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2 I Thermal runaway and cascading failure

Cascading failure poses a risk to energy storage systems,
electric vehicles, and first responders.

The current approach is to test our way into safety.
o Large system (>1MWh) testing is difficult and costly.

We supplement testing with predictions of challenging
scenarios and optimization of mitigation.

A key to designing safe systems at larger scales is
understanding cascading thermal runaway.
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Source: (top) https://cmte.ieee.org/pes-essb/wp-content/uploads/sites/43/2019/06/2019-SM
UL-9540A-IEC-Lithium-Test-Summary.pdf
(bottom) https://www.ul.com/news/ul-9540a-battery-energy-storage-system-ess-test-method



Cascading failure testing with passive mitigation

LiCoO, 3Ah pouch cells

5 closely packed cells with/without aluminum or copper
spacer plates

o Spacer thicknesses between 0.8 mm and 3.2 mm
o State of charge (SOC) between 50% and 100%

Failure initiated by a mechanical nail penetration in the oute _
cell (cell 1) ‘| ‘

Thermocouples (TC) between cells and spacers (if present)

ko w5 ] g

Nail Thermocouple Locations Thermocouple Locations
without spacers with spacers !

o Pt P2 P3 P4
Cell 50 9e I

1@ 20 3e 6@ 70| 010 Oe [ J (] { [ J o [ [ J (] [ o)
Copper . .
(]
Plate IRad i NI Rael | | O B O A
Cl C2 C3 C4 C5 Ci c2 €3 c4 C5

Torres-Castro, L., Kurzawski, A., Hewson, J., & Lamb, J. (2020). Journal of The Electrochemical Society, 167(9), 090515.



+ I Finite element model for Li-ion cells in thermal runaway

Model: SIERRA/Aria
Discretization in one direction (x)

Modeled as a quasi 1-D domain of thin
hexahedron elements

ky L ky,

Multi-layered system
Lumped battery material
Spacers
End block insulators

Convective heat transfer to surroundings .
(scaled by surface area to volume ratio for thin
domain)

Heat conduction with chemical sources inside
battery material

ql?ﬂd

sides

] BQEnd

I
Battery

Spacer

I I Em B



s | Finite element model equations

Energy conservation:

aT <11
pcpa =V-(KVT) + ¢

Mass conservation for species i with N,. reactions:

Energy source:



« I Chemical source terms for thermal runaway

Li-ion batteries contain a metal and oxidizer that can react with each other

or alkyl carbonate electrolyte to release energy

These reactions occur at sub-grid scales and can be approximated as pre-
mixed

Empirical chemical reactions:

- Short-circuit
CoLi + Co0, — Cg + LiCo0,
> SEl decomposition (Richard 1999)

1
(CH20C02LI)2 — LI2603 + CzH4 + COZ + 502

> Anode-electrolyte (Shurtz 2018)
2CsLi + C3H,05 = 2C + Lio CO3 + CoH,
- Cathode-electrolyte (Hatchard 2001, Shurtz 2020)
5C00, + C3H,03 —» 5C00 + 3C0, + 2H,0

Richard, M. N., & Dahn, J. R. (1999). Journal of The Electrochemical Society, 146(6), 2078.

Shurtz, R. C., Engerer, J. D., & Hewson, J. C. (2018). Journal of the Electrochemical Society, 165(16), A3878.
Hatchard, T. D., MacNeil, D. D., Basu, A., & Dahn, J. R. (2001). Journal of The Electrochemical Society, 148(7), A755.
Shurtz, R. C., & Hewson, J. C. (2020). Journal of The Electrochemical Society, 167(9), 090543.
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7 ‘ Chemical source terms for thermal runaway

Preliminary chemistry models from literature Extrapolating literature models to cell-scale with updated
> Based on Dahn group (1999-2001) thermodynamics
> Calibrated for onset, but under-predicts peak ~ ° Reaction rates at propagation temperature (~700°C)
temperature due to incomplete are over-predicted
thermodynamics > Velocity of a premixed flame: v = Vwa
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s | Species transport in electrode particles

