
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

1

Algorithmic Input Generation for More Effective

Software Testing

Laura Epifanovskaya

Institute for Defense Analyses

Alexandria, VA, USA

lepifano@ida.org

Reginald Meeson

Institute for Defense Analyses

Alexandria, VA, USA

rmeeson@ida.org

Christopher McCormack

Institute for Defense Analyses

Alexandria, VA, USA

cmccorma@ida.org

Jinseo R. Lee

Institute for Defense Analyses

Alexandria, VA, USA

jlee@ida.org

Robert C. Armstrong

Sandia National Laboratories

Livermore, CA, USA

rob@sandia.gov

Jackson R. Mayo

Sandia National Laboratories

Livermore, CA, USA

jmayo@sandia.gov

Abstract—It is impossible in practice to comprehensively test

even small software programs due to the vastness of the reachable

state space; however, modern cyber-physical systems such as

aircraft require a high degree of confidence in software safety and

reliability. Here we explore methods of generating test sets to

effectively and efficiently explore the state space for a module

based on the Traffic Collision Avoidance System (TCAS) used on

commercial aircraft. A formal model of TCAS in the model-

checking language NuSMV provides an output oracle. We

compare test sets generated using various methods, including

covering arrays, random, and a low-complexity input paradigm

applied to 28 versions of the TCAS C program containing seeded

errors. Faults are triggered by tests for all 28 programs using a

combination of covering arrays and random input generation.

Complexity-based inputs perform more efficiently than covering

arrays, and can be paired with random input generation to create

efficient and effective test sets. A random forest classifier

identifies variable values that can be targeted to generate tests

even more efficiently in future work, by combining a machine-

learned fuzzing algorithm with more complex model oracles

developed in model-based systems engineering (MBSE) software.

Keywords—covering arrays, complexity, software testing,

reliability, formal models

I. INTRODUCTION

The power, capacity, and flexibility of digital technology

provide capability to modern cyber-physical systems such as

vehicles, aircraft, and weaponry that was simply out of reach

for older analog and mechanical systems. The power of digital

technology, however, comes at a price. Apart from the

potential vulnerabilities created by networked systems, a

computer-controlled system is also only as secure, reliable, and

resilient as the software that controls it. In the past few decades,

flaws and vulnerabilities in software led to devastating

accidents and breaches that compromised personal information,

cost billions of dollars, and in the case of software-powered

medical devices, transportation, or other safety-critical systems,

sometimes led to injuries or even loss of life [1].

Achieving software assurance through testing is hard.

Testing based on software requirements—the behaviors the

software was engineered to produce—can demonstrate the

presence or absence of nominal functionality. However, test

sets that achieve requirements-based coverage are not

necessarily sufficient to exercise all of the software’s latent

behaviors [2]. One approach to address the problem is to test

in a way that provides coverage of the software structure: the

branching logic pathways made possible by conditional

statements in the program under test. In avionics, for example,

structural coverage criteria are used to determine test suite

adequacy for certification purposes [3]. Previously, standard

guidance used by certification authorities across the U.S.,

Canada, and Europe required safety-critical software testing to

demonstrate structural coverage [4] [5].

Research has raised questions about the effectiveness of

coverage-based testing, finding in some cases that test sets

generated using coverage criteria are less effective than random

tests of the same length [6]. One possible reason for this is

masking, in which changing the value of a condition does not

affect the outcome of the assertion [7]. Full characterization of

the state space reachable by software programs is effectively

impossible; that is, while cyber-physical system programs have

a finite state space and therefore the problem of fully

characterizing program behavior is in principle decidable, in

practice it is combinatorially hard [9]. In practice, software test

design is an inexact science that leverages any number of

techniques to attempt to exercise as much of a program under

test as possible within the schedule and budget allotted to test

activities. Improving software testing is still an area of active

and urgent research.

In this paper, we compare various methods of generating

test suites based on their efficiency and effectiveness at

triggering faults across a set of programs deliberately seeded

with coding errors, a type of mutation testing. The rest of the

paper is organized as follows: Section 2 provides background

on the types of test methods we employ; Section 3 provides an

overview of the experimental design, including a description of

SAND2022-6592CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2

the program under test; and Section 4 reports experimental

results, provides analysis and context, and sets out our

conclusions.

