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Abstract—It is impossible in practice to comprehensively test 

even small software programs due to the vastness of the reachable 

state space; however, modern cyber-physical systems such as 

aircraft require a high degree of confidence in software safety and 

reliability.  Here we explore methods of generating test sets to 

effectively and efficiently explore the state space for a module 

based on the Traffic Collision Avoidance System (TCAS) used on 

commercial aircraft.  A formal model of TCAS in the model-

checking language NuSMV provides an output oracle.  We 

compare test sets generated using various methods, including 

covering arrays, random, and a low-complexity input paradigm 

applied to 28 versions of the TCAS C program containing seeded 

errors.  Faults are triggered by tests for all 28 programs using a 

combination of covering arrays and random input generation.  

Complexity-based inputs perform more efficiently than covering 

arrays, and can be paired with random input generation to create 

efficient and effective test sets.  A random forest classifier 

identifies variable values that can be targeted to generate tests 

even more efficiently in future work, by combining a machine-

learned fuzzing algorithm with more complex model oracles 

developed in model-based systems engineering (MBSE) software. 

Keywords—covering arrays, complexity, software testing, 

reliability, formal models 

I. INTRODUCTION 

The power, capacity, and flexibility of digital technology 

provide capability to modern cyber-physical systems such as 

vehicles, aircraft, and weaponry that was simply out of reach 

for older analog and mechanical systems.  The power of digital 

technology, however, comes at a price.  Apart from the 

potential vulnerabilities created by networked systems, a 

computer-controlled system is also only as secure, reliable, and 

resilient as the software that controls it.  In the past few decades, 

flaws and vulnerabilities in software led to devastating 

accidents and breaches that compromised personal information, 

cost billions of dollars, and in the case of software-powered 

medical devices, transportation, or other safety-critical systems, 

sometimes led to injuries or even loss of life [1].   

Achieving software assurance through testing is hard.  

Testing based on software requirements—the behaviors the 

software was engineered to produce—can demonstrate the 

presence or absence of nominal functionality.  However, test 

sets that achieve requirements-based coverage are not 

necessarily sufficient to exercise all of the software’s latent 

behaviors [2].  One approach to address the problem is to test 

in a way that provides coverage of the software structure: the 

branching logic pathways made possible by conditional 

statements in the program under test.  In avionics, for example, 

structural coverage criteria are used to determine test suite 

adequacy for certification purposes [3].  Previously, standard 

guidance used by certification authorities across the U.S., 

Canada, and Europe required safety-critical software testing to 

demonstrate structural coverage [4] [5].   

Research has raised questions about the effectiveness of 

coverage-based testing, finding in some cases that test sets 

generated using coverage criteria are less effective than random 

tests of the same length [6].  One possible reason for this is 

masking, in which changing the value of a condition does not 

affect the outcome of the assertion [7].  Full characterization of 

the state space reachable by software programs is effectively 

impossible; that is, while cyber-physical system programs have 

a finite state space and therefore the problem of fully 

characterizing program behavior is in principle decidable, in 

practice it is combinatorially hard [9].  In practice, software test 

design is an inexact science that leverages any number of 

techniques to attempt to exercise as much of a program under 

test as possible within the schedule and budget allotted to test 

activities.  Improving software testing is still an area of active 

and urgent research.  

In this paper, we compare various methods of generating 

test suites based on their efficiency and effectiveness at 

triggering faults across a set of programs deliberately seeded 

with coding errors, a type of mutation testing.  The rest of the 

paper is organized as follows: Section 2 provides background 

on the types of test methods we employ; Section 3 provides an 

overview of the experimental design, including a description of 
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the program under test; and Section 4 reports experimental 

results, provides analysis and context, and sets out our 

conclusions.  

