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Abstract—It is impossible in practice to comprehensively test
even small software programs due to the vastness of the reachable
state space; however, modern cyber-physical systems such as
aircraft require a high degree of confidence in software safety and
reliability. Here we explore methods of generating test sets to
effectively and efficiently explore the state space for a module
based on the Traffic Collision Avoidance System (TCAS) used on
commercial aircraft. A formal model of TCAS in the model-
checking language NuSMV provides an output oracle. We
compare test sets generated using various methods, including
covering arrays, random, and a low-complexity input paradigm
applied to 28 versions of the TCAS C program containing seeded
errors. Faults are triggered by tests for all 28 programs using a
combination of covering arrays and random input generation.
Complexity-based inputs perform more efficiently than covering
arrays, and can be paired with random input generation to create
efficient and effective test sets. A random forest classifier
identifies variable values that can be targeted to generate tests
even more efficiently in future work, by combining a machine-
learned fuzzing algorithm with more complex model oracles
developed in model-based systems engineering (MBSE) software.
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I. INTRODUCTION

The power, capacity, and flexibility of digital technology
provide capability to modern cyber-physical systems such as
vehicles, aircraft, and weaponry that was simply out of reach
for older analog and mechanical systems. The power of digital
technology, however, comes at a price. Apart from the
potential vulnerabilities created by networked systems, a
computer-controlled system is also only as secure, reliable, and
resilient as the software that controls it. In the past few decades,
flaws and wvulnerabilities in software led to devastating
accidents and breaches that compromised personal information,
cost billions of dollars, and in the case of software-powered
medical devices, transportation, or other safety-critical systems,
sometimes led to injuries or even loss of life [1].
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Achieving software assurance through testing is hard.
Testing based on software requirements—the behaviors the
software was engineered to produce—can demonstrate the
presence or absence of nominal functionality. However, test
sets that achieve requirements-based coverage are not
necessarily sufficient to exercise all of the software’s latent
behaviors [2]. One approach to address the problem is to test
in a way that provides coverage of the software structure: the
branching logic pathways made possible by conditional
statements in the program under test. In avionics, for example,
structural coverage criteria are used to determine test suite
adequacy for certification purposes [3]. Previously, standard
guidance used by certification authorities across the U.S.,
Canada, and Europe required safety-critical software testing to
demonstrate structural coverage [4] [5].

Research has raised questions about the effectiveness of
coverage-based testing, finding in some cases that test sets
generated using coverage criteria are less effective than random
tests of the same length [6]. One possible reason for this is
masking, in which changing the value of a condition does not
affect the outcome of the assertion [7]. Full characterization of
the state space reachable by software programs is effectively
impossible; that is, while cyber-physical system programs have
a finite state space and therefore the problem of fully
characterizing program behavior is in principle decidable, in
practice it is combinatorially hard [9]. In practice, software test
design is an inexact science that leverages any number of
techniques to attempt to exercise as much of a program under
test as possible within the schedule and budget allotted to test
activities. Improving software testing is still an area of active
and urgent research.

In this paper, we compare various methods of generating
test suites based on their efficiency and effectiveness at
triggering faults across a set of programs deliberately seeded
with coding errors, a type of mutation testing. The rest of the
paper is organized as follows: Section 2 provides background
on the types of test methods we employ; Section 3 provides an
overview of the experimental design, including a description of
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the program under test; and Section 4 reports experimental
results, provides analysis and context, and sets out our
conclusions.

