This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Comparative Analysis of State and Parameter
Estimation Techniques for Power
System Frequency Dynamics

Bidur Poudel’, Pooja Aslami, Tara Aryal, Niranjan Bhujel, Astha Rai, Manisha Rauniyar,
Hossein Moradi Rekabdarkolaee, Ujjwol Tamrakar, Timothy M. Hansen, and Reinaldo Tonkoski

Abstract—Dynamic state and parameter estimation in current
and future power systems are critical for advanced monitoring,
control, and protection. There are numerous methods to perform
dynamic state and parameter estimation; this paper compares the
accuracy and computational time of four methods (i.e., Kalman
filter (KF), extended Kalman filter (EKF), unscented Kalman
filter (UKF), and moving horizon estimation (MHE)) designed
to estimate the states and parameters for frequency dynamics of
a power system. A simulation study was conducted using Mat-
lab/Simulink by introducing Gaussian and non-Gaussian noise in
the measurements. Results under Gaussian noise showed similar
accuracy performance for all filters. EKF and UKF presented
convergence or numerical instability issues due to incorrect
initial guesses of parameters. MHE did not present convergence
issues, however, required comparatively higher computation time.
Nonetheless, the MHE could still be implemented in real-time for
state and parameter estimation of power system. The impact of
non-Gaussian noise on the methods was inconclusive and will
require further study.

Index Terms—Computational tractability, extended Kalman
filter, Kalman filter, moving horizon estimation, state and pa-
rameter estimation, unscented Kalman filter.

I. INTRODUCTION

With a significant increase in distributed energy resources
(DER) in power systems and advanced control structures, the
grid is becoming more dynamic. Thus, to adaptively adjust
the control and operation of such power systems, methods
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that accurately measure the time-varying power system states
and parameters are required. Due to the lack of accurate and
computationally efficient models, the increasing availability
of fast-sampled, time-synchronized measurements, and the
advances in the capability, scalability, and affordability of
computing and communications, dynamic state and parameter
estimation is becoming increasingly critical for enabling ad-
vanced monitoring, control, and protection of electric power
grids [1].

Fast frequency support (i.e., frequency support acting before
primary frequency response) is a critical service to the grid that
requires accurate and timely measurements. Energy storage
systems (ESS) or other DERs can be used to provide fast
frequency support. However, it requires dynamic state esti-
mators due to the characteristics of frequency measurements
required for the controller implementation. Moreover, during
estimation, the system can be perturbed using an excitation
signal, which is generated from ESS and whose suitability
depends on the topology of ESS. Sensor data can be noisy,
and low-pass filters can introduce relatively large delays in
the measurement leading to degradation of the control and
monitoring process that can lead to instability [2]. In addition
to states, parameters of the system may also need to be
estimated for implementing predictive control architectures.
Because of changes in operating points, configurations, aging,
etc., system parameters can change frequently over time and
need to be monitored (e.g., system inertia constant changes
based on dispatch of generation).

Several filters have been proposed for state and param-
eter estimation, including the least square estimator (LSE),
weighted least square estimator (WLSE), Kalman filter (KF),
extended Kalman filter (EKF), unscented Kalman filter (UKF),
particle filter (PF), moving horizon estimation (MHE), etc.
In [3], the strengths and limitations of these filters, except
MHE, along with their applications, have been discussed.
However, the given strengths and limitations were based on
literature without implementing filters in any system. An MHE
approach was proposed in [2] for the estimation of change in
frequency, rate-of-change-of-frequency (ROCOF), inertia con-
stant, and damping constant to provide fast frequency dynamic
support for a microgrid benchmark. Performance comparison
of EKF, UKF, PF, and enhanced unscented Kalman filter (E-
UKEF) based on accuracy, efficiency, and speed was carried out
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in [4], [5]. The paper, however, focused on the estimation of
system states and did not include parameter estimation.

The implementation of filters varies depending on the appli-
cation domain, timescale requirements, and system complex-
ity. For fast frequency support, accurate filters that provide
fast estimates are required. This paper first summarizes the
design criteria, then evaluates the characteristics, accuracy,
and computation time requirement of KF, EKF, UKF, and
MHE for both state and parameter estimation for the frequency
dynamics of a microgrid.