II. BACKGROUND 

Earlier avionics software certification guidance has since 

been replaced by updated guidelines that make allowance for 

new developments in system design and engineering, including 

model-based development paradigms, and contain 

considerations for replacing some typical software testing 

activities with simulation and formal methods [10]. Formal 

methods are techniques and tools that apply mathematical rigor 

to software design and verification activities. Using formal 

methods, software designers encode software behaviors in 

terms of formal logic to create “correct-by-construction” 

programs.  This helps to eliminate software bugs in three ways: 

(1) the careful, logical design prevents accidental introduction 

of unintended behaviors; (2) the final software product is 

formally verifiable using tools like model checkers and theorem 

provers; and (3) the formal specification of a design model prior 

to the programming process prevents faulty specifications from 

introducing undesired behaviors into well-written code.  For 

example, “race conditions”, where program outputs change 

based on uncontrolled sequences of events, can arise in systems 

with inadequate controls.  Model checkers can prove that a 

design under test does not contain specific flaws that create 

safety or reliability faults.  When applied in the system design 

phase, formal methods are extremely powerful in eliminating 

software bugs and developing cyber-secure systems [11] [12]. 

These techniques, however, are of limited utility when applied 

to legacy software or software that has already been written and 

has entered the test phase. 

However, some tools from formal methods can still be 

usefully applied to the software testing process.  For example, 

one of the most daunting tasks of any software test effort is 

determining what the expected behavior, or output, of a 

program should be given a particular input.  Correct outputs are 

hard to formulate a priori, but they are needed to determine 

whether a software test has produced a faulty output.  The 

correct output is usually only known if there is a “golden copy” 

of the software program that is somehow verified to be correct, 

usually though extensive testing and use.  Formal models can 

be used to produce software “oracles” that provide correct 

outputs when presented a set of inputs.  This is done by 

specifying a set of requirements as properties in formal 

language and checking the model design against these 

properties; the requirements are formulated as “trap properties” 

deliberately written as negations of the design requirements so 

that the model checker will declare each negated property false 

and proceed to output a counterexample that provides a step-

by-step proof together with the inputs that produce the falsified 

output.  The oracle output is then checked against the program 

output to verify correct program behavior [13] [14] [15].    

Apart from the need for a test oracle, a separate 

consideration in testing is deciding upon useful sets of test 

inputs.  As noted above, requirements-based testing and 

coverage-based testing are not by themselves sufficient to 

uncover all faulty behaviors produced by computer programs.  

One approach to generating inputs is to focus on those that may 

trigger latent faulty behaviors with higher probability than 

randomly-generated inputs.  For example, the Design of 

Experiments (DOE) method creates a “full factorial” test set by 

generating all possible combinations of variable values.  The 

logic behind this approach maintains that faults are more likely 

to be discovered in tests through variable interactions [16].  

Since in a typical program the range of possible variable values 

makes a full factorial set over all possible values infeasible, the 

test designer uses equivalence partitioning to allocate each 

variable a single allowed value per equivalence bin [17].  Even 

with equivalence partitioning, however, full-factorial test sets 

for software can be unmanageably large.  A solution to this is 

the covering array.  Covering arrays are a mathematical 

construct wherein a full factorial test set of variables is reduced 

in size while preserving a specified strength, t, of variable 

interactions (all combinations of t variables are covered).  In 

this construction, the number of test input strings grows only 

logarithmically in the number of parameters instead of 

exponentially [18].   

Another popular approach to software testing that does not 

rely on oracles is algorithm-directed fuzzing, a form of 

automated random testing. Algorithm-directed fuzzing is 

widely-used and shown to be effective.  Fuzzing is responsible 

for uncovering the vast majority of known remote code 

execution and privilege-escalation bugs [19]. Companies like 

Google use guided fuzzing—fuzzing that leverages semantic 

knowledge to generate input strings—to continuously test 

software products.  Guided fuzzing is powerful because of its 

ability to produce “corner case” inputs, that is, inputs 

semantically similar enough to expected program inputs that the 

software accepts them and attempts to execute them, but that 

contain some atypical component that can trigger unexpected 

program behavior [20].  Testing boundary conditions using 

guided fuzzing is an efficient way of locating sources of 

undesired behaviors.  Efficiency is important in software testing 

because, while it may be possible in principle to test every state 

of a given program, the time and resources required to do so are 

prohibitive in practice.  It is necessary to gain confidence in a 

program’s reliability with limited resources, including time and 

budget.  An efficient test set is one that maximizes the number 

of faults triggered per test input, while minimizing the required 

number of test inputs and the length of time required to test.   