II. BACKGROUND

Earlier avionics software certification guidance has since
been replaced by updated guidelines that make allowance for
new developments in system design and engineering, including
model-based  development paradigms, and contain
considerations for replacing some typical software testing
activities with simulation and formal methods [10]. Formal
methods are techniques and tools that apply mathematical rigor
to software design and verification activities. Using formal
methods, software designers encode software behaviors in
terms of formal logic to create “correct-by-construction”
programs. This helps to eliminate software bugs in three ways:
(1) the careful, logical design prevents accidental introduction
of unintended behaviors; (2) the final software product is
formally verifiable using tools like model checkers and theorem
provers; and (3) the formal specification of a design model prior
to the programming process prevents faulty specifications from
introducing undesired behaviors into well-written code. For
example, “race conditions”, where program outputs change
based on uncontrolled sequences of events, can arise in systems
with inadequate controls. Model checkers can prove that a
design under test does not contain specific flaws that create
safety or reliability faults. When applied in the system design
phase, formal methods are extremely powerful in eliminating
software bugs and developing cyber-secure systems [11] [12].
These techniques, however, are of limited utility when applied
to legacy software or software that has already been written and
has entered the test phase.

However, some tools from formal methods can still be
usefully applied to the software testing process. For example,
one of the most daunting tasks of any software test effort is
determining what the expected behavior, or output, of a
program should be given a particular input. Correct outputs are
hard to formulate a priori, but they are needed to determine
whether a software test has produced a faulty output. The
correct output is usually only known if there is a “golden copy”
of the software program that is somehow verified to be correct,
usually though extensive testing and use. Formal models can
be used to produce software “oracles” that provide correct
outputs when presented a set of inputs. This is done by
specifying a set of requirements as properties in formal
language and checking the model design against these
properties; the requirements are formulated as “trap properties”
deliberately written as negations of the design requirements so
that the model checker will declare each negated property false
and proceed to output a counterexample that provides a step-
by-step proof together with the inputs that produce the falsified
output. The oracle output is then checked against the program
output to verify correct program behavior [13] [14] [15].

Apart from the need for a test oracle, a separate
consideration in testing is deciding upon useful sets of test
inputs. As noted above, requirements-based testing and
coverage-based testing are not by themselves sufficient to

uncover all faulty behaviors produced by computer programs.
One approach to generating inputs is to focus on those that may
trigger latent faulty behaviors with higher probability than
randomly-generated inputs. For example, the Design of
Experiments (DOE) method creates a “full factorial” test set by
generating all possible combinations of variable values. The
logic behind this approach maintains that faults are more likely
to be discovered in tests through variable interactions [16].
Since in a typical program the range of possible variable values
makes a full factorial set over all possible values infeasible, the
test designer uses equivalence partitioning to allocate each
variable a single allowed value per equivalence bin [17]. Even
with equivalence partitioning, however, full-factorial test sets
for software can be unmanageably large. A solution to this is
the covering array. Covering arrays are a mathematical
construct wherein a full factorial test set of variables is reduced
in size while preserving a specified strength, 7, of variable
interactions (all combinations of ¢ variables are covered). In
this construction, the number of test input strings grows only
logarithmically in the number of parameters instead of
exponentially [18].

Another popular approach to software testing that does not
rely on oracles is algorithm-directed fuzzing, a form of
automated random testing. Algorithm-directed fuzzing is
widely-used and shown to be effective. Fuzzing is responsible
for uncovering the vast majority of known remote code
execution and privilege-escalation bugs [19]. Companies like
Google use guided fuzzing—fuzzing that leverages semantic
knowledge to generate input strings—to continuously test
software products. Guided fuzzing is powerful because of its
ability to produce ‘“corner case” inputs, that is, inputs
semantically similar enough to expected program inputs that the
software accepts them and attempts to execute them, but that
contain some atypical component that can trigger unexpected
program behavior [20]. Testing boundary conditions using
guided fuzzing is an efficient way of locating sources of
undesired behaviors. Efficiency is important in software testing
because, while it may be possible in principle to test every state
of a given program, the time and resources required to do so are
prohibitive in practice. It is necessary to gain confidence in a
program’s reliability with limited resources, including time and
budget. An efficient test set is one that maximizes the number
of faults triggered per test input, while minimizing the required
number of test inputs and the length of time required to test.