II. BACKGROUND

Earlier avionics software certification guidance has since

been replaced by updated guidelines that make allowance for

new developments in system design and engineering, including

model-based development paradigms, and contain

considerations for replacing some typical software testing

activities with simulation and formal methods [10]. Formal

methods are techniques and tools that apply mathematical rigor

to software design and verification activities. Using formal

methods, software designers encode software behaviors in

terms of formal logic to create “correct-by-construction”

programs. This helps to eliminate software bugs in three ways:

(1) the careful, logical design prevents accidental introduction

of unintended behaviors; (2) the final software product is

formally verifiable using tools like model checkers and theorem

provers; and (3) the formal specification of a design model prior

to the programming process prevents faulty specifications from

introducing undesired behaviors into well-written code. For

example, “race conditions”, where program outputs change

based on uncontrolled sequences of events, can arise in systems

with inadequate controls. Model checkers can prove that a

design under test does not contain specific flaws that create

safety or reliability faults. When applied in the system design

phase, formal methods are extremely powerful in eliminating

software bugs and developing cyber-secure systems [11] [12].

These techniques, however, are of limited utility when applied

to legacy software or software that has already been written and

has entered the test phase.

However, some tools from formal methods can still be

usefully applied to the software testing process. For example,

one of the most daunting tasks of any software test effort is

determining what the expected behavior, or output, of a

program should be given a particular input. Correct outputs are

hard to formulate a priori, but they are needed to determine

whether a software test has produced a faulty output. The

correct output is usually only known if there is a “golden copy”

of the software program that is somehow verified to be correct,

usually though extensive testing and use. Formal models can

be used to produce software “oracles” that provide correct

outputs when presented a set of inputs. This is done by

specifying a set of requirements as properties in formal

language and checking the model design against these

properties; the requirements are formulated as “trap properties”

deliberately written as negations of the design requirements so

that the model checker will declare each negated property false

and proceed to output a counterexample that provides a step-

by-step proof together with the inputs that produce the falsified

output. The oracle output is then checked against the program

output to verify correct program behavior [13] [14] [15].

Apart from the need for a test oracle, a separate

consideration in testing is deciding upon useful sets of test

inputs. As noted above, requirements-based testing and

coverage-based testing are not by themselves sufficient to

uncover all faulty behaviors produced by computer programs.

One approach to generating inputs is to focus on those that may

trigger latent faulty behaviors with higher probability than

randomly-generated inputs. For example, the Design of

Experiments (DOE) method creates a “full factorial” test set by

generating all possible combinations of variable values. The

logic behind this approach maintains that faults are more likely

to be discovered in tests through variable interactions [16].

Since in a typical program the range of possible variable values

makes a full factorial set over all possible values infeasible, the

test designer uses equivalence partitioning to allocate each

variable a single allowed value per equivalence bin [17]. Even

with equivalence partitioning, however, full-factorial test sets

for software can be unmanageably large. A solution to this is

the covering array. Covering arrays are a mathematical

construct wherein a full factorial test set of variables is reduced

in size while preserving a specified strength, t, of variable

interactions (all combinations of t variables are covered). In

this construction, the number of test input strings grows only

logarithmically in the number of parameters instead of

exponentially [18].

Another popular approach to software testing that does not

rely on oracles is algorithm-directed fuzzing, a form of

automated random testing. Algorithm-directed fuzzing is

widely-used and shown to be effective. Fuzzing is responsible

for uncovering the vast majority of known remote code

execution and privilege-escalation bugs [19]. Companies like

Google use guided fuzzing—fuzzing that leverages semantic

knowledge to generate input strings—to continuously test

software products. Guided fuzzing is powerful because of its

ability to produce “corner case” inputs, that is, inputs

semantically similar enough to expected program inputs that the

software accepts them and attempts to execute them, but that

contain some atypical component that can trigger unexpected

program behavior [20]. Testing boundary conditions using

guided fuzzing is an efficient way of locating sources of

undesired behaviors. Efficiency is important in software testing

because, while it may be possible in principle to test every state

of a given program, the time and resources required to do so are

prohibitive in practice. It is necessary to gain confidence in a

program’s reliability with limited resources, including time and

budget. An efficient test set is one that maximizes the number

of faults triggered per test input, while minimizing the required

number of test inputs and the length of time required to test.

We will compare covering arrays, random testing, low-

complexity test suites, and a form of guided fuzzing based on

their efficiency and effectiveness at triggering faults in the error

seeded programs.

III. EXPERIMENT

 Traffic Collision Avoidance System (TCAS)

We performed our software tests on a small C-language

module of the Traffic Collision Avoidance System (TCAS), an

airborne system used in commercial aviation to reduce the risk

of mid-air collisions. When the system detects another

transponder-equipped aircraft within close proximity, it alerts

the pilot and issues an advisory in order to avoid a crash. When

3

TCAS detects another transponder 20-48 seconds away from a

potential collision, it sends the pilot a traffic advisory (TA). If

no action is taken to prevent the collision, TCAS sends the pilot

a resolution advisory (RA).