We will compare covering arrays, random testing, low-

complexity test suites, and a form of guided fuzzing based on 

their efficiency and effectiveness at triggering faults in the error 

seeded programs.   

III. EXPERIMENT 

 Traffic Collision Avoidance System (TCAS) 

We performed our software tests on a small C-language 

module of the Traffic Collision Avoidance System (TCAS), an 

airborne system used in commercial aviation to reduce the risk 

of mid-air collisions.  When the system detects another 

transponder-equipped aircraft within close proximity, it alerts 

the pilot and issues an advisory in order to avoid a crash.  When 
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TCAS detects another transponder 20-48 seconds away from a 

potential collision, it sends the pilot a traffic advisory (TA).  If 

no action is taken to prevent the collision, TCAS sends the pilot 

a resolution advisory (RA).   

The program module under test takes an input string of 12 

variables and outputs a single variable, called alt_sep, that is 

assigned the value of the RA signaled by the host aircraft.  The 

alt_sep variable has three possible values: UNRESOLVED, 

UPWARD_RA, and DOWNWARD_RA.   

The design of our experiment replicated work by Vadim 

Okun and Richard Kuhn at the U.S. National Institutes for 

Standards and Technology (NIST) [21].  Kuhn and Okun use 

covering arrays of varying interaction strengths as their test 

sets, and they use the model checker NuSMV to generate oracle 

output values for each input set by specifying trap properties, 

as described in Section II.  We first separated the TCAS input 

variable values into the equivalence bins used by Kuhn and 

Okun so that we could directly compare our test results with 

theirs.  Equivalence partitioning simplifies model checking in 

NuSMV by limiting the number of variable assignments to be 

checked; it also reasonably constrains the number of inputs in a 

covering array.  A single value from each equivalence partition 

is assigned as the representative value from that equivalence 

bin.  The bins values assigned to each variable are found in 

Table 1. 

To compare test approaches according to their effectiveness 

and efficiency in finding bugs in the program unit under test, 

we generated several different test suite types.  We then ran 

each test suite as inputs to a set of TCAS executables and 

monitored the output using the NuSMV model output for a 

given input variable combination as our oracle.  We employed 

a form of mutation testing in which we manually introduced 

minor changes to the correct TCAS module to create a new, 

buggy program.  Conditional operator values were changed in 

some programs (for example, from > to <), values of internal 

variables were manipulated in others, and arithmetic operators 

were changed in still others (for example, a + operator might 

become a -).  This approach generated a suite of 28 buggy 

TCAS program executables containing a single mutation each.  

 Covering Arrays 

Replicating Kuhn and Okun’s approach, we created 

covering arrays of the variables in Table 1 to use as our starting 

test sets.  JMP Pro 15 statistical software generated a set of t-

way covering arrays for t=2 to t=6-way interactions.  Because 

the JMP covering array optimization algorithm does not always 

reach the theoretical minimum number of t-way inputs, 

covering arrays of the same strength t with the same input 

variables do not always contain the same number of tests.  The  

array sizes we used in the initial covering array tests are in 

Table 2.  The minimum test set size is limited by the number of 

equivalence bins in the t variables with the most values for each 

t-way test; for example, the 2-way covering array has a 

minimum of 10 x 10 = 100 values because the Up_Separation 

and Down_Separation variables have 10 possible assignments 

each.   

 Random Testing 

Kuhn and Okun report 100% success rates in their mutation 

testing of the TCAS module using t=5 and t=6-way covering 

arrays.  This might reflect the power of test sets generated using 

covering arrays; on the other hand, it might be a result of the 

relative sizes of the t=5 and t=6-way test sets (with 4220 and 

10,902 test inputs, respectively) compared to the fewer-way 

interaction test sets (with 100, 405, and 1375 tests).  Test size 

is known to correlate positively with the number of bugs found, 

simply because the increased variety of test input values creates 

additional reach in the software state space [21].  To determine 

whether the strength of the covering array interaction or the 

sheer number of test inputs is responsible for the effectiveness 

in triggering faults in the C executables, we generated random 

test sets with numbers of input values corresponding to those in 

the t=2, 3,4,5, and 6-way covering arrays. 

