This paper describes obijective technical results and analysis. Any subjective views or opinions that might/be expressed|in SAND2022-6268C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Parallel, Portable Algorithms for Distance-2

Maximal Independent Set and Graph
Coarsening

’.: \ EXASCALE
E\(\Q\JF’ SEre

[.4
IPDPS22 hkOkkOS

Brian Kelley and Sivasankaran Rajamanickam
— - — — @ciRey NISA

At Wecisar Secanty Acmna

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
1 /27 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, alwholly owned SAN D2022
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

2/27

Introduction

= Distance-2 Maximal Independent Set (MIS-2)
= Enables coarsening suitable for algebraic multigrid (AMG) aggregation

= Efficient implementation in Kokkos, including 4 new algorithmic improvements

= Portable, performant and scalable across all major HPC architectures
= Intel, ARM CPUs

= NVIDIA, AMD GPUs
= 5x speedup vs. ViennaCL, 6x vs. CUSP

**| Distance-2 Maximal Independent Set (MIS-2)

= Select a subset of vertices from undirected graph

= Satisfy two properties:
1. Distance-2: no two vertices in set can be within 2 edges of each other

2. Maximal: not possible to add more vertices to set without violating property 1.

= Maximum independent set: largest maximal set, is NP-hard

Va . Red: in MIS-2
g Orange: distance-1 conflict
Yellow: distance-2 conflict

“I Distance-2 Maximal Independent Set (MIS-2)

= Yields a straightforward graph coarsening suitable for aggregation-based Algebraic
Multigrid (AMG) preconditioner [1]

= Red vertices become cluster roots
= QOrange vertices join with the adjacent root
= Yellow vertices join with an adjacent orange arbitrarily

= For all graphs, this assigns every vertex to a cluster

Va . Red: in MIS-2
g Orange: distance-1 conflict
Yellow: distance-2 conflict

I I Em B

"7l MIS-2 Parallel Greedy Algorithm (Bell et al.) [1]

= Computes distance-k MIS (we fix k=2)
= All vertices initially have status UNDECIDED (grey).
= Assign each vertex a tuple T: (status, random priority, #ID)

= Alsoset T_. = T: the minimum tuple in a radius-k neighborhood (initially k = 0)

. IN-SET

. UNDECIDED

Q OUT-SET

[1] Bell, S. Dalton, and L. Olson, “Exposing fine-grained
parallelism in algebraic multigrid methods”, SISC 2012.

min

I I Em B

"I MIS-2 Parallel Greedy Algorithm (Bell et al.)

Fori=1..k, T, := min(T;, among neighbors)

min

Compared lexicographically: status, priority, ID

= IN-SET < UNDECIDED < OUT-SET

. IN-SET

iz UNDECIDED

Q OUT-SET

"I MIS-2 Parallel Greedy Algorithm (Bell et al.)

Fori=1..k, T, := min(T;, among neighbors)

Compared lexicographically: status, priority, ID
IN-SET < UNDECIDED < OUT-SET
i=2:

IN-SET

iz UNDECIDED

O

OUT-SET

"I MIS-2 Parallel Greedy Algorithm (Bell et al.)

Vertices with T = T_,, must be in the set:

Tuples are unique (ID guarantees this)
= |n any radius-k neighborhood, only one vertex can have the minimum

= Otherwise, if T, = IN-SET, then definitely excluded from set

. IN-SET

iz UNDECIDED

O

OUT-SET

"I MIS-2 Parallel Greedy Algorithm (Bell et al.)

= Next iteration’s T_.. (i = 1...2 loop not shown):

min (

. IN-SET

iz UNDECIDED

O

OUT-SET

7l MIS-2 Parallel Greedy Algorithm (Bell et al.)

= Vertices with T = T_,. must be in the set:
= Tuples are unique

= |n any radius-k neighborhood, only one vertex can have the minimum

= Otherwise, if T, ., = IN-SET, then definitely excluded from set

= Done in 2 iterations - no UNDECIDED vertices remain

T
T-min

O

IN-SET

UNDECIDED

OUT-SET

MIS-2: Implementation in
Kokkos

12/27

MIS-2: Efficient Kokkos Implementation

platforms”

= Build application for any major CPU and GPU architecture (Nvidia, AMD, Intel,

= Kokkos [2]: “[parallel] programming model for high performance on all major HPC '
Power, ARM, ...) i

= Implement MIS-2 for graph portion of Kokkos Kernels [2a]
= Parallel, portable linear algebra and graph library

= |Implementation Issues:
= How and when to choose random priorities? |
= How to represent the (state, priority, ID) tuples?
= How to improve memory access patterns for GPUs?