We will compare covering arrays, random testing, low-
complexity test suites, and a form of guided fuzzing based on
their efficiency and effectiveness at triggering faults in the error
seeded programs.

III. EXPERIMENT

A. Traffic Collision Avoidance System (TCAS)

We performed our software tests on a small C-language
module of the Traffic Collision Avoidance System (TCAS), an
airborne system used in commercial aviation to reduce the risk
of mid-air collisions. When the system detects another
transponder-equipped aircraft within close proximity, it alerts
the pilot and issues an advisory in order to avoid a crash. When



TCAS detects another transponder 20-48 seconds away from a
potential collision, it sends the pilot a traffic advisory (TA). If
no action is taken to prevent the collision, TCAS sends the pilot
a resolution advisory (RA).

The program module under test takes an input string of 12
variables and outputs a single variable, called alt sep, that is
assigned the value of the RA signaled by the host aircraft. The
alt sep variable has three possible values: UNRESOLVED,
UPWARD RA, and DOWNWARD_RA.

The design of our experiment replicated work by Vadim
Okun and Richard Kuhn at the U.S. National Institutes for
Standards and Technology (NIST) [21]. Kuhn and Okun use
covering arrays of varying interaction strengths as their test
sets, and they use the model checker NuSMV to generate oracle
output values for each input set by specifying trap properties,
as described in Section II. We first separated the TCAS input
variable values into the equivalence bins used by Kuhn and
Okun so that we could directly compare our test results with
theirs. Equivalence partitioning simplifies model checking in
NuSMV by limiting the number of variable assignments to be
checked; it also reasonably constrains the number of inputs in a
covering array. A single value from each equivalence partition
is assigned as the representative value from that equivalence
bin. The bins values assigned to each variable are found in
Table 1.

To compare test approaches according to their effectiveness
and efficiency in finding bugs in the program unit under test,
we generated several different test suite types. We then ran
each test suite as inputs to a set of TCAS executables and
monitored the output using the NuSMV model output for a
given input variable combination as our oracle. We employed
a form of mutation testing in which we manually introduced
minor changes to the correct TCAS module to create a new,

TABLE 1. TCAS VARIABLE VALUES

TCAS Variable Equivalence Bin Values
Cur_Vertical Sep 299, 300, 601
High_Confidence TRUE, FALSE
Two_of Three Reports Valid TRUE, FALSE
Own_Tracked Alt 1,2
Own_Tracked Alt Rate 600, 601
Other Tracked Alt 1,2
Alt_Layer Value 0,1,2,3

Up_Separation

0,399,400, 499, 500, 639, 640,
739, 740, 840

buggy program. Conditional operator values were changed in
some programs (for example, from > to <), values of internal
variables were manipulated in others, and arithmetic operators
were changed in still others (for example, a + operator might
become a -). This approach generated a suite of 28 buggy
TCAS program executables containing a single mutation each.

B. Covering Arrays

Replicating Kuhn and Okun’s approach, we created
covering arrays of the variables in Table 1 to use as our starting
test sets. JMP Pro 15 statistical software generated a set of #-
way covering arrays for /=2 to t=6-way interactions. Because
the JMP covering array optimization algorithm does not always
reach the theoretical minimum number of #zway inputs,
covering arrays of the same strength t with the same input
variables do not always contain the same number of tests. The
array sizes we used in the initial covering array tests are in
Table 2. The minimum test set size is limited by the number of
equivalence bins in the ¢ variables with the most values for each
t-way test; for example, the 2-way covering array has a
minimum of 10 x 10 = 100 values because the Up_Separation
and Down_Separation variables have 10 possible assignments
each.