The paper is organized as follows: Section II explains
the filtering algorithms and design criteria. The frequency
dynamics model, simulation setup, and parameter selection
for implementing the filters are described in Section III. In
Section 1V, different filters are compared based on computation
time and accuracy using different error metrics. Finally, the
conclusions are presented in Section V.

II. STATE AND PARAMETER ESTIMATION TECHNIQUES
AND THEIR DESIGN CRITERIA

Due to the underlying application domain of power system
frequency dynamics, this paper focuses on dynamic filters for
state and parameter estimation in the presence of noisy mea-
surements. To implement the estimators for a given dynamic
system, different design criteria need to be carefully addressed.
This section will first explain common design criteria among
all estimators, and then discuss individual criteria of four
dynamic filters: KF, EKF, UKF, and MHE.

A. Common Design Criteria of Filters

The common design criteria of the four estimators (filters)
presented in this paper are the sampling time (7%), and the
process and measurement noise (wy, and vy, respectively). The
sampling time (discrete rate of data measurement) should be
selected based on the time constants of the system dynamics.
The time constants can be calculated as the eigenvalues of
the state matrix, A, and 7, should be chosen to be 10-20x
smaller than the system time constant [6].

Each of the filters uses a prediction model and measure-
ments to infer the system state, both have a corresponding
noise. Let n, and n, be the number of states and measure-
ments, respectively. Process noise (wj € R™#) is the error
between the actual system and prediction model used in the
estimator, and measurement noise (v € R™) is the error
between the true value and measured data. The filters weight
their impact on the estimate based on the covariance of the
noise. For a system with n, states and n, measurements, let
Q € R"%*"= and R € R™*™ be the covariance matrices
of process and measurement noise, respectively. In this paper,
the noise distributions are assumed to be known, hence Q and
R are directly calculable. If these are unknown/unable to be
characterized, an autocovariance least-square approach can be
used to determine Q and R [7].

Additionally, observability analysis should be performed
to provide guidelines for measurement selection [8] and to
determine if there is a solution to the estimation problem.

Each of the filters in this paper will use an excitation signal
to perturb the system, which has a significant impact on filter
performance, but the design of these signals is not considered
in this work. For a discussion on the design of excitation
signals, the reader is directed towards [9].

B. Kalman Filter Design

The KF family (KF, UKF, EKF in this paper) of state
estimators are proven optimal assuming Gaussian noise char-
acteristics; depending on the noise distribution, they may fail
if the noise is non-Gaussian. Other than design parameters
mentioned in the previous section, KF-type estimators also
require an initial guess of states and covariance. The closer
the initial guess to the true value, the faster KF converges and
vice-versa. After the estimator initially converges, the error
in the initial guess has no impact on estimation afterward. If
a poor initial guess is taken, the filters may diverge; domain
knowledge can be used to specify the initial guess (e.g., flat
start in power flow).

In KF-type estimators, model parameters to be estimated
are also treated as states, the dynamics of which are constant,
and are simultaneously estimated with the states [10]. In
general, when parameters are also considered, the estimation
problem becomes non-linear and the traditional KF is no
longer applicable. For the UKF and EKF, a parameter noise
term is added (process noise for parameters as a state) to
account for variation in the parameters [10].

1) Kalman Filter: KF, also called linear quadratic estimat-
ing filter, is only applicable for linear systems. It is shown to be
optimal if the noise is Gaussian noise, but it can only estimate
the system state. Consider the discretized linear system and
measurement model with n,, inputs as below [11]:

Xp = Agxp—1+Baup_1 +wi_1 (D
i = Caxp + vi 2

where at discrete time instant k, x; € R™= is the system
state, u;, € R™ is the input, y; € R™ is the measurement,
and Ay € R By € R"™*" and Cy; € R"™wX"e
are the discretized state, input, and measurement matrices,
respectively.

The KF operates recursively, i.e., it combines estimates
from the previous discrete-time with a prediction model and
current discrete-time measurement to provide the estimate at
the current discrete-time. The process consists of two steps: the
prediction step and the update step. In the prediction step, the
states and their respective covariance (which are estimated at
the previous discrete time instant) are passed through the state
equation to compute the prior states and their covariance [12].
This occurs in the following two equations:

X, = AgXp_1 +Bgug_; 3)
Py =AP1A] +Q )

where at discrete time instant & (and k£ — 1 indicates the previ-
ous timestep/estimate), X;_1 and P _; represent the previous
estimated states and their covariance matrices, respectively,



and %, and P, are the prior estimate of states and their
covariance matrices, respectively.