L kokkos

[2]: https://github.com/kokkos/kokkos
[2a]: https://github.com/kokkos/kokkos-kernels

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-kernels

13/27

MIS-2: (Pseudo)random Priorities

= Want to keep determinism for reproducibility, debuggability
= AMG aggregates affect entire solver stack

= Use hash function of vertex ID and iteration

= 64-bit xorshift [3] followed by linear congruential step (aka xorshift*)
® priority = hash(hash(v_id) xor hash(iteration))

= Unlucky chain of descending priorities: only one vertex can be added to set per
iteration

= New priorities each iteration -> break dependency chains
= [teration count also higher with plain xorshift

[3] Marsaglia, G. “Xorshift RNGs”, JSS 2003

I I Em B

“*| MIS-2: Packed Tuples

« IN-SET =0
= OUT-SET = -0 (OxFFFF...)

[4] applied similar strategy to MIS-1

= Letb = [log,(|V]| + 1)]
= then any UNDECIDED tuple is: (priority << b) | (v_id + 1)

Priority bits more significant than ID
ID bits are unique, so no ties are possible

= Represent (state, priority, ID) tuple with a single integer i
i

[4] M. Burtscher, S. Devale, S. Azimi, J. Jaiganesh, and E.
Powers. "A High-Quality and Fast Maximal Independent Set
Implementation for GPUs.” ACM TOPC 2018

15/27

MIS-2: Prefix-sum Worklist

= Avoid unnecessary work in inner loop (i = 1...2)
= |n later iterations, most vertices have already been labeled

= For each i, vertices within a radius-i neighborhood of an IN-SET vertex don’t need to
be processed

= Maintain two separate worklists: one for i =1, and one fori =2
= This means the implementation only computes MIS-2, not MIS-k

= Use a parallel prefix sum (“scan”) to filter out the newly labeled vertices
= Kokkos provides high performance scan

= Scan-based worklists were used for Kokkos Kernels greedy coloring in [5]

[5] M. Deveci, E. G. Boman, K. D. Devine and S.
Rajamanickam, "Parallel Graph Coloring for Manycore
Architectures,” IPDPS 2016.

I I Em B

7] 'MIS-2: SIMD Neighbor Processing

= Uses Kokkos 2-level parallelism
= Only for GPUs; not practical to vectorize on CPUs

= Express each loop over neighbors as a parallel loop

= A warp (NVIDIA) or wavefront (AMD) can process 32 or 64 (resp.) loop iterations
simultaneously

= Coalesces memory accesses of CRS adjacency list

= Generally not profitable if avg. degree < 16

MIS-2 in Kokkos:
Performance and
Appllcatlons

18/27

MIS-2: Cumulative Effects of Optimizations

- = 15 graphs from SuiteSparse, and 2 generated by Trilinos
Slocraes st (Laplace3D, Elasticity3D)
parabolic_fem Em SIMD
door = Bell et al. is a reference implementation of Bell 2012 in
Geo_1438 Kokkos.
e = Each implementation includes all previous optimizations too
tm_sym = “Avg. degree < 16” heuristic disables SIMD for some graphs

Serena
Laplace3D_100
Fault_639 Mean speedup from each optimization:

Elasticity3D_60

= RandomPriority: 1.28x
= Worklist: 2.55x

apache2
thermal2

PFlow_742

= PackedStatus: 1.72x
= SIMD: 1.37x
Total: 8.97x

Hook_1498

ecalogy2

af_shell7

0.0 0.2 0.4 0.6 0.8 1.0
Runtime vs. Baseline

19/27

MIS-2:

Performance vs. CUSP (NVIDIA V100)

KokkosKernels vs. CUSP: Distance-2 MIS

audikw_1
Geo_1438
Elasticity3D_60
PFlow_742
apache2
ecology2
tmt_sym
Serena
Laplace3D_100
Hook_1498
thermal2

ldoor
Emilia_923
parabolic_fem
Fault_639
StocF-1465
af_shell7

T T T T T

3 = 5 6 7

o =
[
%)

Speedup vs. CUSP

* Mean 6x speedup over CUSP library
= CUSP Library [6] (Dalton/Bell are primary contributors)

| MIS-2: Performance vs. ViennaCL (NVIDIA V100)

KokkosKernels vs. ViennaCL: MIS-2 and Coarsening

ecology2
thermal2
Laplace3D_100
tmt_sym
apache2
parabolic_fem
StocF-1465
ldoor
Hook 1498
Serena
Geo_1438
af_shell7
Emilia_923
Fault_639
audikw_1
PFlow_742 B ViennaCL (OpenCL)
Elasticity3D_60 B ViennaCL (CUDA)

0 1 2 3 4 5 6 7 8
Speedup vs. ViennaCL (OpenCL and CUDA backends)

= Measures MIS-2 plus coarsening
»= Mean 5x speedup over ViennaCL (both OpenCL and
CUDA backends) [7]

"l MIS-2: GPU Portability to AMD

Nvidia V100 vs. AMD MI100

PFlow_742
audikw_1
Elasticity3D_60
Idoor
StocF-1465
Fault_639
parabolic_fem
Emilia_923
Hook 1498
Serena
af_shell7
Geo_1438
apache?2
Laplace3D_100
tmt_sym
thermal2
ecology?