The program module under test takes an input string of 12

variables and outputs a single variable, called alt_sep, that is

assigned the value of the RA signaled by the host aircraft. The

alt_sep variable has three possible values: UNRESOLVED,

UPWARD_RA, and DOWNWARD_RA.

The design of our experiment replicated work by Vadim

Okun and Richard Kuhn at the U.S. National Institutes for

Standards and Technology (NIST) [21]. Kuhn and Okun use

covering arrays of varying interaction strengths as their test

sets, and they use the model checker NuSMV to generate oracle

output values for each input set by specifying trap properties,

as described in Section II. We first separated the TCAS input

variable values into the equivalence bins used by Kuhn and

Okun so that we could directly compare our test results with

theirs. Equivalence partitioning simplifies model checking in

NuSMV by limiting the number of variable assignments to be

checked; it also reasonably constrains the number of inputs in a

covering array. A single value from each equivalence partition

is assigned as the representative value from that equivalence

bin. The bins values assigned to each variable are found in

Table 1.

To compare test approaches according to their effectiveness

and efficiency in finding bugs in the program unit under test,

we generated several different test suite types. We then ran

each test suite as inputs to a set of TCAS executables and

monitored the output using the NuSMV model output for a

given input variable combination as our oracle. We employed

a form of mutation testing in which we manually introduced

minor changes to the correct TCAS module to create a new,

buggy program. Conditional operator values were changed in

some programs (for example, from > to <), values of internal

variables were manipulated in others, and arithmetic operators

were changed in still others (for example, a + operator might

become a -). This approach generated a suite of 28 buggy

TCAS program executables containing a single mutation each.

 Covering Arrays

Replicating Kuhn and Okun’s approach, we created

covering arrays of the variables in Table 1 to use as our starting

test sets. JMP Pro 15 statistical software generated a set of t-

way covering arrays for t=2 to t=6-way interactions. Because

the JMP covering array optimization algorithm does not always

reach the theoretical minimum number of t-way inputs,

covering arrays of the same strength t with the same input

variables do not always contain the same number of tests. The

array sizes we used in the initial covering array tests are in

Table 2. The minimum test set size is limited by the number of

equivalence bins in the t variables with the most values for each

t-way test; for example, the 2-way covering array has a

minimum of 10 x 10 = 100 values because the Up_Separation

and Down_Separation variables have 10 possible assignments

each.

 Random Testing

Kuhn and Okun report 100% success rates in their mutation

testing of the TCAS module using t=5 and t=6-way covering

arrays. This might reflect the power of test sets generated using

covering arrays; on the other hand, it might be a result of the

relative sizes of the t=5 and t=6-way test sets (with 4220 and

10,902 test inputs, respectively) compared to the fewer-way

interaction test sets (with 100, 405, and 1375 tests). Test size

is known to correlate positively with the number of bugs found,

simply because the increased variety of test input values creates

additional reach in the software state space [21]. To determine

whether the strength of the covering array interaction or the

sheer number of test inputs is responsible for the effectiveness

in triggering faults in the C executables, we generated random

test sets with numbers of input values corresponding to those in

the t=2, 3,4,5, and 6-way covering arrays.

 Kolmogorov Complexity

 Covering arrays provide one means of reducing the

possible input space to a program in a targeted way, with a focus

on preserving variable interactions. Another approach to a

targeted reduction of input space is selecting the relatively

small number of inputs of low information complexity. The

length of the shortest description of a bit string is known as its

TABLE 1. TCAS VARIABLE VALUES

TCAS Variable Equivalence Bin Values

Cur_Vertical_Sep 299, 300, 601

High_Confidence TRUE, FALSE

Two_of_Three_Reports_Valid TRUE, FALSE

Own_Tracked_Alt 1, 2

Own_Tracked_Alt_Rate 600, 601

Other_Tracked_Alt 1, 2

Alt_Layer_Value 0, 1, 2, 3

Up_Separation
0, 399, 400, 499, 500, 639, 640,

739, 740, 840

Down_Separation
0, 399, 400, 499, 500, 639, 640,

739, 740, 840

Other_RAC

NO_INTENT,

DO_NOT_CLIMB,

DO_NOT_DESCEND

Other_Capability TCAS_TA, OTHER

Climb_Inhibit TRUE, FALSE

TABLE 2. T-WAY COVERING ARRAY TEST SETS

Array Strength Number of Tests

2-way 100

3-way 400

4-way 1215

5-way 3607

6-way 11018

4

Kolmogorov complexity [23]. Based on the observation that

faults arise from “corner case” inputs [20], we tested the

relatively small number of inputs of low Kolmogorov

complexity to determine if they are more effective at triggering

faults than other inputs.

