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Revolutionary Systems

- What do we want in the future?
- 10-100+ TOPS/W:

- —>Supercomputing at the edge

- Deep networks (100M+ parameters)
execute and train in the field

- Lots of applications enabled and
enhanced: Safe and fully autonomous
navigation in ground, air and space
vehicles, smart particle detectors

- Getting to this goal may require imperfect
hardware...and this might be ok.
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Where are we now? Example: Apple A13

= Apple’s iPhone 11 main SoC processor
= 7nm+ TSMC process
= Lightening AMX 8-core Neural Engine accelerator IP
= Apple spec: 5 TeraOps/s (TOPS) @ 8 bit precision
= Power is ~2.5-5W
= State of the art smartphone chip Neural Accelerator:
= ~1-2 TOPS/W or ~1pJ per 8 bit operation
= von Neumann architectures struggling to improve efficiency

= Especially difficult for off chip data movement

=  CMOS research is continuing to push efficiency with low voltage,
weight on chip designs — how much more possible?

= Where will the next orders of magnitude improvements in
energy efficiency come from?

ASlU @)

Chip to Main Memory (i.e. DDR)
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Keep Data in Memory & Exploit Physics for Computing
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=} ReRAM

Tunable Resistor: Oxide ReRAM ol romangs SO

- 1§ bitstack

Ta (15 nm) switching

Known as ReRAM, OxRAM, memristor channel

. . . . . TaO, (5-10
Bipolar resistance modulation in metal-insulator- 20x(5-10 nm) (+) char
metal structure TiN

= +V pulse, R decreases. -V pulse, R increases
Fast, scalable, low switching energy, tunable resistor
Potential for 100 Tbit of ReRAM on chip
Analog In-Memory Compute weight
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Semiconductor-Oxide-Nitride-Oxide-Semiconductor (SONOS)

= Mature, commercial technology pioneered by Sandia in the 1980’s
= Basis of modern SSD'’s (your iPhone uses a SONOS or a variant)
» Can be used as resistive array similar to ReRAM

= Commercial: Infineon 40nm SONOS

SONOS Analog VMM Array

SONOS Device :
Implementation
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Neural Network Basics

Simple Network:
Inference & Training

Basic Building Block (Backpropagation)
Incorrect -
adjustif 0 U] 0 # Correct Inference
y= ! ,ReLU, etc. training 0 a e e Outputs
1+e7%
Neuron _
(activation Eldden
function) ayer
Weights
(synapses) Inputs
Inputs X4 X, *n




Physically Mapping a Neural Network to Resistive Array

From previous layer

C| |ADC

>
)
O

To next layer
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How much computing needs to be done?

Metrics LeNet AlexNet Overfeat VGG GoogLeNet ResNet
5 fast 16 vl 50
Top-5 error n/a 16.4 14.2 7.4 6.7 5.3
Top-5 error (single crop)’ n/a 19.8 17.0 3.8 10.7 7.0
Input Size 28 %28 227 %227 231x231 224 %224 224 %224 224 %224
# of CONV Layers 2 5 5 13 57 53
Depth in # of CONV Layers 2 5 5 13 21 49
Filter Sizes 5 3.5,11 3.5,11 3 1,3,5.7 1,3,7
# of Channels 1, 20 3-256 3-1024 3-512 3-832 3-2048
# of Filters 20, 50 06-384 96-1024 64-512 16-384 64-2048
Stride 1 1.4 1,4 1 1,2 1,2
Weights 2.6k 2.3M 16M 14.7TM 6.0M 23.5M
MACs 283k H66M 2.67G 15.3G 1.43G 3.86G
# of FC Layers 2 3 3 3 1 1
Filter Sizes 1,4 1.6 1,6,12 1,7 1 1
# of Channels 50, 500 256-4096 1024-4096 | 512-4096 1024 2048
# of Filters 10, 500 | 1000-4096 | 1000-4096 | 1000-4096 1000 1000
Weights 58k 58.6M 130M 124M IM 2M
_ MACs 58k 58.6M 130M 124M 1M 2M
r Total Weights 60k 61M 146M 138M ™M 25.5M
1 Total MACs 341k 724M 2.8G 15.5G 1.43G 3.9G
Pretrained Model Website [56] [57, 58] n/a [57-59] [57-59] [57-59]
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VMM & Outer Product Update Tile Analysis with Ideal ReRAM