In the update step, these prior states and their covariances
are combined with the measurement to calculate the Kalman
gain (Kj). Using the Kalman gain, the posterior states and
their covariance are calculated:

K, =P, Cj(C,P C] +R)™* (5)
%, =%, +Kp(yr — Caky) (6)
P, = (I-K,Cy)P; (7

where I is a unit identity matrix, and X; and f’k are the
estimate of posterior state and their covariance matrices,
respectively. Because the Kalman filter is based on a Bayesian
framework, which is a recursive process, the posterior states
and their covariance are used as the prior time step states and
covariance for the next step.

2) Extended Kalman Filter: Many practical system domain
applications are non-linear resulting in the need for the EKF,
which is applicable for both linear and non-linear systems [12].
Consider a discretized non-linear system and measurement
model as below:

X = fpo1(Xp—1, Up—1) + Wit )
Yi = hp(xz) + vi 9

where at discrete time k, f;, is the state function, and h; is
measurement function. The steps for the EKF are similar to
the KF, with the additional approximate linearization of the
non-linear system around a nominal state trajectory for the
estimation by computing the Jacobian matrices for the state
and measurement, A ;1) € R">*"= and Cy,) € R" "=,
respectively:

Ohy,

Ofgk—1
Agk—1) = # and Cy) = Ix (10)

Xkp—1,Uk—1 Xk

The prediction step in (3)—(4) and the update step in (5)—
(7) are then updated with A 4,1y and Cy(y) for Ay and Cyg,
respectively, to complete the EKF. As it is needed for the UKF
in the next subsection, the state equation for EKF is provided
below:

(1)

3) Unscented Kalman Filter (UKF): EKF introduces a
substantial error in the true posterior mean and covariance of
the state transition and observation model, resulting in poor
performance and, in certain cases, the filter diverging from
the correct result [13]. UKF can be implemented in such
a scenario, using a deterministic sampling approach called
unscented transformation (UT) to address problems incorpo-
rated by EKF. Rather than taking the entire function, UKF
conducts point-to-point transformation using sigma points,
which are taken around the mean and propagated through the
non-linear function by multiplying with certain weights. The
transformed sigma points precisely capture the posterior mean
and covariance to the third-order (Taylor series expansion) for

Xy = Age—1Xk-1+ Baug—1

any non-linearity [13]. The accuracy of this technique depends
on the weight assigned to each sigma point. So, an initial
guess value of weight for each sigma point needs to be taken
carefully before implementing UKF.

Let () represent the 7™ column of a matrix, and (X,_,)
€ R *(2ne+1) represent the matrices of sigma points. Then
generate 2n, + 1 sigma points from Xj;_1 as below [10], [13]:

Re_1 fori =10

Rp—1 + (\/TPU2 )

,5,1 = fori=1,2,...,n

N (i—ng)
X1 — (\/oﬂ(nm + H)Pllc/_Ql)

fori=n;+1,n,+2,.....2n;

where « and k are the parameters that determine the spread
of sigma points around the mean value.

Now, transfer these sigma point through (11) to obtain
modified sigma points X € R *2n=+1) for estimating prior
states and its covariance matrix as:

RO = (B g ), for i=0,1,..,2n, (12)

The prediction step from the prior KF type estimators is
then replaced as:

2N
2=y w®al (13)
=0
2N, ) e
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=0
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. 1— e for i =0
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m for ¢ = 1,2, ,271@
(16)

In the above equations, /3 is the parameter to incorporate
prior knowledge of the distribution of the state. For a
Gaussian distribution, S=2 is optimal, and w(z) and w(z)
the constant weights for calculation of mean and covariance,
respectively [13].