 This approach was initially developed to address

cybersecurity-related attacker/defender scenarios [9]. If both

attacker and defender are forced to select inputs at random from

a combinatorially large set of possibilities, both are equally

disadvantaged. Because the vast majority of inputs are

algorithmically random, a strategy to bias inputs to those more

likely to trigger faults is to focus on the more characterizable

space of low-complexity inputs. A password checker provides

a concrete example of why this may be a good strategy for both

attackers and defenders. If a correct password is treated as a

deliberately seeded fault that, when triggered, provides access

to a computer system, then a weak password corresponds to a

low-complexity input string. Given no prior information about

the password, it behooves both attacker and defender to fully

test this input space to determine whether any low-complexity

inputs trigger the password “fault”.

To test this empirically, we generated a set of low-

complexity inputs from short descriptions by “decompressing”

small programs in the golfing language 05AB1E, which we

chose based on the clarity of its documentation and the

availability of one- and two-byte program descriptions on

GitHub [24]. We used the set of all 65,536 possible two-byte

programs in order to have enough inputs to compare with the

covering arrays. Well-formed low-complexity TCAS inputs

were generated by mapping the program output onto values

from the variable equivalence bins, preserving the amount of

information (or increasing it by no more than an additive

constant). See Table 3 for examples.

 Guided Fuzzing-Based Tests

Finally, we generated test inputs using a different

complexity measure based on a kind of Hamming distance from

a seed string. This approach was based on the observation that,

when a bug is found in a program, there are often other faults

nearby that can be triggered with similarly structured inputs [9].

This is the premise on which many modern-day fuzzing

algorithms are designed; American Fuzzy Lop (AFL), for

example, uses a genetic algorithm to iterate on inputs that

generate faults or other “interesting” program behaviors [25].

This fuzzing algorithm, and guided fuzzing in general, have

proven more effective at finding bugs than fully random

automated testing [26].

To develop these test sets, we first selected test inputs that

resulted in UPWARD_RA or DOWNWARD_RA outputs to use

as seeds, because they are rare compared to UNRESOLVED

outputs. The program logic in the C program that controls the

assignment of the values UPWARD_RA and DOWNWARD_RA

has the form:

if (input value >= control value) {
alt_sep = UPWARD_RA}

else {alt_sep = DOWNWARD_RA}
()

Because of the equivalence partitioning of the input variables,

the practical result is an average 1:2 ratio of

DOWNWARD_RA to UPWARD_RA outputs in large test

sets. UNRESOLVED outputs are the most numerous by far. As

an example, our covering array test set of 100 inputs resulted in

95 UNRESOLVED outputs, five UPWARD_RA outputs, and no

DOWNWARD_RA outputs. The comparative rarity of input

strings that produce DOWNWARD_RA outputs makes them a

kind of “golden input” that traverses uncommon paths through

the C program. Using inputs selected at random from the set

that produces these rare outputs, new inputs were generated

through small permutations to the variable values. Applying

our complexity metric, one unit of Hamming distance

corresponds to a change of a single variable in an input string

to a different equivalence bin value. Any new variable value

(in the equivalence set) is allowed. So, using an example line

of TCAS input:

299 0 0 2 600 2 0 500 499 0 1 0

We generate a new input of Hamming distance 1 by, for

example, changing the value of the first variable from 299 to

300. The new input is:

300 0 0 2 600 2 0 500 499 0 1 0

Some other example inputs of Hamming distance one from

the original input are:

299 1 0 2 600 2 0 500 499 0 1 0
299 0 0 2 600 2 0 500 740 0 1 0
299 0 0 0 600 2 0 500 499 0 1 0

All input strings with a Hamming distance of one were

stored in a test set named Tier 1. Tier 2 test sets were generated

by changing two different variable values, and Tier 3 inputs

change the value of three variables in a seed. We generated five

different test sets in Tier 1, Tier 2, and Tier 3 using five different

seed inputs. One seed input string was chosen at random from

the subset of inputs resulting in UPWARD_RA. The second

seed was a string resulting from Tier 3 changes to that input.

The third test set was seeded with a DOWNWARD_RA-output

string (again, chosen at random from the subset of all strings

that produce a DOWNWARD_RA output). Test sets four and

five were generated using strings from Tier 3 of the original

DOWNWARD_RA string. Overall, this approach resulted in 15

test sets: three tiers resulting from changing five different seed

TABLE 3. 05AB1E TCAS TEST INPUTS

05AB1E

Program
žN žQ žS

Output bcdfghjklmnp !"#$%&'()*+, qwertyuiop00

Indexed

Output

1 0 0 0 0 0 1 4 4 1

1 1

0 0 0 0 0 0 0 1 1 0

0 0

1 0 0 0 0 0 1 4 4 1

0 0

TCAS

Input

300 1 1 1 600 1 2

500 500 1 1 1

299 1 1 1 600 1 1

399 399 0 0 0

300 1 1 1 600 1 2

500 500 1 0 0

5

strings. Different Hamming distances resulted in different

numbers of test inputs for each tier: Tier 1 test sets contain 32

tests, Tier 2 test sets contain 429 tests, and Tier 3 test sets

contain 2988 tests.