Oxide
ReRAM

Temporal | Ro

Component Vector Matrix Outer Product
Multiply Update
(8-bit, Inference) (8-bit, Training)
Energy/Op ReRAM (fJ) 12.2 2.1
Energy/Op Digital (fJ) 2718 4102 i
Array Latency ReRAM (us) 0.38 0.51
Array Latency Digital (ps) 4 8
14nm PDK

Initial results: two orders of magnitude beyond digital!

Coding | Drive Two
;| = | Logi \ 1024 x 1024 .
q B _(rrr Crossbars =
(] 3
o >,
Edge Logic |/|/ e
Counter 2
Oftset
A Correction
/‘ > Integrators
ADC]| | Ramp > Comparators
[ 70>
T Regi
. — .o gister 2
yi = Wi, C_]

MJ Marinella, S Agarwal, et al, IEEE J. Emerging Topics in Circ. And Sys, 8, 2018.




78 TOPS/Watt 8-bit Inference using 40nm SONOS
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This work
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Analog Accuracy Challenges

ESU @

- Analog in memory compute offers great benefits...

= ...but comes with great challenges

- Digital: Deterministic results

- Analog: Device characteristics affect algorithm accuracy!

= Research challenge: analog behavior cannot compromise final result

Inference Accuracy Challenges

= Measured device conductance should be proportional to weight — but
this is only approximately true

= Caused by analog programming accuracy versus state, current drift,
read noise

Training Accuracy Challenges

= Actual analog device state change does not match intended weight
update

= Caused by write nonlinearity, asymmetry, stochasticity
= Device to device variation

# Devices

Digital Multi-level Cell Distribution
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Conductance (G) «< Weight

Neural Net Weight Distribution
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Mormalized error

Multiscale CoDesign Framework Required for Device Accuracy Modeling

100 — =—-—.—._._i\i Target Algorithms
& 80 Accuracy/Energy/Performance Model * Deep Convglutlonal Nets
& 60 Model accuracy, energy, and . * Sparse Coding
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Sandia TaOx ReRAM Inference Resistance Distributions

200ohm spacing between resistance targets

1000hm spread between Rmin, Rmax

(7]
b}
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HN{
Ta (15 nm) 2 4 6 8 10 12 14 16 18 20
(510 o) Resistance (kQ)
TiN
5 Resulting conductance distribution
w
D
2
>
Q 4
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0 5 | 100 150 200 20 300 350 400 450 500
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TaOx ReRAM Error Model

AslU

Conductance error approx parabolic with
conductance target - this is ideal:

 Lower conductances have lowest error and map to
weights near zero.

. Weighis near zero hold most information, hence
device error is minimized

Modeled Accuracy in CrossSim Inference
ResNet50 CNN, ImageNet Dataset

1000 image average

8-bit ADC, 8-bit weight quant

Assume G, /G = 10

ReRAM accuracy on ImageNet:
« Top-176.4%
« Top-592.91%

Compared to Digital (32 bit FP)
 Top-177.18% (analog loss = 0.78%)
+ Top-5 93.06% (analog loss = 0.15%)

Analog Inference predicted <1% loss!

 Caveat: preliminary data - relaxation may
degrade

Conductance error

(uT)

Conductance Error as a Function of
10 Conductance Target

0.1

0.01

0 100 200 300 400 500
Conductance target (uS)

Conductance-Weight Distribution

107
106 ResNet50
10°
104
103
102
107

0 |
10 0 100 200 300 400 500

Conductance (uS)

# ReRAM devices




40nm SONOS Analog Inference Experimental Characterization

. (a) tart
* [nfineon 40nm SONOS > | —
Ch terization Chi ¥ 2 90[| initial (t=1sec)
aracterization Chip Soft erase 3 40 group
' puise O 3 mean
= 1024x1024 rr v 3 !
. . . pulses a 10 i
= Write v_erlfy routine programs all Refil N 0 kb
cells with analog values T 0 | 1.2
Short program | Drain current (HA)
= Experimental statistical ‘|orerasepulse | .. 501 _ g days
assessment of analo N 3 40
. J . 8 30
programming error as a function v Q ;
of target drain current finish > 0
(C) 3URSIgEIFIANN N JEARIIn I, ] 10 ! ! )I K i bl |
select gate control gate ;_ITEF e 00 H 0 8 12 o