0.00 0.25 050 075 1.00 1.25 1.50 1.75 2.00
MI100 time / V100 time

» No architecture-specific code needed
» Dashed line is theoretical speedup given memory bandwidths
= Solid line is actual mean speedup (V100 is more efficient with bandwidth)

“*| MIS-2: Intel CPU Strong Scaling

Intel Xeon Skylake: Strong Scaling

1.0 -

Scaling Efficiency
o o©
e)] (o]

©
SN
1

0.2 A

i i 411 EIB 116 3I2 418 9'6
OpenMP Threads
= Xeon Platinum 8160 (Skylake)
= 2 sockets x 24 cores x 2 hyperthreads
» Each line is one of 17 graphs from before
= Scales to all 48 cores, but not hyperthreads

“l MIS-2: ARM CPU Strong Scaling

ThunderX2 ARM: Strong Scaling

1.0 -

0.8 -

0.6 1

Scaling Efficiency

0.2 A

1 2 4 8 16 28 56 112
OpenMP Threads

= 2 sockets x 28 cores x 2 threads
= Very good scaling to all 56 cores but not threads

24/27

Cluster Multicolor Gauss-Seidel

Gauss-Seidel uses sequential forward/backward substitution

Approximate version can be parallelized by coloring vertices (red-black, multicolor)
= Same color -> not adjacent, can update in parallel

= As a preconditioner, this gives slower convergence than sequential

Cluster strategy: coarsen graph (using MIS-2) before coloring
= Get small neighborhoods of vertices, and the neighborhoods of same color are independent

= Go over neighborhoods of a color in parallel, but do the updates sequentially within the
neighborhoods.

Setup faster: coarsening is much cheaper than coloring, and coarse graph is smaller

Solve faster: faster convergence, better locality (vertices in neighborhood reused)

®| Cluster Multicolor Gauss-Seidel

= Comparing regular multicolor vs cluster multicolor preconditioners
= (on the 5 problems out of 17 that converge to |Ax-b|<10-8 in fewer than 800 iterations)
= GMRES + preconditioner

= Setup time, total solve time and iterations all improved by cluster

Table VI
POINT VvS. CLUSTER MULTICOLOR GAUSS-SEIDEL AS PRECONDITIONERS
FOR GMRES. WE COMPARE SETUP AND TOTAL APPLY TIME, AS WELL AS
GMRES ITERATIONS.

P. Setup C. Setup P. Apply C. Apply
(P. Iters) (C. Iters)
bodyy5 0.0154 0.00849 0.124 (187.0) 0.0616 (172.6)
Elasticity3D_60 | 0.174 0.0438 7.41 (328.2) 4.56 (337.4)
Geo_1438 0.209 0.0662 11.1 (408.5) 4.73 (388.4)
Laplace3D_100 | 0.0553 0.0409 0.664 (158.4) 0.567 (144.6)
Serena 0.215 0.0664 6.55 (227.0) 2.93 (219.2)

I I Em B

26/27

Conclusions

= MIS-2 based coarsening
= Suitable for algebraic multigrid aggregation

= New application in Gauss-Seidel parallel preconditioning

= Efficient implementation in Kokkos
= Regenerate random priorities every iteration
= Represent 3-tuples in single integer
= Use prefix-sum based worklists to avoid redundant work
= Use SIMD parallelism to improve memory access pattern

= Portable, performant and scalable across all major HPC architectures
= Intel, ARM CPUs

= NVIDIA, AMD GPUs
= 5x speedup vs. ViennaCL, 6x vs. CUSP

27/27

References

1. Bell, S. Dalton, and L. Olson, “Exposing fine-grained parallelism in algebraic
multigrid methods”, SISC 2012

2. Kokkos parallel programming model: https://github.com/kokkos/kokkos
3. Marsaglia, G. “Xorshift RNGs”, JSS 2003

4. M. Burtscher, S. Devale, S. Azimi, J. Jaiganesh, and E. Powers. "A High-Quality and
Fast Maximal Independent Set Implementation for GPUs.” ACM TOPC 2018

5. M. Deveci, E. G. Boman, K. D. Devine and S. Rajamanickam, "Parallel Graph
Coloring for Manycore Architectures,” IPDPS 2016.

6. CUSP Library: https://github.com/cusplibrary/cusplibrary

/. ViennaCL Library: http://viennacl.sourceforge.net

= Graph images generated using GraphViz and Edotor