 Kolmogorov Complexity 

 Covering arrays provide one means of reducing the 

possible input space to a program in a targeted way, with a focus 

on preserving variable interactions.  Another approach to a 

targeted reduction of input space is selecting the relatively 

small number of inputs of low information complexity.  The 

length of the shortest description of a bit string is known as its 

TABLE 1. TCAS VARIABLE VALUES 

TCAS Variable Equivalence Bin Values 

Cur_Vertical_Sep 299, 300, 601 

High_Confidence TRUE, FALSE 

Two_of_Three_Reports_Valid TRUE, FALSE 

Own_Tracked_Alt 1, 2 

Own_Tracked_Alt_Rate 600, 601 

Other_Tracked_Alt 1, 2 

Alt_Layer_Value 0, 1, 2, 3 

Up_Separation 
0, 399, 400, 499, 500, 639, 640, 

739, 740, 840 

Down_Separation 
0, 399, 400, 499, 500, 639, 640, 

739, 740, 840 

Other_RAC 

NO_INTENT, 

DO_NOT_CLIMB, 

DO_NOT_DESCEND 

Other_Capability TCAS_TA, OTHER 

Climb_Inhibit TRUE, FALSE 

TABLE 2. T-WAY COVERING ARRAY TEST SETS 

Array Strength Number of Tests 

2-way 100 

3-way 400 

4-way 1215 

5-way 3607 

6-way 11018 
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Kolmogorov complexity [23].  Based on the observation that 

faults arise from “corner case” inputs [20], we tested the 

relatively small number of inputs of low Kolmogorov 

complexity to determine if they are more effective at triggering 

faults than other inputs. 

 This approach was initially developed to address 

cybersecurity-related attacker/defender scenarios [9].  If both 

attacker and defender are forced to select inputs at random from 

a combinatorially large set of possibilities, both are equally 

disadvantaged.  Because the vast majority of inputs are 

algorithmically random, a strategy to bias inputs to those more 

likely to trigger faults is to focus on the more characterizable 

space of low-complexity inputs.  A password checker provides 

a concrete example of why this may be a good strategy for both 

attackers and defenders.  If a correct password is treated as a 

deliberately seeded fault that, when triggered, provides access 

to a computer system, then a weak password corresponds to a 

low-complexity input string.  Given no prior information about 

the password, it behooves both attacker and defender to fully 

test this input space to determine whether any low-complexity 

inputs trigger the password “fault”.  

To test this empirically, we generated a set of low-

complexity inputs from short descriptions by “decompressing” 

small programs in the golfing language 05AB1E, which we 

chose based on the clarity of its documentation and the 

availability of one- and two-byte program descriptions on 

GitHub [24].  We used the set of all 65,536 possible two-byte 

programs in order to have enough inputs to compare with the 

covering arrays.  Well-formed low-complexity TCAS inputs 

were generated by mapping the program output onto values 

from the variable equivalence bins, preserving the amount of 

information (or increasing it by no more than an additive 

constant).  See Table 3 for examples. 

  Guided Fuzzing-Based Tests 

Finally, we generated test inputs using a different 

complexity measure based on a kind of Hamming distance from 

a seed string.  This approach was based on the observation that, 

when a bug is found in a program, there are often other faults 

nearby that can be triggered with similarly structured inputs [9].  

This is the premise on which many modern-day fuzzing 

algorithms are designed; American Fuzzy Lop (AFL), for 

example, uses a genetic algorithm to iterate on inputs that 

generate faults or other “interesting” program behaviors [25].  

This fuzzing algorithm, and guided fuzzing in general, have 

proven more effective at finding bugs than fully random 

automated testing [26].  

