in Kokkos
 Regenerate random priorities every iteration
 Represent 3-tuples in single integer
 Use prefix-sum based worklists to avoid redundant work
 Use SIMD parallelism to improve memory access pattern

 Portable, performant and scalable across all major HPC architectures
 Intel, ARM CPUs
 NVIDIA, AMD GPUs
 5x speedup vs. ViennaCL, 6x vs. CUSP
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 Graph images generated using GraphViz and Edotor
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