IV. RESULTS

 Covering Arrays and Random Tests

Kuhn and Okun reported a 100% success rate using

covering arrays of interaction size t=5 or higher. As Table 4

shows, our five- and six-way covering arrays were not as

successful; they caught all but one of the seeded errors (faults

were triggered in 27 out of the 28 programs tested). These

results, along with those from other approaches (including ones

described below), are summarized in Fig. 1.

The data from these tests raised two questions. First, why

was the bug in the 28th program not triggered by any of the test

inputs? Second, are we catching more bugs because of the

structure of the covering arrays or because we are running many

more tests at increasing t-way interaction sizes?

To answer the first question, we investigated the bug that

was not triggered. The seeded error was a small change in value

in one line of code that takes the input variable

Cur_Vertical_Sep and uses it to set the value of an internal

program Boolean variable. The correct TCAS program

contains a conditional statement that sets an internal Boolean

variable called enabled to 1 if Cur_Vertical_Sep is greater than

the internal program variable MAXALTDIFF. The variable

MAXALTDIFF is set to 600 in the correct TCAS program and

500 in the buggy program. The reason our test inputs were

unable to trigger the error is that the equivalence bin values we

chose for Cur_Vertical_Sep were 299, 300, and 601.

This set of values does not enable a tester to detect a change

in the range 500-600, because as long as MAXALTDIFF has a

value in the range 301-600, the conditional statement

Cur_Vertical_Sep > MAXALTDIFF is true if Cur_Vertical_Sep

= 601 and false if Cur_Vertical_Sep = 300. From this result it

becomes clear that values in equivalence bins are not always

equivalent if there is an error in the program under test.

In order to determine whether we are uncovering more

errors with t=5 and 6-way test sets because of the power of the

covering arrays or simply because the test sets are larger, we

compared the covering array test results to results using the

randomly-generated test sets of equal size. The randomly

generated test sets performed similarly to the covering arrays,

although they did catch one fewer buggy program in both t=5

and 6-way tests (test inputs triggered faults in only 26 of 28

buggy programs). As Table 5 shows, the random inputs did

better than the covering array inputs at smaller t-way interaction

sizes.

The covering array tests demonstrated that, for arrays with

high enough t (t=5 and t=6), the arrays are modestly more

effective than randomly selected inputs at triggering faults.

Upon inspection, we found that a bug that was never caught by

any of the randomly generated test sets was triggered by all of

the covering array test sets except for the smallest, pairwise

interaction set (t=2). The bug was in a location in the code only

reachable with one unique combination of six of the input

variables (in addition to other criteria being met). The unique

combination of those six variables occurs rarely in the set of all

possible combinations; therefore, the randomly generated test

sets were not certain to contain the necessary combination. In

other words, the bug that was not caught by the randomly

generated inputs is one that is hard to catch, statistically

speaking. The t=6-way covering array, on the other hand, is

guaranteed to contain the variable combination. To illustrate

why that is the case, consider a unique specification of the 6-

way set of variables with the most equivalence tiers. The

prevalence of that unique combination in the set of all possible

values is:

1

10
×

1

10
×

1

4
×

1

3
×

1

3
×

1

2
=

1

7200
 ()

The six-way covering array and like-sized random test set

contain 11016 inputs. For the random set, the likelihood of

drawing 11016 inputs that do not contain the desired six values

is:

 (1 −
1

7200
)11016 ~ 0.22 ()

Therefore, the likelihood of drawing a set at random that

contains the values is 78%, whereas the 6-way covering array

is guaranteed to contain the input. This imparts some advantage

to the larger t-way arrays in triggering faults located along low-

probability traces of the code.

The smaller t-way arrays do not provide the same

advantage. For example, given the same 6-way variable, the

t=3-way covering array is guaranteed to contain the first 3-way

combination of values, but when paired with the remaining

three values, the chances of ending up with the required six

values sequentially are essentially the same as in the randomly

generated set. While still possible to draw the rare input

combination that triggers the fault in question at random, the

likelihood is decreased relative to the covering arrays that it will

TABLE 4. COVERING ARRAY TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=6

Test Size 100 400 1215 3607 11018

Bugs Caught 4 16 21 27 27

Test Failures 103 257 1292 3892 11663

Total Tests 2800 11200 34020 100996 308504

% Efficiency 3.7 2.3 3.8 3.9 3.8

TABLE 1. RANDOM TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=6

Test Size 100 400 1215 3607 11018

Bugs Caught 4 19 23 26 26

Test Failures 78 351 1035 2957 8878

Total Tests 2800 11200 34020 100996 308504

% Efficiency 2.7 3.1 3.0 2.9 2.9

6

appear in a test set at the larger test set sizes.