Generate 2n, + 1 new sigma points X, € R"»*(27=+1) from
X, following the same procedure of generating sigma points
as mentioned above. Propagate those sigma points through the
measurement model below:

Y =hy(2Y) for i=0,1,...,2n, (17)
Compute prior mean (rn, ) € R™ and prior covariance
(S,) € R™*™ of the measurement, and then cross-



covariance of states and measurement (Z,) € R™*"v as
below:

2ng
P i) vy(%)
my, = w)y,
=0
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(18)
19)

(20)

The update step is replaced with:
K, = Zkglzl
X =X, + Ki(yr — i)
P, =P, - KiSi K/

21
(22)
(23)

C. Moving Horizon Estimation

UKEF also can suffer from numerical instability [3], and KF,
EKF, and UKF might fail in a system with non-Gaussian
noise. MHE is introduced here, which can estimate both
states and parameters at the current sampling time even in
the presence of non-Gaussian measurement noise. MHE is an
online optimization approach that leverages past measurement
data over a finite horizon to estimate the states and parameters
at the current time-step by minimizing a cost function while
satisfying the constraints imposed on the states and parameters.
The accuracy of MHE depends on the horizon window. If the
horizon window is large then accuracy will, in general, be
higher, but the computational cost increases, and vice-versa.
There exists a trade-off in the accuracy and computation cost
while implementing MHE, and can be implemented as per
the underlying domain/control requirements. As MHE uses
an iterative solver, an initial guess of states and parameters
are required. Additionally, using domain knowledge, an appro-
priate range of parameter values should be imposed as con-
straints during estimation. States and parameters are estimated
separately during estimation from MHE, unlike EKF/UKF.
Let © € R"» be the n, parameters to be estimated. Now,
considering a discretized non-linear system and measurement
model as below:

(24a)
(24b)

X = fp_1(Xp—1,0%-1,0) + Wi_1
Yi = hp(xx, 0) + vy,

Let L be the backward length of window horizon, g be the
discrete instant at present, and H be the set of discrete time in-
stants represented by {¢ — L+ 1,¢ — L+ 2, ...,q}. The MHE
can be formulated by two techniques: Bayesian updating
of conditional probability, or minimization of defined cost
function [14]. Although these two techniques are equivalent,
as presented in [15], it is difficult to implement Bayesian
updating of conditional probability techniques in MHE due
to constraints on the estimation and non-linearity of the
system. Therefore, minimization of a defined cost function is
implemented, taking the following form:

— 12
XL — XL +

0-6.y,

q q—1

> lye — h(xx, ©)[15 + >

min JL:<

Xk,@

2
||wkw)

k=q—L+1 k=q—L+1
(25a)
subject to
X = f(Xk_l, Ux_1, @) +wi_1 VkeH-— {q}
(25b)
®min < ) < G)maw (250)

where ©,,,;, and ©,,,,. denotes the minimum and maximum
possible values of parameters, respectively, and J;, represents
the cost function to be minimized. In the cost function, xy,, X1,
and O, represent the current states, previous estimated states,
and previous estimated parameters at time k = g — L, respec-
tively. Here, 1% term of (25a) represents the arrival cost which
makes the use of previous instant estimated states, parameters,
and their covariance matrix (similar to KF). Adding arrival
cost gives a better estimate even with small horizon window
and makes estimates at each sample instant better. This helps
in achieving increasing certainty in states and parameter es-
timation at each sample instant, and thus, their weight also
increases which implies that the weight of arrival cost at each
sample-instant get changed. So, for updating weight, different
methods are employed which can be found in the literature
[16] [17]. Moreover, V, = diag(VE, VE)~1, the diagonal
matrix having state (V{§) and parameter covariance matrix
(VE),V = R~! and W = Q~!. Here, we adopt the notation
from [15] where ||a||% = a Aa is the square of norm of vector
a with respect to matrix A. Similarly, 2" and 3 term of
(25a) are the residual of the process and measurement noise
respectively. Equation (25b) represents the discretized model
of the system, and (25¢) represents parameter limits throughout
the horizon window.

III. PROCEDURE TO EVALUATE STATE AND PARAMETER
ESTIMATORS

Each filter mentioned in the previous section was designed
to estimate states, and parameters (except for KF). In this
section, we model the frequency dynamics of a microgrid,
including the states, i.e., change in rotor angle (AJ), change
in frequency (Aw), and ROCOF (Aw), and parameters,
i.e., damping constant (D) and inertia constant (M). The
filtering method design criteria are applied to a simulation
environment in Matlab/Simulink for estimator comparison.
The incorporated system’s frequency dynamic model, methods
for comparing the performance of different filters, simulation
setup, and parameter selection for design and implementation
of the four filters are discussed in this section. The filters will
be compared based on accuracy and computation time.