To develop these test sets, we first selected test inputs that 

resulted in UPWARD_RA or DOWNWARD_RA outputs to use 

as seeds, because they are rare compared to UNRESOLVED 

outputs.  The program logic in the C program that controls the 

assignment of the values UPWARD_RA and DOWNWARD_RA 

has the form: 

 

if (input value >= control value) { 
alt_sep = UPWARD_RA} 

else {alt_sep = DOWNWARD_RA} 
() 

Because of the equivalence partitioning of the input variables, 

the practical result is an average 1:2 ratio of 

DOWNWARD_RA to UPWARD_RA outputs in large test 

sets.  UNRESOLVED outputs are the most numerous by far.  As 

an example, our covering array test set of 100 inputs resulted in 

95 UNRESOLVED outputs, five UPWARD_RA outputs, and no 

DOWNWARD_RA outputs.  The comparative rarity of input 

strings that produce DOWNWARD_RA outputs makes them a 

kind of “golden input” that traverses uncommon paths through 

the C program.  Using inputs selected at random from the set 

that produces these rare outputs, new inputs were generated 

through small permutations to the variable values.  Applying 

our complexity metric, one unit of Hamming distance 

corresponds to a change of a single variable in an input string 

to a different equivalence bin value.  Any new variable value 

(in the equivalence set) is allowed.  So, using an example line 

of TCAS input: 

299 0 0 2 600 2 0 500 499 0 1 0 

We generate a new input of Hamming distance 1 by, for 

example, changing the value of the first variable from 299 to 

300.  The new input is: 

300 0 0 2 600 2 0 500 499 0 1 0 

Some other example inputs of Hamming distance one from 

the original input are: 

299 1 0 2 600 2 0 500 499 0 1 0 
299 0 0 2 600 2 0 500 740 0 1 0 
299 0 0 0 600 2 0 500 499 0 1 0 

All input strings with a Hamming distance of one were 

stored in a test set named Tier 1.  Tier 2 test sets were generated 

by changing two different variable values, and Tier 3 inputs 

change the value of three variables in a seed.  We generated five 

different test sets in Tier 1, Tier 2, and Tier 3 using five different 

seed inputs.  One seed input string was chosen at random from 

the subset of inputs resulting in UPWARD_RA.  The second 

seed was a string resulting from Tier 3 changes to that input.  

The third test set was seeded with a DOWNWARD_RA-output 

string (again, chosen at random from the subset of all strings 

that produce a DOWNWARD_RA output).  Test sets four and 

five were generated using strings from Tier 3 of the original 

DOWNWARD_RA string.  Overall, this approach resulted in 15 

test sets: three tiers resulting from changing five different seed 

TABLE 3. 05AB1E TCAS TEST INPUTS 

05AB1E 

Program 
žN žQ žS 

Output bcdfghjklmnp !"#$%&'()*+, qwertyuiop00 

Indexed 

Output 

1 0 0 0 0 0 1 4 4 1 

1 1 

0 0 0 0 0 0 0 1 1 0 

0 0 

1 0 0 0 0 0 1 4 4 1 

0 0 

TCAS 

Input 

300 1 1 1 600 1 2 

500 500 1 1 1 

299 1 1 1 600 1 1 

399 399 0 0 0 

300 1 1 1 600 1 2 

500 500 1 0 0 
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strings.  Different Hamming distances resulted in different 

numbers of test inputs for each tier: Tier 1 test sets contain 32 

tests, Tier 2 test sets contain 429 tests, and Tier 3 test sets 

contain 2988 tests.   

IV. RESULTS 

 Covering Arrays and Random Tests 

Kuhn and Okun reported a 100% success rate using 

covering arrays of interaction size t=5 or higher.  As Table 4 

shows, our five- and six-way covering arrays were not as 

successful; they caught all but one of the seeded errors (faults 

were triggered in 27 out of the 28 programs tested).  These 

results, along with those from other approaches (including ones 

described below), are summarized in Fig. 1. 

The data from these tests raised two questions.  First, why 

was the bug in the 28th program not triggered by any of the test 

inputs?  Second, are we catching more bugs because of the 

structure of the covering arrays or because we are running many 

more tests at increasing t-way interaction sizes?  

To answer the first question, we investigated the bug that 

was not triggered.  The seeded error was a small change in value 

in one line of code that takes the input variable 

Cur_Vertical_Sep and uses it to set the value of an internal 

program Boolean variable.  The correct TCAS program 

contains a conditional statement that sets an internal Boolean 

variable called enabled to 1 if Cur_Vertical_Sep is greater than 

the internal program variable MAXALTDIFF.  The variable 

MAXALTDIFF is set to 600 in the correct TCAS program and 

500 in the buggy program.  The reason our test inputs were 

unable to trigger the error is that the equivalence bin values we 

chose for Cur_Vertical_Sep were 299, 300, and 601.   