Most of the fault-finding effectiveness of the test suites

appears to result from the size of the larger sets; the large t-way

covering arrays do add some value by forcing the generation of

certain input combinations that are less likely to be selected in

a random draw. On the other hand, the statistical unlikelihood

of finding the input in a random draw could be overcome by

executing multiple random draws.

 Random from equivalence Bin Covering Array (RBCA)

Because each approach has specific advantages—the

covering array approach targets low-probability code branches

and the random input approach covers the entire space within

an equivalence bin, allowing for more granularity in value

coverage—we decided to combine the approaches into one. In

this new approach, we specified equivalence bins using values

from the first covering array tests as upper and lower bounds

for new equivalence bins; we then wrote a script that generates

a random value within that equivalence bin to populate the test

input. Thanks to this new bin specification method, these t-way

interaction sizes resulted in smaller test sets than the simple

covering array t-way interaction tests. The ten equivalence bins

in the Up_Separation and Down_Separation variables, for

example, were reduced to six: 0-399, 400-499, 500-639, 640-

739, 740-840, 840-1000. The reduction in the number of bins

for these two variables resulted in smaller covering array sizes

using this method, which we named RBCA (Random from

equivalence Bin Covering Array).

Once we had generated covering arrays using the levels of

each input variable equivalence bin as placeholders, we ran a

script to populate each placeholder with a randomly selected

value within the bin. In this way, RBCA leverages both the

interaction-maximizing power of the covering array and the

range of the random-value generator. The inability of the first

covering arrays to trigger the 28th bug is resolved by the random

assignment of the Cur_Vertical_Sep variable to a number

within the equivalence bin 500-639. Results are shown in Table

6. The RBCA method was successful in triggering faults in all

eight of the buggy programs at t=6. The t=6-way RBCA array

had more tests than the t=5-way covering array (3837 vs. 3607)

but many fewer than the t=6-way covering array (11018 tests).

The RBCA t=5-way array was much less successful at

triggering faults, because of the small number of tests in the test

set (1574 tests), which is more comparable to the size of a t=4-

way covering array (1215 tests).

The initial t=4 and t=5-way RBCA runs were surprising,

catching 23 and 22 bugs, respectively. To investigate why the

smaller array was catching more bugs, we changed the order of

the equivalence bin values that were presented to the covering

array algorithm to generate new arrays. We did this twice for

each of the t=4 and t=5-way arrays, for a total test set of three

unique arrays for each t-way value. The t=4-way arrays

triggered 23, 17, and 25 bugs, respectively: an average of 21.7.

The t=5-way arrays triggered 22, 22, and 25 bugs: an average

of 23. At the t=6-way interaction size, the RBCA tests were

both more effective (catching all bugs across all buggy

programs) and efficient (triggering more faults per test input).

The RBCA method succeeded by leveraging the strength of

covering arrays – i.e., the deliberate use of variable interactions

to force the code to traverse statistically unlikely branches –

together with the ability of random tests to cover the range of

possible values available to the input variables. As is clear from

Fig. 1, RBCA catches all of the program bugs with the same

number of tests as the t=5-way covering array, triggering a fault

for the bug that was unreachable by the equivalence bin values

used in the simple covering array.

 Kolmogorov Complexity-Based Tests

The set of 10,000 low-complexity inputs generated by the

05AB1E golfing language performed very poorly in triggering

the entire range of seeded faults in the 28 TCAS C programs,

finding the bug in just one of the 28 programs. However, by

measure of efficiency (faults triggered per input) they

performed well: 99% of the 10,000 inputs triggered a fault in

the same program. The overall efficiency across the 28

programs is 3.5%, which is better than random tests and

comparable to covering arrays.

The failure of this test approach to trigger faults in more

than one program clearly indicates that it is not useful as a real-

world test methodology. Rather than consider complexity as an

absolute measure of information in the system (the test input),

we found it promising to instead investigate complexity as a

measure of information distance from a starting input. This

approach is consistent with the observation that once a bug is

discovered in a program, other bugs are frequently discovered

using semantically similar inputs [9].