A. Frequency Dynamics Model

The state-space representation of the linearized frequency
dynamics of a power system [18] is given below:

Ax = AAx + BAu (26)



where

)
Ax = |Aw]| , Au = [AP,]
Al
and,
0 1 0
A= 0 0 1
K; D 1 D 1
~ut, (it mdm) (B4 4)
0
B = 0
1
MTy

where, R,, Ty, AP, and K; are the speed-regulation droop
constant, time constant of turbine governor, change in elec-
trical power, and secondary control loop integral gain respec-
tively.

B. Methods for Performance Comparison

The filters will be compared based on accuracy and com-
putation time. The system state is time-varying in nature. To
compute the filter error, the maximum and minimum values of
the states at a given time instant should be considered. For this
study, we use the normalized root mean square error (NRMSE)
to calculate the error, given as:

9(t) — y(®)l
VN (max(3(t)) — min(3(1)))

NRMSE = x 100%

where, ||.||, represents Euclidean norm, y(t) is the actual value
of states, §j(t) is the estimated value of states and N is the
number of data point considered.

Because the parameters are (assumed) constant and time-
independent, the root mean square error (RMSE) is used to
calculate parameter estimation error, given as:

lly(t) — mean(g(t)) |l

VN (mean (5(1)))

Note that although we are not changing the parameters
through time in this study, the MHE has been shown to track
these time-varying changes in [18]. Each of the filters is also
monitored for computation time, reported as the average time
the filtering step takes per time-step of the simulation.

RMSE = x 100%

C. Simulation Setup, Parameters Selection and Filter Imple-
mentation

The simulation setup to carry out the state and parameter es-
timation of the above system frequency dynamics model using
different filters is shown in Fig. 1. The power system model
and each of the filters was developed in Matlab/Simulink and
simulated on an Opal-RT real-time simulator located at South
Dakota State University. The simulation parameters are listed
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Fig. 1. Simulation setup for state and parameter estimation using different

estimation filters. This model was setup in Matlab/Simulink and deployed on
an Opal-RT real-time simulator.

TABLE I

SUMMARY OF SIMULATION PARAMETERS
Parameter Values
Inertia Constant (M) 4s
Damping Coefficient (D) 1.50%
Speed Regulation Droop (Rp) 5%
Turbine-Governor Time Constant (T) 0.2s
Integral Gain (K;) 2.0
Sample time (7%s) 0.02s

in Table I. The time constant (7) of the frequency dynamics
model represented by (26) is given as [19]:

T= _2MT, (27)
M + DTy
In (27), M, D and T are assumed values that can be noted
from Table I; (7) is then chosen to be 20 times smaller than
the value of the time constant (as described in Section II-A),
and hence a 0.02 s sample time is obtained.

As Aw can be measured from a Phase Locked Loop (PLL),
it is considered a measurable state variable. Additionally, Aw
is sufficient to make the correct estimation of other states
and parameters; this insight was obtained by performing an
observability analysis of the system [14].

To check the performance of filters under noisy condition,
random noise (vi) was added to the measured Aw signal
which resulted in a signal-to-noise ratio (SNR) of 55 dB [18].
Thus, the measurement noise covariance R is designed as-
suming the SNR is known (SNRgg = 20log (%) [20] from
which R = ¢2), which would correspond to a covariance
of ~ 1075, Additionally, the process noise covariance matrix
Q = diag(Qas, Qrw, @aw, @p, @ar) associated with the
states and parameters [Ad, Aw, Aw, D, M| was designed as
follows: because the expected process noise can be considered
relatively small compared to the measurement noise, QA
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Fig. 2. Estimation of states using different filters. First (a-d), second (e-h) and third row (i-1) represent estimation Ad, Aw, Aw respectively. First, second,

third and fourth column are for KF, EKF, UKF and MHE respectively. Note: Aw is the only measured state (shaded gray envelope).

was assumed to be 100 times smaller than R. The other
terms were obtained by multiplying Qa. to the respective
state and parameter sensitivity to variations on Aw. Thus,
Q = diag(0.5 x 1078,1078,5 x 1078,107%,1073).

For the MHE implementation, the horizon length of MHE
chosen followed the rule of thumb of twice the order of the
system [16]. Since we are estimating three states (Ad, Aw,
and Ad)) and two parameter (D and M) (5" order system),
the horizon length taken was 10. The weights for MHE (V
and W) were chosen as the R™! and Q !, respectively [15].
In addition, an EKF based on deterministic sampling was used
to update the arrival cost function of MHE.