(a) Surface decomposition

Transition
Layered = spinel/rocksalt metal

. 3+
transformation dissolution

Thermal runaway is analogous to very fast degradation

Radin et al. describe three cathode degradation methods that
affect transport of Li and O, transport

o Surface decomposition, bulk transformations to spinel, mechanical

) Electrolyte
degradation Y

decomposition

Sharifi-Asl et al. observed oxygen release occurs at the surface of

cathodes where spinel (M;0,) and rock salt (MO) begin .
formation. 152 | Co2* |

The phases grow from the surface towards the core of the e

particles, leaving 02 behind to diffuse to the surface. u';: !

Similarly in the anode, Li must diffuse through the graphite < 148

particle to react with electrolyte at the exposed surface. T R

1 1 L 1 1 1
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Figures:
(top) Radin et al. (2017). Advanced Energy Materials, 7, 1602888

(bottom) Sharifi-Asl et al. (2017). Nano Letters, 17, 2165-2171. Distance from the edge (nm)



o I Model for solid-state particle diffusion limit

Challenge: Calorimetry measurements only at lower through shell i i
temperatures

- Lithium and oxygen must diffuse to the particle surface
to react with the electrolyte.

- Serial reactions are corrected with the “Damkohler
limited” form.

with electrolyte
at surface
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the rate of diffusion between an inner radius (r;) and
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10 ‘ Five cell stack results: 100% SOC
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1 I Model for solid-state particle diffusion limit

The inner radius as a function of species Lo Cathode-EC
concentration (py). ---- Arrhenius Baseline
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o Ps.o e —— Fixed r;
£102{ — Variabler; L
Ex: heat release rate shown at the edgeof Cell3 £ | 7
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- Baseline rates exclude concentration dependence. §
- Literature models propagate too fast.
> Fixed r; = 0.57, resulted in good bulk propagation
predictions, but the initial rate is slow relative to 102 . . . ‘ ‘ .
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- Variable r; model include concentration
dependence for anode and cathode particles, 7,
values from Guo 2002.



: 100% SOC, no spacers

12 ‘ Five cell stack results

-0 Sim
— (C5-0 Exp

-=== C1-O Sim
—— C1-0 Exp
=== C1-C2 Sim
— C1-C2 Exp
-=== (C2-C3 Sim
— (C2-C3 Exp
-=== C3-C4 Sim
—— C3-C4 Exp
-=-- C4-C5 Sim
— C4-C5 Exp
CI

---- C5

|
o1q

9e
H7_;H
se
C2 C3 C4 C5

1 o |
=/
o
<
~
o
PN
—
o
s
—~
i
r 0)
o ® N
—
0 @
o o £
-n .6 T
g
o
<
r=
~
Lo
o o o o o o o o o
S o o o o o o )
(e} ™~ (o] N < m o~ —
o
Lt
—
o
FON
i
o
LS
—
r_-l
QO ~
d VBG
@ Q
Y4 =
- p— IO - —
F GT
K=}
=
o
~
Lo
o o o o o o o o o
S S S S S S S S
© ~ © ) T M ~ —

(Do) @amyeaadwa]



: 100% SOC, no spacers

3 ‘ Five cell stack results
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14

Results: 100% SOC, metallic spacers

0.8 mm Aluminum, Fixed r;
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Summary

Using legacy chemistry source terms predicts onset of thermal
runaway, but extrapolating this to higher temperature over-
predicts cell-scale propagation speeds.

Results suggest that inclusion of intra-particle diffusion limits (or
a similar change in the kinetics) becomes important for higher
temperature cell-scale propagation.

Predictions of fixed and variable internal particle radius
formulations were tested on a range of conditions with variable
state-of-charge and passive mitigation spacers.

These results represent an extension of prediction capabilities to
predict propagation and its limits over a range of thermal
“dilution” conditions.

Understanding mitigation boundaries is important for designing
safe energy storage systems.
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