C. Random Testing

Kuhn and Okun report 100% success rates in their mutation
testing of the TCAS module using =5 and t=6-way covering
arrays. This might reflect the power of test sets generated using
covering arrays; on the other hand, it might be a result of the
relative sizes of the /=5 and t=6-way test sets (with 4220 and
10,902 test inputs, respectively) compared to the fewer-way
interaction test sets (with 100, 405, and 1375 tests). Test size
is known to correlate positively with the number of bugs found,
simply because the increased variety of test input values creates
additional reach in the software state space [21]. To determine
whether the strength of the covering array interaction or the
sheer number of test inputs is responsible for the effectiveness
in triggering faults in the C executables, we generated random
test sets with numbers of input values corresponding to those in
the =2, 3,4,5, and 6-way covering arrays.

D. Kolmogorov Complexity

Covering arrays provide one means of reducing the
possible input space to a program in a targeted way, with a focus
on preserving variable interactions. Another approach to a
targeted reduction of input space is selecting the relatively
small number of inputs of low information complexity. The
length of the shortest description of a bit string is known as its

TABLE 2. T-WAY COVERING ARRAY TEST SETS

0,399,400, 499, 500, 639, 640,
Down_Separation Array Strength Number of Tests
- 739, 740, 840
2-way 100
NO_INTENT,
Other RAC DO _NOT CLIMB, 3-way 400
DO_NOT_DESCEND 4-way 1215
Other_Capability TCAS_TA, OTHER 5-way 3607
Climb_Inhibit TRUE, FALSE 6-way 11018




Kolmogorov complexity [23]. Based on the observation that
faults arise from “corner case” inputs [20], we tested the
relatively small number of inputs of low Kolmogorov
complexity to determine if they are more effective at triggering
faults than other inputs.

This approach was initially developed to address
cybersecurity-related attacker/defender scenarios [9]. If both
attacker and defender are forced to select inputs at random from
a combinatorially large set of possibilities, both are equally
disadvantaged. Because the vast majority of inputs are
algorithmically random, a strategy to bias inputs to those more
likely to trigger faults is to focus on the more characterizable
space of low-complexity inputs. A password checker provides
a concrete example of why this may be a good strategy for both
attackers and defenders. If a correct password is treated as a
deliberately seeded fault that, when triggered, provides access
to a computer system, then a weak password corresponds to a
low-complexity input string. Given no prior information about
the password, it behooves both attacker and defender to fully
test this input space to determine whether any low-complexity
inputs trigger the password “fault”.

To test this empirically, we generated a set of low-
complexity inputs from short descriptions by “decompressing”
small programs in the golfing language 05ABIE, which we
chose based on the clarity of its documentation and the
availability of one- and two-byte program descriptions on
GitHub [24]. We used the set of all 65,536 possible two-byte
programs in order to have enough inputs to compare with the
covering arrays. Well-formed low-complexity TCAS inputs
were generated by mapping the program output onto values
from the variable equivalence bins, preserving the amount of
information (or increasing it by no more than an additive
constant). See Table 3 for examples.

E. Guided Fuzzing-Based Tests

Finally, we generated test inputs using a different
complexity measure based on a kind of Hamming distance from
a seed string. This approach was based on the observation that,
when a bug is found in a program, there are often other faults
nearby that can be triggered with similarly structured inputs [9].
This is the premise on which many modern-day fuzzing
algorithms are designed; American Fuzzy Lop (AFL), for
example, uses a genetic algorithm to iterate on inputs that
generate faults or other “interesting” program behaviors [25].
This fuzzing algorithm, and guided fuzzing in general, have
proven more effective at finding bugs than fully random
automated testing [26].