(a) (SG) (CG)

' 1 ' Drain chrrent (p.A)

source
line

— bit line
nitride (BL)

ppugpeoeanROrepBopOOEROADD

Agrawal et al, IEEE IMW 2020.
T.P. Xiao et al, IEEE TCAS, 2022.



SONOS Deep CNN Inference Modeling: State Overlap

Number of
Devices

Number of
Devices

Number of
Devices

2

Digital Multi-Level Cell (MLC) - Two Bits per Cell

11 1,0 0,1 0,0
/\I | /I\I/\ |/\ .
/mm .Q VT

Analog Neural Weight — Seven Bits per Cell

Mm

v
et Subthreshold
operation

T

Modeled 7-bit Weight Distribution and Mapping

Probability
(arbitrary units)

o
S

Device count

106
104
102
100

1.55 1.60
Drain current (MA)

ResNet50

0 0.2 04 06 0.8
InceptionV3

170 0.2 04 06 0.8 1
MobileNetV2

0 0.2 04 06 08 10 0.2 04 06 0.8 1
Normalized conductance

T.P. Xiao et al, IEEE TCAS, 2022.



SONOS Accuracy Model Results

Conductance Error as a Function of

= Conductance error proportional to conductance target
— this is ideal:

= Lower conductances have lowest error and map to
weights near zero.

=  Weights near zero are most common
= Result: device-induced accuracy degradation minimized

= Modeled Accuracy in CrossSim Inference
= ResNet50 CNN, ImageNet Dataset
= 50,000 images
= 8-bit ADC, 8-bit weight quantization

SONOS accuracy on ImageNet:
= Top-174.30%
= Top-5921.97%

= Compare this to Ideal Digital (32 bit FP)
= Top-176.46% (analog loss = 2.16%)
= Top-5 93.00% (analog loss = 1.03%)

= >10x Performance/Watt Improvement with only ~2%
accuracy loss

= Uses Commercial 40nm Technology
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Effect of SONOS State Drift on Inference Accuracy

Refresh to restore accuracy

Conductance Error as a Function of — ( A ]
Conductance Target = 80

05 t.-.-"" _____ ?. ————— - g 75/ +0.35 +0.49 +0.82
204 P25 PR S AR S
0.3 R o ‘“
o &7 — © 70]
=02 :"’ ‘o [0 initial ] < |

Og] ﬁf" ¢ 5 days g 651

0 4 8 12 16 = : +
Target conductance (uS) tWrite  +1day +2days +odays
errors &
read noise SONOS

State drift >

ASU ™ T.P. Xiao et al, IEEE TCAS, 2022.



Effect of Network and Dataset on Accuracy

= Different common datasets and CNN architectures often

analyzed Im?eNet, CIFAI‘RA-’1_(:, SEMNIST
: ccuracy vs Write Error
=  MNIST (simple CNN) 100 —F————= !hﬂ —
i - 90
28x28 pixel grayscale 201 6_&2:?[\”\]
= 10 classes < 70 o 119K weights
= 60k training images, 10k test images E 60 sng’vate?;r\]’tl
= ImageNet (requires large CNN arch.) g ig
o
- 224x224 pixel color < 30/ ImageNet (top-1)
20 ResNet-50
= 1000 classes 10. 25.6M weights
= 1.3M training images, 100k test images oL ’EBOSS SIM :

0o 1 2 3 4 5 6 7 8

= ImageNet represents pr tion-gr taset
ageNet represents production-grade datase Uniform write error Oy ite (% Of Imax)

=  Sometimes smaller nets like MNIST are used due to computing
constraints, esp for modeling training

- Key Takeaway: Excellent accuracy on MNIST does
not translate to excellent accuracy on ImageNet!
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Error and Inference Accuracy Summary: SONOS, ReRAM, PCM

