
Excep t i ona l   se r v i ce   i n   t he   na t i ona l   i n t e r es t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering 
Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National 
Nuclear Security Administration under contract DE-NA0003525.

Multi-repository changeset 
testing with GitLab and 
Jenkins

Matthew Mosby & SIERRA/DevOps team

ASC S3C, ALBUQUERQUE, NM & VIRTUAL

May 24-26, 2022

SAND2022-6464CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



2

Acknowledgements: The SIERRA/DevOps Team

Matt Mosby

Sam Browne Mark Hamilton Jake Healy

Mario LoPrinzi Tony Nguyen Jon Sykora



3

Many Continuous Integration/Continuous Delivery 
solutions exist

ASC is all-in on GitLab repository hosting and is 
expanding CI/CD capabilities

• GitLab/Jakamar runners

• Extensive containerization efforts

Many out-of-the-box solutions tailored for single 
repository workflows

Build  Test  Integrate: Only three steps – easy right?

CI/CD workflows coordinating changes across 
multiple repos requires custom infrastructure

gitlab.com



4

Multiple repositories protect need to know, but 
treated as a monolith

• Tight dependencies require coordinated testing 
across repositories

• Changes in repo A may cause failures in 
products contained in repo B

Large repo sizes require maintenance of on-disk 
assets

~50 active developers  ~20 integrations/day

SIERRA architecture & dev process poses a challenge

tests
base

toolset
SPP



5

Hourly builds with automated emails to authors of 
new changes with failed tests

• Slow turnaround of results

• Ambiguous ownership led to widespread 
filtering (deletion) of automated emails

Grassroots development of changeset testing 
using Gerrit code review framework

• Only supported testing in base repo

• Ambiguous process ownership/support

• Limited reporting capability – no artifacts

Past attempts at “CI” in SIERRA

Prototype Gerrit “CI” proved value to SIERRA and need for more robust & supported capability

intel-release
gcc-release
gcc-debug
nvidia-release

Gerrit code review Jenkins automation

Parallel build/test jobs
Report job status & 

failed tests



6

SIERRA moved to GitLab from self-hosted git 
server during FY22

• Retirement of machine hosting SIERRA 
repositories

• One less thing to manage on the team

• Opportunity to integrate git hosting with code 
review and CI workflows

Simultaneously moved to a Merge Request 
workflow requiring branching

Migration to GitLab – Don’t discount workflow inertia!

We realized our dev community was unfamiliar with branching workflows!

SIERRA historical 
git history (linear)

Semi-linear 
history

Non-linear 
history

Reduced risk to productivity by first migrating repositories with less activity to build familiarity
(not covered by Gerrit CI anyhow – no gap in testing)



7

Goals of the system:

• Test associated changes from all repositories

• Minimize introduction of defects

• Min turnaround time / Max throughput

• Report build/test results consistently with 
nightly processes

Branch-based multi-repo testing with GitLab & Jenkins

Merge Request

CDash
Resolve checkout
Assign tests
Build for tests
Run tests

gcc-release

gcc-debug

intel-release

nvidia-release

Trigger

Parallel pipeline
Report

Process Overview



8

The CI Testing Process

Checkout Resolution
Test Assignment
Build
Test



9

Checkout source branch with fallback to target 
branch in each repository

Opened gap in testing where changes integrated 
to target branch not considered

• “Spurious” failures degraded trust in process

• Exacerbated by multi-repo workflow

Now use intermediate merge commit on 
temporary CI branch

Repositories with no source branch still create a 
temporary CI branch

Checkout resolution
Branch 
testing

 – tested commit

Po
te
nt
ia
l t
es
tin
g 
ga
p

Integration 
testing

sr
c

ta
rg
et

ta
rg
et

sr
c

ci
/…

Temporary CI branch is pushed to repositories for developer reproducibility



10

SIERRA is huge

• ~700 developer build executable targets

• ~20k regression tests

What tests to assign for isolated changes?

What executables need to be built to run tests?

How do we build those executables quickly?

How do we efficiently turn around testing?