To develop these test sets, we first selected test inputs that
resulted in UPWARD RA or DOWNWARD_RA outputs to use
as seeds, because they are rare compared to UNRESOLVED
outputs. The program logic in the C program that controls the
assignment of the values UPWARD_RA and DOWNWARD_ RA
has the form:

if (input value >= control value) {
alt_ sep = UPWARD_RA} e
else {alt sep = DOWNWARD RA}

Because of the equivalence partitioning of the input variables,
the practical result is an average 1:2 ratio of
DOWNWARD RA to UPWARD RA outputs in large test
sets. UNRESOLVED outputs are the most numerous by far. As
an example, our covering array test set of 100 inputs resulted in
95 UNRESOLVED outputs, five UPWARD RA outputs, and no
DOWNWARD RA outputs. The comparative rarity of input
strings that produce DOWNWARD_RA outputs makes them a
kind of “golden input” that traverses uncommon paths through
the C program. Using inputs selected at random from the set
that produces these rare outputs, new inputs were generated
through small permutations to the variable values. Applying
our complexity metric, one unit of Hamming distance
corresponds to a change of a single variable in an input string
to a different equivalence bin value. Any new variable value
(in the equivalence set) is allowed. So, using an example line
of TCAS input:

29900260020500499010

We generate a new input of Hamming distance 1 by, for
example, changing the value of the first variable from 299 to
300. The new input is:

30000260020500499010

Some other example inputs of Hamming distance one from
the original input are:

29910260020500499010
29900260020500 740010
29900060020500499010

All input strings with a Hamming distance of one were
stored in a test set named Tier 1. Tier 2 test sets were generated
by changing two different variable values, and Tier 3 inputs
change the value of three variables in a seed. We generated five
different test sets in Tier 1, Tier 2, and Tier 3 using five different
seed inputs. One seed input string was chosen at random from
the subset of inputs resulting in UPWARD RA. The second
seed was a string resulting from Tier 3 changes to that input.
The third test set was seeded with a DOWNWARD _RA-output
string (again, chosen at random from the subset of all strings
that produce a DOWNWARD_RA output). Test sets four and
five were generated using strings from Tier 3 of the original
DOWNWARD_RA string. Overall, this approach resulted in 15
test sets: three tiers resulting from changing five different seed

TABLE 3. 0SAB1E TCAS TEST INPUTS

05ABIE

IN 7Q S
Program
Output bedfghjklmnp 1"#$%&'()*+, qwertyuiop00
Indexed 1000001441 | 0000000110 | 1000001441
Output 11 00 00
TCAS 30001160012 | 29911160011 | 30011160012
Input 500500111 399399000 500500100




strings. Different Hamming distances resulted in different
numbers of test inputs for each tier: Tier 1 test sets contain 32
tests, Tier 2 test sets contain 429 tests, and Tier 3 test sets
contain 2988 tests.

IV. RESULTS

A. Covering Arrays and Random Tests

Kuhn and Okun reported a 100% success rate using
covering arrays of interaction size /=5 or higher. As Table 4
shows, our five- and six-way covering arrays were not as
successful; they caught all but one of the seeded errors (faults
were triggered in 27 out of the 28 programs tested). These
results, along with those from other approaches (including ones
described below), are summarized in Fig. 1.

The data from these tests raised two questions. First, why
was the bug in the 28" program not triggered by any of the test
inputs? Second, are we catching more bugs because of the
structure of the covering arrays or because we are running many
more tests at increasing t-way interaction sizes?

To answer the first question, we investigated the bug that
was not triggered. The seeded error was a small change in value
in one line of code that takes the input variable
Cur_Vertical Sep and uses it to set the value of an internal
program Boolean variable. The correct TCAS program
contains a conditional statement that sets an internal Boolean
variable called enabled to 1 if Cur_Vertical Sep is greater than
the internal program variable MAXALTDIFF. The variable
MAXALTDIFF is set to 600 in the correct TCAS program and
500 in the buggy program. The reason our test inputs were
unable to trigger the error is that the equivalence bin values we
chose for Cur_Vertical Sep were 299, 300, and 601.

This set of values does not enable a tester to detect a change
in the range 500-600, because as long as MAXALTDIFF has a
value in the range 301-600, the conditional statement
Cur Vertical Sep > MAXALTDIFF is true if Cur_Vertical Sep
= 601 and false if Cur Vertical Sep =300. From this result it
becomes clear that values in equivalence bins are not always
equivalent if there is an error in the program under test.