TABLE 6. RBCA TEST RESULTS

t (strength) t=2 t=3 t=4 t=5 t=6

Test Size 37 144 476 1334 3837

Bugs Caught 1 13 21.7 23 28

Test Failures 34 154 505 1420 4135

Total Tests 1036 4032 13328 37352 107436

% Efficiency 3.3 3.8 3.8 3.8 3.8

 Summary of Test Methods

7

 Guided Fuzzing-Based Tests

Formally, relative complexity is the length of the shortest

program that generates a desired string given another string as

input. Hamming distance is an approximation to this relative

complexity, because one such program is the program that

modifies the given string by altering a list of specific locations

(the length of the program is proportional to the length of this

list, i.e., the Hamming distance). There may be shorter

programs, but we know this one exists, so it serves as a bound.

Thus, the Hamming distance approach can be viewed as a kind

of complexity approach, and other extensions are possible. The

technique used here to generate new inputs using the Hamming

algorithm is intended to be automated and used as a guided-

fuzzing tool in future work, which is why we refer to them here

as guided fuzzing-based tests.

A form of covering array can also naturally arise from

enumerating low-complexity inputs. Per the notation in Kuhn

and Okun [21], the system under test has k input variables, each

with v possible values. The total number of possible input

vectors is vk, and the number of bits needed to specify an

arbitrary input is k log v. Assuming we are interested in t-way

interactions with t << k, a naïve (non-optimal) t-way covering

array can be constructed by taking each configuration of values

for each combination of t input variables separately (always

assigning a default value to the other k – t variables). The

number of t-variable subsets is (k choose t), which for t << k

scales with kt. The number of possible inputs for a given set of

t variables is vt. Thus a covering array can be constructed with

size no more than (kv)t. (At the other end, a lower bound on the

size is vt, because this is the minimum number needed to cover

one set of t variables.)

Likewise, in the complexity approach, there exist short

programs that assign values to t variables at a time, starting

from a “seed” input string. They do this with some small, fixed

algorithm of length C, combined with data indicating which t

variables (each of these requires log k bits) and which values

(each of these requires log v bits). Thus, such a generating

program has length (complexity tier) m = C + t log(kv).

Collectively, these programs generate input vectors equivalent

to the naïve t-way covering array. And given that C is small and

t << k, these programs are smaller than the full complexity of

arbitrary inputs: m = C + t log(kv) << k log v. Note that this is a

conservative estimate; a more optimized covering array might

be present in a complexity tier even lower than m.

Seeding a Hamming algorithm with inputs that traversed

low-probability paths through the TCAS code (such as the

DOWNWARD_RA-output-producing inputs) was highly

effective and efficient at triggering the range of seeded bugs in

the test programs. This method also suffers from the same

drawbacks as the covering array-based approach, in that it uses

values from equivalence bins that do not contain the necessary

resolution to find small variable value errors in the code. An

improved approach would draw random values from within the

equivalence bins, similar to RBCA.

The tests generated using the Hamming algorithm were

efficient and effective at catching bugs in the faulty C

programs, as is apparent from the results in Fig. 1, although they

suffered from the same lack of reach as the covering array

inputs because they used the equivalence bin values rather than

the full range of possible values used in RBCA.

The DOWNWARD_RA seeded tests in particular were

extraordinarily effective at triggering faults in all of the C

programs (except for the bug discussed previously that cannot

be reached by the tests because of the choice of equivalence bin

values), especially considering the small test size of 2988

inputs. This test size lies in between the t=5 and t=6-way

RBCA test set sizes, and is smaller than the t=5-way covering

array test set size. Table 7 shows the results of tests using the

Hamming-based input test sets. The three DOWNWARD_RA-

seeded Tier 3 test sets caught 27/28 bugs, while the Tier 3 test

sets that were seeded with UPWARD_RA-generating inputs

caught 22/28 bugs.

These results demonstrate a promising approach to guided

fuzzing based on relative complexity, which we hope to

implement and automate in future research.

ACKNOWLEDGEMENT

The authors would like to thank Richard Kuhn at NIST for

providing the TCAS C module and NuSMV model. We thank

the Johns Hopkins DEI Collective for providing this research

with an outstanding student researcher. Finally, we are grateful

to IDA leadership for supporting our work. Sandia National

Laboratories is a multimission laboratory managed and

operated by National Technology & Engineering Solutions of

Sandia, LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-

NA0003525. This paper describes objective technical results

and analysis. Any subjective views or opinions that might be

expressed in the paper do not necessarily represent the views of

the U.S. Department of Energy or the United States

Government.

V. REFERENCES

[1] P. Baker, "Software bugs found to be cause of Toyota

acceleration death," San Diego Source, 2013.

TABLE 7. HAMMING TEST RESULTS

 Tier 1 Tier 2 Tier 3

Input Seed Used Bugs Caught Bugs Caught Bugs Caught

UPWARD_RA 13 17 22

UPWARD_RA

Tier 1 Output
15 19 22

DOWNWARD_RA 17 22 27

DOWNWARD_RA

Tier 1 Output
19 23 27

DOWNWARD_RA

Tier 1 Output
17 23 27

8

[2] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski and L.