This set of values does not enable a tester to detect a change 

in the range 500-600, because as long as MAXALTDIFF has a  

value in the range 301-600, the conditional statement 

Cur_Vertical_Sep > MAXALTDIFF is true if Cur_Vertical_Sep 

= 601 and false if Cur_Vertical_Sep = 300.  From this result it 

becomes clear that values in equivalence bins are not always 

equivalent if there is an error in the program under test.   

In order to determine whether we are uncovering more 

errors with t=5 and 6-way test sets because of the power of the 

covering arrays or simply because the test sets are larger, we 

compared the covering array test results to results using the 

randomly-generated test sets of equal size. The randomly 

generated test sets performed similarly to the covering arrays, 

although they did catch one fewer buggy program in both t=5 

and 6-way tests (test inputs triggered faults in only 26 of 28 

buggy programs).  As Table 5 shows, the random inputs did 

better than the covering array inputs at smaller t-way interaction 

sizes.   

The covering array tests demonstrated that, for arrays with 

high enough t (t=5 and t=6), the arrays are modestly more 

effective than randomly selected inputs at triggering faults.   

Upon inspection, we found that a bug that was never caught by 

any of the randomly generated test sets was triggered by all of 

the covering array test sets except for the smallest, pairwise 

interaction set (t=2).  The bug was in a location in the code only 

reachable with one unique combination of six of the input 

variables (in addition to other criteria being met).  The unique 

combination of those six variables occurs rarely in the set of all 

possible combinations; therefore, the randomly generated test 

sets were not certain to contain the necessary combination.  In 

other words, the bug that was not caught by the randomly 

generated inputs is one that is hard to catch, statistically 

speaking. The t=6-way covering array, on the other hand, is 

guaranteed to contain the variable combination.  To illustrate 

why that is the case, consider a unique specification of the 6-

way set of variables with the most equivalence tiers. The 

prevalence of that unique combination in the set of all possible 

values is: 

  
1

10
×

1

10
×

1

4
×

1

3
×

1

3
×

1

2
=  

1

7200
    () 

The six-way covering array and like-sized random test set 

contain 11016 inputs.  For the random set, the likelihood of 

drawing 11016 inputs that do not contain the desired six values 

is: 

 (1 −
1

7200
)11016 ~ 0.22    () 

Therefore, the likelihood of drawing a set at random that 

contains the values is 78%, whereas the 6-way covering array 

is guaranteed to contain the input.  This imparts some advantage 

to the larger t-way arrays in triggering faults located along low-

probability traces of the code. 

The smaller t-way arrays do not provide the same 

advantage.  For example, given the same 6-way variable, the 

t=3-way covering array is guaranteed to contain the first 3-way 

combination of values, but when paired with the remaining 

three values, the chances of ending up with the required six 

values sequentially are essentially the same as in the randomly 

generated set.  While still possible to draw the rare input 

combination that triggers the fault in question at random, the 

likelihood is decreased relative to the covering arrays that it will 

TABLE 4. COVERING ARRAY TEST RESULTS 

t (strength) t=2 t=3 t=4 t=5 t=6 

Test Size 100 400 1215 3607 11018 

Bugs Caught 4 16 21 27 27 

Test Failures 103 257 1292 3892 11663 

Total Tests 2800 11200 34020 100996 308504 

% Efficiency  3.7 2.3 3.8 3.9 3.8 

TABLE 1. RANDOM TEST RESULTS 

t (strength) t=2 t=3 t=4 t=5 t=6 

Test Size 100 400 1215 3607 11018 

Bugs Caught 4 19 23 26 26 

Test Failures 78 351 1035 2957 8878 

Total Tests 2800 11200 34020 100996 308504 

% Efficiency 2.7 3.1 3.0 2.9 2.9 



6 

appear in a test set at the larger test set sizes.  

Most of the fault-finding effectiveness of the test suites 

appears to result from the size of the larger sets; the large t-way 

covering arrays do add some value by forcing the generation of 

certain input combinations that are less likely to be selected in 

a random draw.  On the other hand, the statistical unlikelihood 

of finding the input in a random draw could be overcome by 

executing multiple random draws. 