In order to determine whether we are uncovering more
errors with /=5 and 6-way test sets because of the power of the
covering arrays or simply because the test sets are larger, we
compared the covering array test results to results using the
randomly-generated test sets of equal size. The randomly
generated test sets performed similarly to the covering arrays,
although they did catch one fewer buggy program in both =5
and 6-way tests (test inputs triggered faults in only 26 of 28
buggy programs). As Table 5 shows, the random inputs did

TABLE 4. COVERING ARRAY TEST RESULTS

better than the covering array inputs at smaller -way interaction
sizes.

The covering array tests demonstrated that, for arrays with
high enough ¢ (=5 and =0), the arrays are modestly more
effective than randomly selected inputs at triggering faults.
Upon inspection, we found that a bug that was never caught by
any of the randomly generated test sets was triggered by all of
the covering array test sets except for the smallest, pairwise
interaction set (+=2). The bug was in a location in the code only
reachable with one unique combination of six of the input
variables (in addition to other criteria being met). The unique
combination of those six variables occurs rarely in the set of all
possible combinations; therefore, the randomly generated test
sets were not certain to contain the necessary combination. In
other words, the bug that was not caught by the randomly
generated inputs is one that is hard to catch, statistically
speaking. The /=6-way covering array, on the other hand, is
guaranteed to contain the variable combination. To illustrate
why that is the case, consider a unique specification of the 6-
way set of variables with the most equivalence tiers. The
prevalence of that unique combination in the set of all possible
values is:

1 1 1 1 1 1 1
=X —=X=-X=-X=-X=-= — (D)
10 10 4 3 3 2 7200
The six-way covering array and like-sized random test set
contain 11016 inputs. For the random set, the likelihood of
drawing 11016 inputs that do not contain the desired six values
is:

(1 — —)11016 - 022 ©)

7200

Therefore, the likelihood of drawing a set at random that
contains the values is 78%, whereas the 6-way covering array
is guaranteed to contain the input. This imparts some advantage
to the larger ~-way arrays in triggering faults located along low-
probability traces of the code.

The smaller #-way arrays do not provide the same
advantage. For example, given the same 6-way variable, the
t=3-way covering array is guaranteed to contain the first 3-way
combination of values, but when paired with the remaining
three values, the chances of ending up with the required six
values sequentially are essentially the same as in the randomly
generated set. While still possible to draw the rare input
combination that triggers the fault in question at random, the
likelihood is decreased relative to the covering arrays that it will

TABLE 1. RANDOM TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=
Test Size 100 400 1215 3607 11018
Bugs Caught 4 16 21 27 27
Test Failures 103 257 1292 3892 11663
Total Tests 2800 11200 34020 100996 308504
% Efficiency 3.7 23 3.8 39 3.8

t (strength) t=2 t=3 t=4 t=5 t=6
Test Size 100 400 1215 3607 11018
Bugs Caught 4 19 23 26 26
Test Failures 78 351 1035 2957 8878
Total Tests 2800 11200 34020 100996 308504
% Efficiency 2.7 3.1 3.0 29 29
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Fig. I. Summary of Test Methods

appear in a test set at the larger test set sizes.

Most of the fault-finding effectiveness of the test suites
appears to result from the size of the larger sets; the large t-way
covering arrays do add some value by forcing the generation of
certain input combinations that are less likely to be selected in
a random draw. On the other hand, the statistical unlikelihood
of finding the input in a random draw could be overcome by
executing multiple random draws.