0
5% ~|® SONOS'
| - —-"'"‘ _____ ‘
o 0/ . r”— 2!* T '1 T -
) e v HfO accuracy accuracy
2 3% A 2
’ ® __-- 3,* : :
I /" o ¢| ReRAM Floating point 27 59, 93.3
s 2% M-x____v%% v o+ SNLTaO,{  digital (ideal) 0 0
s |7 ¥V vy 47 ReRAM
> 1%h o6 P OGS 74.0% * 92.5% +
1.0% 0.4%
0% —————
0f 02 04 06 08 1 SNLTaOx  76.4% + 93.3% +
Normalized conductance ReRAMA 0.2% 0.1%
References and notes:
Low error @ low 1T.P. Xiao et al, IEEE TCAS, 2022. . 28.2% * 49.7% *
conductance: 2\/. Joshi et al, Nat Comm. 11, 2020. PCM 6.4% 7.8%
this is ideal 3Milo et al, IEEE IRPS, 2021.
4State drift/relaxation not yet measured, which may reduce accuracy. ROSS SIM
*All analog simulation also includes 8-bit weight quantization, 8-bit activations, and 8-bit ADCs
m *PCM and HfO, error are modeled entirely from data and programming used in publication only.
i **Based on 1000 ImageNet images




Device-Level Radiation Impacts Algo Accuracy

How will the accuracy f
degrade in radiation | && e T
environments ? = NG\ JA

Select gate  Control gate

Algorithm Accuracy Degradation due to TID

100
Threshold Distribution Shifts due to TID go|  Refresh to restore accuracy
|
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'g % @ one-sided
. . e P\Y; o -
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Device Challenges for Training

ESU @

Training has an overlapping set of

challenges
Ideally weight increases and decreases .
ulse_ voltage
linearly proportional to learning rule result polarity changes
f . ] Stochastic Symmetric
Issue for open loop nonvolatile memory: 3 . variability e
altered the relationship between intended S Gyay \Ji @/ Asymmetric,
© " 0©O Nonllnear
and actual update 3 0O
c
Nonlinear and asymmetric state change S O °o® oS .'.
T . Cun 62 Cn e 3
Cycle to cycle random variability (write Pulse Number

stochasticity)

Device to device random variability

Also: very high endurance (>10"2?)




Characterization for Training

Ta (15 nm)

TaO,
(5-10 nm)

TiN
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Initial TaOx ReRAM Training Accuracy Modeling (MNIST)

RS “T2Ox ReRAM has

Small Digits 1001 e ypes, Large Digits challenges for open loop
100 ————_L_L 100 == trainin
—_— o~ — g...
30 Performance i 80 Performance i 80 Performance
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Physical Insight from Multiscale Model - CrossSim
“Challenges using Filamentary ReRAM for Training

MNIST Training Accuracy Nonlinearity
SNL TaOx ReRAM 1. Tunneling current, esp in high resistances
1;2 P ] 2. Current crowding — high temperature
sol| Linear Resistive Device | Displaced required for change give runaway effect
= 7ol ] Oxygen 3. Nonlinear E-field
7 oo ; Anions (07) Asymmetry
[&]
e icati i Positivel g ~
: 22 Loss due to fabrication __ Chargedy / Inherent property
20 Linearized (V ++) \\®© / Schottky-llke and
No Noise o . . .
101 | No Manipulation ] v oo _l | ohmic junctions
0 I R - TE &= %
0 5 10 15 20 25 30 35 40 o o
Training Epoch (#) StOChaStICIty
R. Jacobs-Gedrim et al, Proc. 2017 IEEE ICRC, 2017. OE G depends on

position of a few

Ta TaO, Pt
ROSS SIM atoms
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Electrochemical RAM (ECRAM) Synapse

Lithium acts as dopant in LCO cathode
Resistivity across cathode changes linearly with
Li insertion (battery charge/discharge)
Functions as an analog nonvolatile transistor!