 Random from equivalence Bin Covering Array (RBCA) 

Because each approach has specific advantages—the 

covering array approach targets low-probability code branches 

and the random input approach covers the entire space within 

an equivalence bin, allowing for more granularity in value 

coverage—we decided to combine the approaches into one.  In 

this new approach, we specified equivalence bins using values 

from the first covering array tests as upper and lower bounds 

for new equivalence bins; we then wrote a script that generates 

a random value within that equivalence bin to populate the test 

input.  Thanks to this new bin specification method, these t-way 

interaction sizes resulted in smaller test sets than the simple 

covering array t-way interaction tests.  The ten equivalence bins 

in the Up_Separation and Down_Separation variables, for 

example, were reduced to six: 0-399, 400-499, 500-639, 640-

739, 740-840, 840-1000.  The reduction in the number of bins 

for these two variables resulted in smaller covering array sizes 

using this method, which we named RBCA (Random from 

equivalence Bin Covering Array).   

Once we had generated covering arrays using the levels of 

each input variable equivalence bin as placeholders, we ran a 

script to populate each placeholder with a randomly selected 

value within the bin.  In this way, RBCA leverages both the 

interaction-maximizing power of the covering array and the 

range of the random-value generator.  The inability of the first 

covering arrays to trigger the 28th bug is resolved by the random 

assignment of the Cur_Vertical_Sep variable to a number 

within the equivalence bin 500-639.  Results are shown in Table 

6.  The RBCA method was successful in triggering faults in all 

eight of the buggy programs at t=6.  The t=6-way RBCA array 

had more tests than the t=5-way covering array (3837 vs. 3607) 

but many fewer than the t=6-way covering array (11018 tests).  

The RBCA t=5-way array was much less successful at 

triggering faults, because of the small number of tests in the test 

set (1574 tests), which is more comparable to the size of a t=4-

way covering array (1215 tests). 

The initial t=4 and t=5-way RBCA runs were surprising, 

catching 23 and 22 bugs, respectively.  To investigate why the 

smaller array was catching more bugs, we changed the order of 

the equivalence bin values that were presented to the covering 

array algorithm to generate new arrays.  We did this twice for 

each of the t=4 and t=5-way arrays, for a total test set of three 

unique arrays for each t-way value.  The t=4-way arrays 

triggered 23, 17, and 25 bugs, respectively: an average of 21.7.  

The t=5-way arrays triggered 22, 22, and 25 bugs: an average 

of 23.  At the t=6-way interaction size, the RBCA tests were 

both more effective (catching all bugs across all buggy 

programs) and efficient (triggering more faults per test input).  

The RBCA method succeeded by leveraging the strength of 

covering arrays – i.e., the deliberate use of variable interactions 

to force the code to traverse statistically unlikely branches – 

together with the ability of random tests to cover the range of 

possible values available to the input variables.  As is clear from 

Fig. 1, RBCA catches all of the program bugs with the same 

number of tests as the t=5-way covering array, triggering a fault 

for the bug that was unreachable by the equivalence bin values 

used in the simple covering array.   

 Kolmogorov Complexity-Based Tests 

The set of 10,000 low-complexity inputs generated by the 

05AB1E golfing language performed very poorly in triggering 

the entire range of seeded faults in the 28 TCAS C programs, 

finding the bug in just one of the 28 programs.  However, by 

measure of efficiency (faults triggered per input) they 

performed well: 99% of the 10,000 inputs triggered a fault in 

the same program.  The overall efficiency across the 28 

programs is 3.5%, which is better than random tests and 

comparable to covering arrays.   

The failure of this test approach to trigger faults in more 

than one program clearly indicates that it is not useful as a real-

world test methodology.  Rather than consider complexity as an 

absolute measure of information in the system (the test input), 

we found it promising to instead investigate complexity as a  

measure of information distance from a starting input.  This 

approach is consistent with the observation that once a bug is 

discovered in a program, other bugs are frequently discovered 

using semantically similar inputs [9]. 