CI build/test performance



11

BRUCE is a backronym for Basic Reverse Unittest 
Coverage Evaluator

Run full test suite with code coverage enabled

Build relational database mapping files to tests 
that cover them

Use ‘git whatchanged’ to query database for which 
tests to assign

Also assign any modified tests

Modifying a unit tester now only assigns the unit 
test rather than ~20k tests

BRUCE – Assign tests based on what code changed

BRUCE + changed tests assignment results in minimum tests to run and targets to build

Tests Coverage per test

Changed files BRUCE DB Assigned tests



12

Full build of SIERRA from scratch takes ~3-4 hrs 
(gcc, using 36 cores)

Only build targets used in assigned tests

Have a bespoke jam-based build system with 
sketchy incremental builds

• Fine for developers – not robust enough for 
automated processes

Performant builds via caching and parallelism

• Spack TPL builds cache & ccache for apps

• Large (36+ core) build machines

Build performance – cache is king!

 https://xkcd.com/303/

https://www.methodpark.de/blog/the-c-c-developers-guide-to-
avoiding-office-swordfights-part-1-ccache/  

With caching, builds typically less <1hr – also using ccache in CI  in high hit rate for devs

https://xkcd.com/303/
https://www.methodpark.de/blog/the-c-c-developers-guide-to-avoiding-office-swordfights-part-1-ccache/
https://www.methodpark.de/blog/the-c-c-developers-guide-to-avoiding-office-swordfights-part-1-ccache/


13

Lots of SIERRA devs with beefy workstations

Dev opt-in to create a Beowulf cluster/pool

Custom test harness dispatches tests to cluster

• Short per-test time limit (5 min)

• 90 min overall time limit

Re-run failed/remaining tests locally

• Resolves intermittent network issues

• 20 min/test time limit to catch timeouts

Test performance – scale baby scale!

Maximize throughput in pool, local re-try for robustness

c
i
_
r
u
n
n
e
r

dev pool

failed
tests

Local retry



14

Prototype Gerrit process identified whether 
failures were pre-existing and reported success if 
no new failures were added

Large philosophical disagreement on what the 
new system should do

Agreed that the system should reduce burden of 
reproducing failures

Only succeed if the integrated state is clean!

Developer productivity – is the failure my fault?

“The only way to go fast is to go clean”
 -- Robert “Uncle Bob” Martin

 – tested commit

ta
rg
et

sr
c

ci
/…

sr
c

ci
/…

or
ig
in
/t
ar
ge
t

Test integrated
state

failed
tests

Test upstream
state

Merge Request



15

Reporting of CI Results

Feedback to GitLab Merge Request
CDash reporting



16

Comment-based feedback to MR when pipeline 
launched

• GitLab integrated pipeline link

• Links to pipeline / “process vomit” logging       

• Links to dashboard

Moving in direction of reduced output to focus on 
code review in MergeRequest

• Workflow inertia/familiarity from Gerrit

Feedback to GitLab MergeRequest



17

Same as in the nightly cross-platform testing

• Presentation familiar to dev community

Test artifacts archived for failing tests

Links in GitLab MR resolve to timestamp-filtered 
results on overall CI dashboard project

CDash reporting

checkout manifest

failed tests artifacts



18

Connecting the Dots: GitLab/Jenkins 
Integration

Challenges with community support
Webhook integration



19

Jenkins uses a plugin architecture with community 
development of feature plugins

What do you do when a critical feature is no 
longer supported?

Desired workflow:

• Use semi-linear merge strategy

• Auto-build on MR creation only

• Manual re-build for subsequent changes

Not possible via plugin due to bugs

Challenges with community support

Broken plugin forced rebuild 
whenever  MR updated

GitLab on record as not wanting 
to support semi-linear CI 
workflows

Limited or non-existent support of tools forced less-desirable workflows



20

Challenges with GitLab/Jenkins plugins drove 
manual webhook integration

Forced to use manual comment-based trigger to 
achieve desired testing behavior

Moving community towards non-linear merge 
strategy for better automation support

Building community familiarity and trust

• Identifying issues, e.g., merge conflicts

• Trusting the results rather than re-triggering

Webhook integration

Slowly moving towards fully automated CI testing given system constraints



21

Conclusions and future work

CI process has been in production since ~March 2022

 GitLab analytics show ~20 merges/per day with mean time to merge of 2 days

 CI process performs hundreds of builds per day (up to 339 on 5/2, ~85 changes) with an 
average turnaround time of ~2 hours (depending on # tests)

 Successfully maintained/improved low rate of defect introduction

Moving to the non-linear merge strategy will be better supported by automation

 All changes logically should trigger testing

Test suite reduction for faster turnaround with similar defect rate

Investigate using GitLab/Jacamar runners



22

Questions?
mdmosby@sandia.gov