B. Random from equivalence Bin Covering Array (RBCA)

Because each approach has specific advantages—the
covering array approach targets low-probability code branches
and the random input approach covers the entire space within
an equivalence bin, allowing for more granularity in value
coverage—we decided to combine the approaches into one. In
this new approach, we specified equivalence bins using values
from the first covering array tests as upper and lower bounds
for new equivalence bins; we then wrote a script that generates
a random value within that equivalence bin to populate the test
input. Thanks to this new bin specification method, these t-way
interaction sizes resulted in smaller test sets than the simple
covering array ¢-way interaction tests. The ten equivalence bins
in the Up_Separation and Down_Separation variables, for
example, were reduced to six: 0-399, 400-499, 500-639, 640-
739, 740-840, 840-1000. The reduction in the number of bins
for these two variables resulted in smaller covering array sizes
using this method, which we named RBCA (Random from
equivalence Bin Covering Array).

Once we had generated covering arrays using the levels of
each input variable equivalence bin as placeholders, we ran a
script to populate each placeholder with a randomly selected
value within the bin. In this way, RBCA leverages both the
interaction-maximizing power of the covering array and the
range of the random-value generator. The inability of the first
covering arrays to trigger the 28" bug is resolved by the random
assignment of the Cur Vertical Sep variable to a number
within the equivalence bin 500-639. Results are shown in Table
6. The RBCA method was successful in triggering faults in all
eight of the buggy programs at +=6. The =6-way RBCA array
had more tests than the /=5-way covering array (3837 vs. 3607)

but many fewer than the =6-way covering array (11018 tests).
The RBCA #=5-way array was much less successful at
triggering faults, because of the small number of tests in the test
set (1574 tests), which is more comparable to the size of a =4-
way covering array (1215 tests).

The initial =4 and =5-way RBCA runs were surprising,
catching 23 and 22 bugs, respectively. To investigate why the
smaller array was catching more bugs, we changed the order of
the equivalence bin values that were presented to the covering
array algorithm to generate new arrays. We did this twice for
each of the /=4 and =5-way arrays, for a total test set of three
unique arrays for each t-way value. The r=4-way arrays
triggered 23, 17, and 25 bugs, respectively: an average of 21.7.
The =5-way arrays triggered 22, 22, and 25 bugs: an average
of 23. At the r=6-way interaction size, the RBCA tests were
both more effective (catching all bugs across all buggy
programs) and efficient (triggering more faults per test input).
The RBCA method succeeded by leveraging the strength of
covering arrays — i.e., the deliberate use of variable interactions
to force the code to traverse statistically unlikely branches —
together with the ability of random tests to cover the range of
possible values available to the input variables. As is clear from
Fig. 1, RBCA catches all of the program bugs with the same
number of tests as the /=5-way covering array, triggering a fault
for the bug that was unreachable by the equivalence bin values
used in the simple covering array.

C. Kolmogorov Complexity-Based Tests

The set of 10,000 low-complexity inputs generated by the
05ABI1E golfing language performed very poorly in triggering
the entire range of seeded faults in the 28 TCAS C programs,
finding the bug in just one of the 28 programs. However, by
measure of efficiency (faults triggered per input) they
performed well: 99% of the 10,000 inputs triggered a fault in
the same program. The overall efficiency across the 28
programs is 3.5%, which is better than random tests and
comparable to covering arrays.

The failure of this test approach to trigger faults in more
than one program clearly indicates that it is not useful as a real-
world test methodology. Rather than consider complexity as an
absolute measure of information in the system (the test input),
we found it promising to instead investigate complexity as a
measure of information distance from a starting input. This
approach is consistent with the observation that once a bug is
discovered in a program, other bugs are frequently discovered
using semantically similar inputs [9].

TABLE 6. RBCA TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=6
Test Size 37 144 476 1334 3837
Bugs Caught 1 13 21.7 23 28
Test Failures 34 154 505 1420 4135
Total Tests 1036 4032 13328 37352 107436
% Efficiency 33 3.8 3.8 3.8 3.8




D. Guided Fuzzing-Based Tests

Formally, relative complexity is the length of the shortest
program that generates a desired string given another string as
input. Hamming distance is an approximation to this relative
complexity, because one such program is the program that
modifies the given string by altering a list of specific locations
(the length of the program is proportional to the length of this
list, i.e., the Hamming distance). There may be shorter
programs, but we know this one exists, so it serves as a bound.
Thus, the Hamming distance approach can be viewed as a kind
of complexity approach, and other extensions are possible. The
technique used here to generate new inputs using the Hamming
algorithm is intended to be automated and used as a guided-
fuzzing tool in future work, which is why we refer to them here
as guided fuzzing-based tests.