Much smoother state change than filament devices

T

anode/gate

T
electrolyte/insulator

LiCoO, = LisxCop + xLi* + xh

source  cathode/channel drain

=
— Vso[_ ’
BSU (M) & ruteretal, Adv Mater, 2017

Conductance vs Voltage
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ECRAM Characterization

ECRAM-MNIST
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Go (1S)

E. Fuller et al, Adv Mater, 2017
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Electrochemical Neuromorphic Organic Device (eNode)
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ECRAMSs Array Parallel Update Training Demonstration
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m- E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
@ James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).



Outline

= Motivation and Digital Limits

* Analog In-Memory Compute Energy &
Latency

= Accurate Analog Inference

= Accurate Analog Training

= Conclusions




Analog Device Requirements

Property Inference Training
Analog programing error (w/ write verify) Critical Less Important
Long term retention Important Less Important
Read noise Important Less Important
Conductance Range Important Important
Short term state drift Important Important
Device to device variability Important Important
Write stochasticity Less Important Important
Write speed Less Important Important
Write linearity Less Important Important
Write symmetry Less Important Critical
Endurance Less Important Critical

ESU @




Inference

Both

Training

Perspective: IMC Devices

Property PCRAM SONOS/FG

Analog programing error (w/ write verify) @ @ @
Long term retention @ @ @
Read noise @ @ @ @
Conductance range @ @
Short term state drift
Device to device variability Q @
Write stochasticity ’ ‘ @ @
Write speed @ @
Write linearity ‘ ‘ @
Write symmetry . . @ @
Endurance

rSU @ Inference © Inference © Training

(Future Work)




Final Thoughts

ESU @

Traditional digital CMOS computing is hitting disruptive roadblocks for continuing
energy efficiency (or equivalently, performance per watt)

Analog In Memory Computing offers path to >10 TOPS/W

|deal for deep neural nets and deep convolutional nets
Analog In Memory Computing has significant new challenges

Algorithm accuracy depends on the device
This creates significant, new device electrical characterization requirements
Inference and training have distinct challenges, with some overlap.

Inference: high accuracy predicted with commercial SONOS and ReRAM

Inference challenge: write-verify with short term state drift

Training: is more challenging, but devices such as ECRAM and related nonfilamentary
devices provide a path forward
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Thank You — Questions?
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Microelectronics Grand Challenge
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Impact of lonizing Radiation on Deep Net Accuracy

Select gate  Control gate

lonizing Radiation

ASU @™

Threshold Distribution

Uniform Gamma Shifts Across Array
Irradiation
s / /| erase 1’ program
T X B S <
rE e :/’ =1 > 10° Total ionizing
= K/ = ﬁ‘/l‘/ = / S 4 fspere(:)
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TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press).



Analog Neuromorphic SONOS In Space: Physics to Algorithm

ASU @™
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Neural Network Basics

Inference
» Feed forward operation of the
network to perform task, i.e.
classification
= EX: Image recognition

= Computationally requires ingle feed
forward pass through network

Machine
Learning
(Inference)

Class Probabilities

Dog (0.7)
Cat (0.1)
Bike (0.02)
Car (0.02)
Plane (0.02)
House (0.04)

Training
= Adjusting the weights to reduce error
and improve

» Typically done with backprop

= Parallel update possible on crossbar
architecture

backpropagation
<€

(b) Compute the gradient of the loss
relative to the filter inputs

| @ VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017



Analog Neuromorphic SONOS In Space: Physics to Algorithm

CIFAR-10
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TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press).
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Neural network

343 conv, 128

3G com. 128

323 conv, 128

Mesh architecture

Neural Network Inference Architecture

Pipelined MVM tile Analog MVM core

Convi

Convi

Conv2

Conv2

®)

R)

Convi

Convi

Conv2

Comz2

Conv3

Comv3

Conv3

Comv3d

Conv3

Comv3

Comv3

Comv3
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T.P. Xiao et al, In preparation, IEEE J. Circuits and Systems, 2021.
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Comparison of State of the Art Accelerators

TABLE II. Comparison of selected digital and mixed-signal neural network inference accelerators from industry and research.” TOPS: Tera-Operations per second. We have
counted MACs as single operations where possible. Note that performance (TOPS) is measured at the specified level of weight and activation precision, which differs
between accelerators. The results for NVIDIA T4, TPU, Goya, UNPU, and Ref. 122 are measured; others are simulated. TOPS/mm? values are based on the die area, where
provided.

