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Thermal runaway and cascading failure

 Cascading failure poses a risk to energy storage systems, 
electric vehicles, and first responders.

 The current approach is to test our way into safety.
◦ Large system (>1MWh) testing is difficult and costly.

 We supplement testing with predictions of challenging 
scenarios and optimization of mitigation.

 A key to designing safe systems at larger scales is 
understanding cascading thermal runaway. 
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Source: (top) https://cmte.ieee.org/pes-essb/wp-content/uploads/sites/43/2019/06/2019-SM-
UL-9540A-IEC-Lithium-Test-Summary.pdf
(bottom) https://www.ul.com/news/ul-9540a-battery-energy-storage-system-ess-test-method
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Cascading failure testing with passive mitigation3

Thermocouple Locations
without spacers

Thermocouple Locations
with spacers

 LiCoO2 3Ah pouch cells

 5 closely packed cells with/without aluminum or copper 
spacer plates

◦ Spacer thicknesses between 0.8 mm and 3.2 mm
◦ State of charge (SOC) between 50% and 100%

 Failure initiated by a mechanical nail penetration in the outer 
cell (cell 1) 

 Thermocouples (TC) between cells and spacers (if present)
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Torres-Castro, L., Kurzawski, A., Hewson, J., & Lamb, J. (2020). Journal of The Electrochemical Society, 167(9), 090515.



Finite element model for Li-ion cells in thermal runaway4
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Finite element model equations5



Chemical source terms for thermal runaway6
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Richard, M. N., & Dahn, J. R. (1999). Journal of The Electrochemical Society, 146(6), 2078.
Shurtz, R. C., Engerer, J. D., & Hewson, J. C. (2018). Journal of the Electrochemical Society, 165(16), A3878.
Hatchard, T. D., MacNeil, D. D., Basu, A., & Dahn, J. R. (2001). Journal of The Electrochemical Society, 148(7), A755.
Shurtz, R. C., & Hewson, J. C. (2020). Journal of The Electrochemical Society, 167(9), 090543.



Chemical source terms for thermal runaway7
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 Preliminary chemistry models from literature 
◦ Based on Dahn group (1999-2001)
◦ Calibrated for onset, but under-predicts peak 

temperature due to incomplete 
thermodynamics

Hatchard, T. D., D. D. MacNeil, A. Basu and J. R. Dahn (2001). Journal of the Electrochemical Society 148(7): A755-A761.



Species transport in electrode particles

 Thermal runaway is analogous to very fast degradation

 Radin et al. describe three cathode degradation methods that 
affect transport of Li and O2 transport

◦ Surface decomposition, bulk transformations to spinel, mechanical 
degradation

 Sharifi-Asl et al. observed oxygen release occurs at the surface of 
cathodes where spinel (M3O4) and rock salt (MO) begin 
formation.

 The phases grow from the surface towards the core of the 
particles, leaving O2 behind to diffuse to the surface.

 Similarly in the anode, Li must diffuse through the graphite 
particle to react with electrolyte at the exposed surface.
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Figures:
(top) Radin et al. (2017). Advanced Energy Materials, 7, 1602888
(bottom) Sharifi-Asl et al. (2017). Nano Letters, 17, 2165-2171.



Model for solid-state particle diffusion limit9
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Five cell stack results: 100% SOC10
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Model for solid-state particle diffusion limit11
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Five cell stack results: 100% SOC, no spacers12



Five cell stack results: 100% SOC, no spacers13



Results: 100% SOC, metallic spacers14



Summary

 Using legacy chemistry source terms predicts onset of thermal 
runaway, but extrapolating this to higher temperature over-
predicts cell-scale propagation speeds.

 Results suggest that inclusion of intra-particle diffusion limits (or 
a similar change in the kinetics) becomes important for higher 
temperature cell-scale propagation. 

 Predictions of fixed and variable internal particle radius 
formulations were tested on a range of conditions with variable 
state-of-charge and passive mitigation spacers.

 These results represent an extension of prediction capabilities to 
predict propagation and its limits over a range of thermal 
“dilution” conditions.

 Understanding mitigation boundaries is important for designing 
safe energy storage systems.
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