A form of covering array can also naturally arise from
enumerating low-complexity inputs. Per the notation in Kuhn
and Okun [21], the system under test has & input variables, each
with v possible values. The total number of possible input
vectors is V%, and the number of bits needed to specify an
arbitrary input is k£ log v. Assuming we are interested in -way
interactions with ¢ << k, a naive (non-optimal) ~way covering
array can be constructed by taking each configuration of values
for each combination of ¢ input variables separately (always
assigning a default value to the other & — ¢ variables). The
number of t-variable subsets is (k choose #), which for ¢ << k
scales with k'. The number of possible inputs for a given set of
t variables is v'. Thus a covering array can be constructed with
size no more than (kv). (At the other end, a lower bound on the
size is V', because this is the minimum number needed to cover
one set of ¢ variables.)

Likewise, in the complexity approach, there exist short
programs that assign values to ¢ variables at a time, starting
from a “seed” input string. They do this with some small, fixed
algorithm of length C, combined with data indicating which ¢
variables (each of these requires log & bits) and which values
(each of these requires log v bits). Thus, such a generating
program has length (complexity tier) m = C + ¢ log(kv).
Collectively, these programs generate input vectors equivalent
to the naive ~-way covering array. And given that C is small and
t << k, these programs are smaller than the full complexity of
arbitrary inputs: m = C + ¢ log(kv) << k log v. Note that this is a

TABLE 7. HAMMING TEST RESULTS

Tier 1 Tier 2 Tier 3

Input Seed Used Bugs Caught | Bugs Caught | Bugs Caught
UPWARD_RA 13 17 22
UPWARD_RA

. - 15 19 22
Tier 1 Output
DOWNWARD_ RA 17 22 27
DOWNWARD_ RA

. - 19 23 27
Tier 1 Output
DOWNWARD_ RA

. - 17 23 27
Tier 1 Output

conservative estimate; a more optimized covering array might
be present in a complexity tier even lower than m.

Seeding a Hamming algorithm with inputs that traversed
low-probability paths through the TCAS code (such as the
DOWNWARD_RA-output-producing inputs) was highly
effective and efficient at triggering the range of seeded bugs in
the test programs. This method also suffers from the same
drawbacks as the covering array-based approach, in that it uses
values from equivalence bins that do not contain the necessary
resolution to find small variable value errors in the code. An
improved approach would draw random values from within the
equivalence bins, similar to RBCA.

The tests generated using the Hamming algorithm were
efficient and effective at catching bugs in the faulty C
programs, as is apparent from the results in Fig. 1, although they
suffered from the same lack of reach as the covering array
inputs because they used the equivalence bin values rather than
the full range of possible values used in RBCA.

The DOWNWARD RA seeded tests in particular were
extraordinarily effective at triggering faults in all of the C
programs (except for the bug discussed previously that cannot
be reached by the tests because of the choice of equivalence bin
values), especially considering the small test size of 2988
inputs. This test size lies in between the /=5 and =6-way
RBCA test set sizes, and is smaller than the =5-way covering
array test set size. Table 7 shows the results of tests using the
Hamming-based input test sets. The three DOWNWARD_ RA-
seeded Tier 3 test sets caught 27/28 bugs, while the Tier 3 test
sets that were seeded with UPWARD_ RA-generating inputs
caught 22/28 bugs.

These results demonstrate a promising approach to guided
fuzzing based on relative complexity, which we hope to
implement and automate in future research.
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