Google Habana Reference 122

NVIDIA T4'"” TPU v1**" Goya HL-1000""°  DaDianNao™* UNPU™ mixed-signal®
Process 12 nm 28 nm 16 nm 28 nm 65 nm 28 nm
Activation resolution 8-bit int 8-bit int 16-bit int 16-bit fixed-pt. 16 bits 1 bit
Weight resolution 8-bit int 8-bit int 16-bit int 16-bit fixed-pt. 1 bit* 1 bit
Clock speed 2.6 GHz 700 MHz 2.1 GHz (CPU) 606 MHz 200 MHz 10 MHz
Benchmarked workload ~ ResNet-50""" Mean of six MLPs, ResNet-50 Peak Peak Co-designed binary

(batch =128) LSTMs, CNNs (batch =10) performance  performance CNN (CIFAR-10)
Throughput (TOPS) 22.2, 130 (peak) 214, 92 (peak) 63.1 5.58 7.37 0.478
Density (TOPS/mm?) 0.04, 0.24 (peak) 0.06, 0.28 (peak) 0.08 0.46 0.10
Etficiency (TOPS/W) 0.32 2.3 (peak) 0.61 0.35 50.6 532

*To enable performance comparisons across a uniform application space, we did not consider accelerators for spiking neural networks.

®The TPU v2 and v3 chips, which use 16-bit floating point arithmetic, are commercially available for both inference and training on the cloud. MLPerf inference benchmarking
results for the Cloud TPU v3 are available,'” but power and area information is undisclosed. The TPU v1 die area is taken to be the stated upper bound of 331 mm?; the listed
TOPS/mm? values are therefore a lower bound.

“The mixed-signal accelerator in Ref. 122 performs multiplication using digital logic and summation using analog switched-capacitor circuits.

4The UNPU architecture flexibly supports any weight precision from 1 to 16bits. The results are listed for 1-bit weights.



Neural Networks

Inference o Training
= Feed forward operation of the network to perform = Adjusting the weights to reduce error and

task, i.e. classification Improve

= Ex: Image recognition = Typically done with backprop

= Computationally requires ingle feed forward pass = Parallel update possible on crossbar
through network architecture

= Typical device update through write-verify

backpropagation
<€

Class Probabilities

Dog (0.7)
Cat (0.1)
Bike (0.02)
Car (0.02)
Plane (0.02)
House (0.04)

(b) Compute the gradient of the loss
relative to the filter inputs

| @ VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017



Example Standard Visual Recognition Datasets

MNIST ImageNet
-'?GIEKT‘?EGH\ -_‘_di.,,'r_[‘rq--'l'r—-";
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« 28x28 pixel grayscale « 256x256 pixel color
10 classes * 1000 classes
* 60k training images * 1.3M training images
* 10k test images * 100k test images
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VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017



Key Circuit Block/Kernel Analysis

Rank-1 Update
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(Inference)
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Compact Modeling Dataset for Neural Accuracy Model

Assess Neural
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Training Accuracy and Tile Energy/Summary

ECRAM: Use for training

& inference
Codesign to Model Performance & Energy
Component Vector Matrix Vector Outer 100
Matrix Multiply Product ' ' .
Multiply Update 95 -
Energy/Op ECRAM (fJ) 111.9 11.9 0.2 : > 90 — Ideal
Energy/Op ReRAM (fJ 122 122 21 o — IFG
E glep SONOS (fJ) 13.7 13.7 68.2 S > — ECRAMY
nergy/Op ) ' ' ' & soff — TaOx -
Energy/Op SRAM (fJ) 2718 4630 4102 e WWV\/\/‘“
Array Latency ECRAM (ps) 03 039 19 - |
] | ]
Array Latency ReRAM (us) 0.38 0.38 0.51 70 0 10 20 30 40
Array Latency SONOS (us) 1 0.40 0.40 20 I Training Epoch
Array Latency SRAM (us) 4 32 8 ReRAM: Training isS not
SONOS: While accuracy, program accurate: better for

ASU (d) is slow: use for inference inference