TABLE 6. RBCA TEST RESULTS 

t (strength) t=2 t=3 t=4 t=5 t=6 

Test Size 37 144 476 1334 3837 

Bugs Caught 1 13 21.7 23 28 

Test Failures 34 154 505 1420 4135 

Total Tests  1036 4032 13328 37352 107436 

% Efficiency 3.3 3.8 3.8 3.8 3.8 

 

 Summary of Test Methods 
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  Guided Fuzzing-Based Tests 

Formally, relative complexity is the length of the shortest 

program that generates a desired string given another string as 

input.  Hamming distance is an approximation to this relative 

complexity, because one such program is the program that 

modifies the given string by altering a list of specific locations 

(the length of the program is proportional to the length of this 

list, i.e., the Hamming distance).  There may be shorter 

programs, but we know this one exists, so it serves as a bound.  

Thus, the Hamming distance approach can be viewed as a kind 

of complexity approach, and other extensions are possible.  The 

technique used here to generate new inputs using the Hamming 

algorithm is intended to be automated and used as a guided-

fuzzing tool in future work, which is why we refer to them here 

as guided fuzzing-based tests.   

A form of covering array can also naturally arise from 

enumerating low-complexity inputs.  Per the notation in Kuhn 

and Okun [21], the system under test has k input variables, each 

with v possible values.  The total number of possible input 

vectors is vk, and the number of bits needed to specify an 

arbitrary input is k log v.  Assuming we are interested in t-way 

interactions with t << k, a naïve (non-optimal) t-way covering 

array can be constructed by taking each configuration of values 

for each combination of t input variables separately (always 

assigning a default value to the other k – t variables). The 

number of t-variable subsets is (k choose t), which for t << k 

scales with kt. The number of possible inputs for a given set of 

t variables is vt. Thus a covering array can be constructed with 

size no more than (kv)t. (At the other end, a lower bound on the 

size is vt, because this is the minimum number needed to cover 

one set of t variables.)   

Likewise, in the complexity approach, there exist short 

programs that assign values to t variables at a time, starting 

from a “seed” input string.  They do this with some small, fixed 

algorithm of length C, combined with data indicating which t 

variables (each of these requires log k bits) and which values 

(each of these requires log v bits). Thus, such a generating 

program has length (complexity tier) m = C + t log(kv). 

Collectively, these programs generate input vectors equivalent 

to the naïve t-way covering array. And given that C is small and 

t << k, these programs are smaller than the full complexity of 

arbitrary inputs: m = C + t log(kv) << k log v. Note that this is a 

conservative estimate; a more optimized covering array might 

be present in a complexity tier even lower than m.   

Seeding a Hamming algorithm with inputs that traversed 

low-probability paths through the TCAS code (such as the 

DOWNWARD_RA-output-producing inputs) was highly 

effective and efficient at triggering the range of seeded bugs in 

the test programs.  This method also suffers from the same 

drawbacks as the covering array-based approach, in that it uses 

values from equivalence bins that do not contain the necessary 

resolution to find small variable value errors in the code.  An 

improved approach would draw random values from within the 

equivalence bins, similar to RBCA.  

The tests generated using the Hamming algorithm were 

efficient and effective at catching bugs in the faulty C 

programs, as is apparent from the results in Fig. 1, although they 

suffered from the same lack of reach as the covering array 

inputs because they used the equivalence bin values rather than 

the full range of possible values used in RBCA. 

The DOWNWARD_RA seeded tests in particular were 

extraordinarily effective at triggering faults in all of the C 

programs (except for the bug discussed previously that cannot 

be reached by the tests because of the choice of equivalence bin 

values), especially considering the small test size of 2988 

inputs.  This test size lies in between the t=5 and t=6-way 

RBCA test set sizes, and is smaller than the t=5-way covering 

array test set size. Table 7 shows the results of tests using the 

Hamming-based input test sets.  The three DOWNWARD_RA-

seeded Tier 3 test sets caught 27/28 bugs, while the Tier 3 test 

sets that were seeded with UPWARD_RA-generating inputs 

caught 22/28 bugs.  

These results demonstrate a promising approach to guided 

fuzzing based on relative complexity, which we hope to 

implement and automate in future research. 
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