To perturb the system, three different types of excitation
signals were used and analyzed, emulating an ESS actively
exciting the system to estimate parameters and states. First, a
square wave in the form of a pulse train having an amplitude
of 0.2 p.u. and frequency 0.5 Hz was used. Next, a chirp signal
having an amplitude of 0.2 p.u. and frequency ranging from
0.1 Hz to 0.5 Hz was used. The selected frequency range lies
in the frequency band of interest corresponding to the normal
inertia constant range [21], [22]. Finally, a square chirp signal
having the same amplitude and frequency range as that of
a chirp signal was used. The error in estimation was found
to be minimum with square chirp signal, so that signal was
considered as the excitation signal for making comparative
analysis of different filters in all results.

Using the measured noisy Aw and square chirp signal as
an input to the different filters, state and parameter estimation
of the simplified frequency dynamic model was conducted.
Because KF can only estimate the states of a linear system,
the parameters M and D are considered as known constants,
and only states AJ, Aw, and Aw were estimated. The initial

condition for all states were selected as (0, 0, 0), because using
domain knowledge the change in all the states was expected
to be ideally zero. During the implementation of EKF and
UKF, D and M were incorporated as state variables and their
derivatives were set to zero and estimated along with (Ad, Aw
and Aw). For these two filters, the initial condition for states
and parameters were taken as (0, 0, 0, 2, 2) following the order
of Ad, Aw, Aw, M, and D. In the case of MHE, the states
and parameters were estimated separately by using a CasADi
open-source tool. For MHE, the initial guess values were also
taken as (0, 0, 0, 2, 2) following the same order as in EKF and
UKEF. The four filters were implemented in the OP5707 Opal-
RT real-time digital simulator, with specifications shown in
Table II. After developing the model in MATLAB/Simulink,
the model was divided into three different subsystems (i.e.,
master, slave, console) in RT-lab. The master subsystem con-
tains the frequency dynamics of the system, the slave contains
the filters, and the measurements were visually observed in
the console subsystem. For the MHE implementation in the
real-time simulator, grgp solver was used in our experiment.
First, the optimization problem was formulated using CasADi,
and a solver instance was created. C code was generated for
the solver instance which was interfaced to Simulink via the
S-function builder. In RT-Lab, the generated C code was added
(which will be compiled by RT-Lab). After implementing
in RT-Lab, the model was run in OP5707. The files that
are necessary to run the S-function (CasADi generated code,
interface code and S-function generated wrapper files) should
be uploaded in the file properties. Then the model was built,
loaded, and executed. The simulation was carried out for 200
s for each of the filters, which was a sufficient time frame
for making a comparative analysis as each of the estimators



converged around a steady-state value. !

TABLE 11
SPECIFICATION OF OP5707 REAL-TIME SIMULATOR.
Item Description
Intel® Xeon® CPU
Processor

E5-2698 v3 (i686) @2.30GHz
Red Hat Enterprise
Linux Server release 5.2(Tikanga)

Operating System

Compiler opicc/opicpe 11.1
Cache size 40.96MB

Activated core for real-time 6
simulation

IV. RESULTS AND ANALYSIS

The estimation of Ad, Aw, Aw, under the influence of Gaus-
sian noise, using different filters are presented in Figs. 2(a-d),
Figs. 2(e-h), and Figs. 2 (i-1), respectively (i.e., each row).
Each column of Fig. 2 shows the results of one of the filters.
All states estimated approximately track the true states for all
filters.

The NRMSE between the estimated states and the true states
for the different filters is listed in Table III. The NRMSE in
AJ is consistently higher for all filters compared with Aw
and Aw. This can be attributed to the design of the Q and
R matrices, that could be further adjusted to prioritize the
state estimation (model fit) to minimize the error of a certain
state/parameter as compared to others.

TABLE III
COMPARISON OF NRMSE, RMSE AND COMPUTATION TIME OF KF, EKF,
UKF AND MHE

Filters NRMSE (%) Computational RMSE (%)

Ao Aw Aw Time (us) D M

KF 6.152 | 3.247 | 2.019 0.95 - -
EKF 6.326 | 4.054 | 1.968 1.22 3.031 | 0.319
UKF 5930 | 3.863 | 1.871 1.94 2945 | 0318
MHE | 5.689 | 3.972 | 1.881 209.52 2913 | 0.320

The estimated M and D parameters while using EKEF,

UKF and MHE are depicted as a probability density plot in
Fig. 3 taken as the kernel density estimate of the discrete-time
estimates. Each of the three filters estimated the parameters
accurately, with the mean approximately the true value. How-
ever, the accuracy of estimation varies slightly depending on
the type of filter. It can also be noted from Table III that error
in D is comparatively higher as compared to M for every
filter because D does not have a significant influence on the
frequency dynamics; the estimation of D while considering a
frequency dynamics system will have greater uncertainty [14].