K. Rierson, A practical tutorial on modified

condition/decision coverage, NASA, 2001.

[3] M. Staats, G. Gay, M. Whalen and M. Heimdahl, "On

the danger of coverage directed test case generation," in

Fundamental Approaches to Software Engineering,

Tallinn, Estonia, 2012.

[4] RTCA, Incorporated, "DO-178B, Software

considerations in airborne systems and equipment

certification," 1992.

[5] Wikipedia, "Modified condition/decision coverage,"

[Online]. Available:

https://en.wikipedia.org/wiki/Modified_condition/decision

_coverage. [Accessed April 2022].

[6] A. Murugesan, M. P. Whelan, N. Rungta, O. Tkachuk,

S. Person, M. P. Heimdahl and D. You, "Are we there yet?

Determining the adequacy of formalized requirements and

test suites," in NASA Formal Methods 7th International

Symposium Proceedings, Pasadena, CA, 2015.

[7] M. P. Heimdahl, D. George and R. Weber,

"Specification test coverage adequacy criteria =

specification test generation inadequacy criteria?," in IEEE

Symposium on High Assurance Systems Engineering,

Tampa, FL, 2004.

[8] A. Murugesan, M. W. Whalen, N. Rungta, O. Tkachuk,

S. Person, M. P. Heimdahl and D. You, "Are We There

Yet? Determining the Adequacy of Formalized

Requirements and Test Suits," in NASA Formal Methods

Symposium, Pasadena, CA, 2015.

[9] J. R. Mayo and R. C. Armstrong, "Tradeoffs in targeted

fuzzing of cyber systems by defenders and attackers," in

Proceedings of the Seventh Annual Workshop on Cyber

Security and Information Intelligence Research, Oak

Ridge, TN, 2011.

[10] RTCA, Incorporated and EUROCAE, "DO-178C,

Software considerations in airborne systems and equipment

certification," 2012.

[11] K. Fisher, J. Launchbury and R. Richards, "The

HACMS program: using formal methods to eliminate

exploitable bugs," Philosophical Transactions of the Royal

Society A: Mathematical and Engineering Sciences, vol.

375, no. 2104, p. 20150401, 2017.

[12] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M.

Brooker and M. Deardeuff, "How Amazon web services

uses formal methods," Communications of the ACM, vol.

58, no. 4, p. 66, 2015.

[13] P. Ammann and P. E. Black, "Abstracting formal

specifications to generate software tests via model

checking," in Gateway to the New Millennium: 18th IEEE

Digital Avionics Systems Conference, St. Louis, MO, 1999.

[14] A. Gargantini and C. Heitmeyer, "Using model

checking to generate tests from requirements

specifications," in 7th European Software Engineering

Conference/7th ACM SIGSOFT Symposium, Amsterdam,

1999.

[15] S. Rayadurgam and M. P. Heimdahl, "Coverage based

test case generation using model checkers," in Eighth

Annual IEEE International Conference and Workshop on

the Engineering of Computer-Based Sytems, Washington

D.C., 2001.

[16] D. C. Montgomery, Design and analysis of

experiments, New York: Wiley, 1984.

[17] P. Ammann and J. Offutt, Introduction to Software

Testing, Cambridge: Cambridge University Press, 2016.

[18] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C.

Patton, "The AETG system: an approach to testing based

on combinatorial design," IEEE Transactions on Software

Engineering, vol. 23, no. 7, pp. 437-444, 1997.

[19] M. Zalewski, "American fuzzy lop," Github, [Online].

Available: https://github.com/google/AFL. [Accessed

April 2022].

[20] P. Ohlert, "Violating assumptions with fuzzing," IEEE

Security & Privacy, vol. 3, no. 2, pp. 58-62, 2005.

[21] D. R. Kuhn and V. Okun, "Pseudo-exhaustive testing

for software," in 30th Annual IEEE/NASA Software

Engineering Workshop, Columbia, MD, 2006.

[22] M. Staats, "On the Danger of Coverage Directed Test

Case Generation".

[23] M. Li and P. M. B. Vitanyi, "Kolmogorov complexity

and its applications," in Handbook of Theoretical Computer

Science (Vol. A), Cambridge, MA, MIT Press, 1991, pp.

187-254.

[24] Adriandmen, "05AB1E: A Concise Stack-Based

Golfing Language," [Online]. Available:

https://github.com/Adriandmen/05AB1E.

[25] M. Zalewski, "American Fuzzy Lop," GitHub.

[26] M. Bohme, M. D. Nuguyen, V. T. Pham and A.

Roychoudhury, "Directed greybox fuzzing," in CCS '17:

Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, Dallas, TX,

2017.