The computation time required for each of the different
filters is listed in Table III.The function “clock_gettime()” of
“time.h” header file is used to compute the time required to
execute each filter for one time step. MHE required compara-
tively higher computation time for estimation compared to the

IThe code and models to run the state estimation framework are available
as open source at: https://github.com/TaraAryal/All_Estimation_Filters/tree/
Filters_Design_Simulink.

single-step recursive filters, however, it is fast enough for real-
time state and parameter estimation of power system frequency
dynamics. It has been noted that each filter yields a reasonable
state and parameter (sans KF) estimation. However, it is
important to report that the initial guess value of parameters
played an important role in the convergence of EKF. The EKF
filters diverged when the initial guess value of D and M were
taken far from the true value (e.g., 0.1 and 0.1) from its true
value (1.5, 4), but the filters provided accurate estimates when
initial guess (2, 2) was closer to their true value. Additionally,
the method of updating the weights of sigma points plays an
important role in numerical stability of UKF. Based on the
underling system, if a correct method is not chosen to update
weights, then UKF may have instability issues depending on
initial guess values. In contrast, MHE estimates the states
and parameters without depending on initial guess values of
parameters.
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Fig. 3. Estimation of parameters using different filters. First (a-c) and

second (d-f) column represents estimation of inertia and damping constant
respectively. First, second and third row are for EKF, UKF, MHE respectively.

A. Discussion on Non-Gaussian Noise

The distribution of v}, is time-variant and deteriorates with
the current transformers, potential transformers, and change
in communication channels implemented in the system [23].
Thus, non-Gaussian noise was also incorporated to compare
the filter performance. The skewness and kurtosis metrics
were used to characterize the noise deviation from a Gaussian
distribution. Simulation was carried out for non-Gaussian
noise with mean = 0, R = 107% (same as Gaussian noise),
and kurtosis = 7 [18] at different values of skewness starting



from O to 2.4. When the skewness was increased above this
value, there is no distribution that could produce a non-
Gaussian distribution that met the specified mean, covariance,
and kurtosis. Due to space limitations, a rigorous study on
estimation of states and parameters from different filters under
different non-Gaussian noise conditions is left for future work.
However, the results shows that KF family, while no longer
provably optimal, still performed as similar as MHE under
the non-Gaussian noise conditions studied. Furthermore, there
were several skewness values (i.e., 1, 1.5, 1.75) where UKF
failed to estimate; the cause for this is thought to be due
to UKF’s inherent instability. Our initial analysis was non-
exhaustive, and conclusive statements about the KF family
versus MHE under non-Gaussian noise cannot yet be made for
power system frequency dynamics. Because the non-Gaussian
noise covariance can be considered quite small, our initial
results did not follow what has typically been reported in the
literature (e.g., [24]).

V. CONCLUSIONS

This paper compared four different power system frequency
dynamics state and parameter estimation methods. All filters
provided acceptable estimates in terms of accuracy for states,
and EKF, UKF and MHE also properly estimated parameters.
EKF presented convergence issues depending on the initial
guess of parameters, whereas UKF faced numerical insta-
bility at certain initial guesses. MHE neither showed such
convergence issues nor numerical instability due to initial
guess during estimation, but required higher computation time,
however, it is fast enough for real-time applications. Thus, if
only states of the system are to be estimated then, KF can be
employed. Similarly, if the expected value of parameters are
within a narrow range, EKF and UKF might be satisfactorily
employed for state/parameter estimation for fast frequency
response. If the computation time of MHE is fast enough for
the domain application, it can be considered a better option
as it does not suffer from convergence issues due to initial
guesses. The preliminary comparative analysis under certain
non-Gaussian noise with small covariance showed KF family
performed as similar as MHE. However, there was not enough
evidence to support the results to fully conclude under those
overall noise characteristics. The effect of non-Gaussian noise
with large covariance or multi-modes was not evaluated and
is part of our future work.
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