

Characterization of Memory Devices for Energy Efficient Analog In-Memory Neural Computing at the Edge

Matthew Marinella¹, Tianyao Xiao², Christopher Bennett², William Wahby², Robin Jacobs-Gedrim², David Hughart², Elliot Fuller³, A.A. Talin³, Sapan Agarwal³

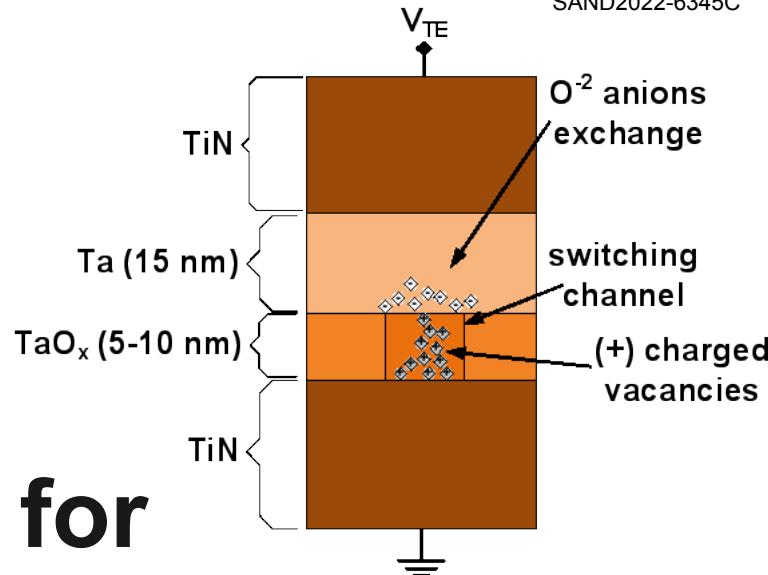
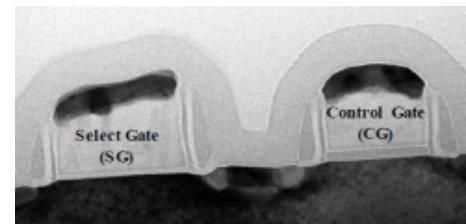
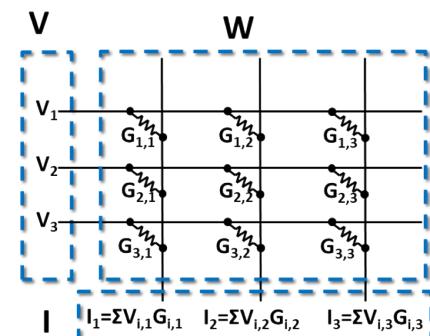
1 – Electrical, Computer and Energy Engineering, Arizona State University, Tempe AZ

2 – Sandia National Laboratories, Albuquerque, NM

3 – Sandia National Laboratories, Livermore, CA

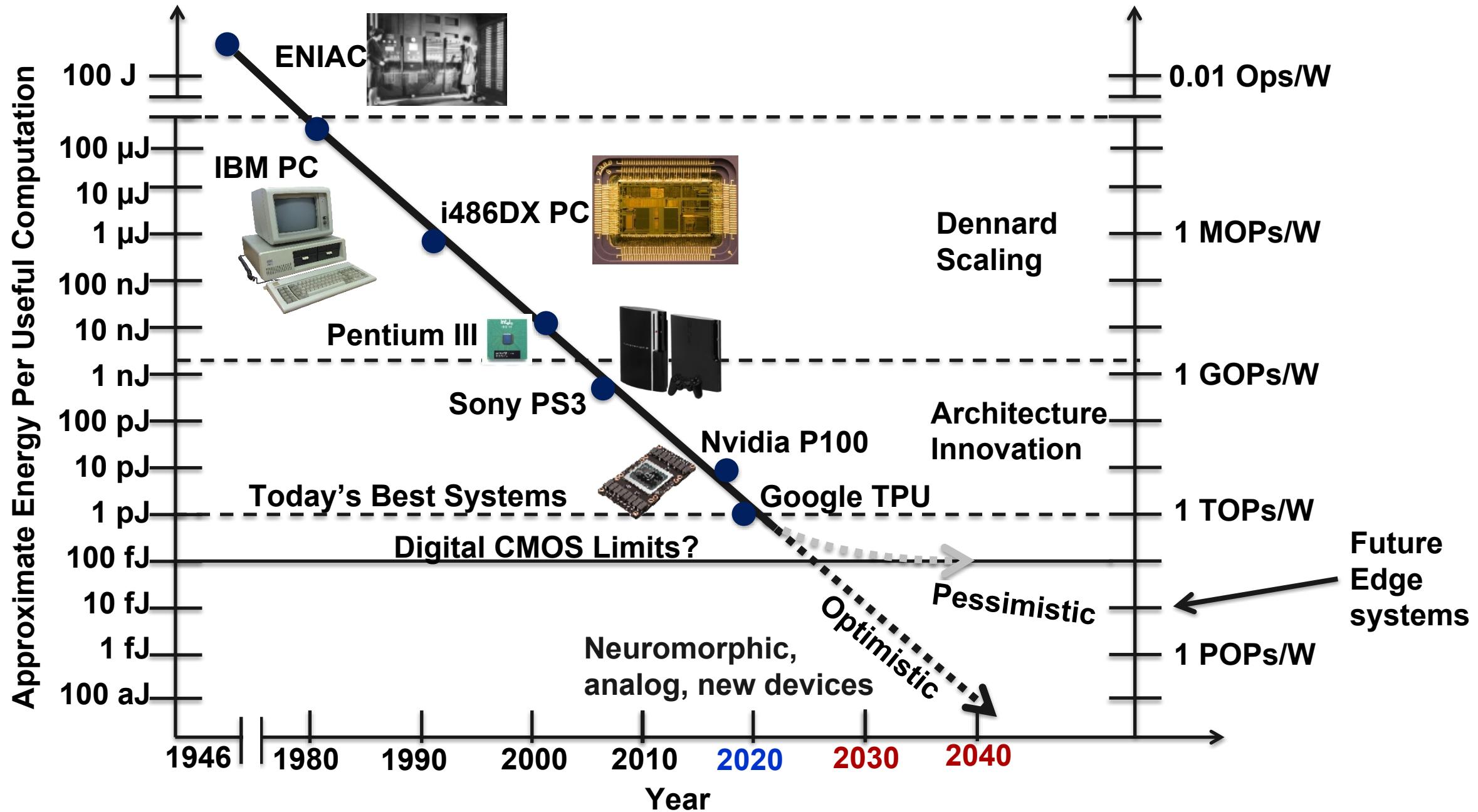
May 2, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



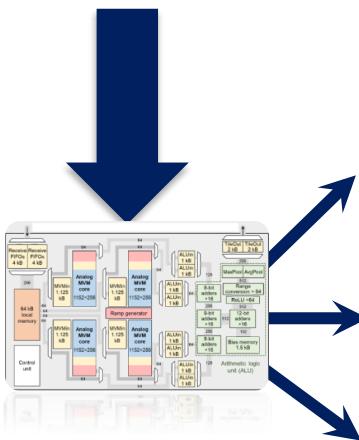
Outline

- Motivation and Digital Limits
- Analog In-Memory Compute Energy & Latency
- Accurate Analog Inference
- Accurate Analog Training
- Conclusions



Revolutionary Systems

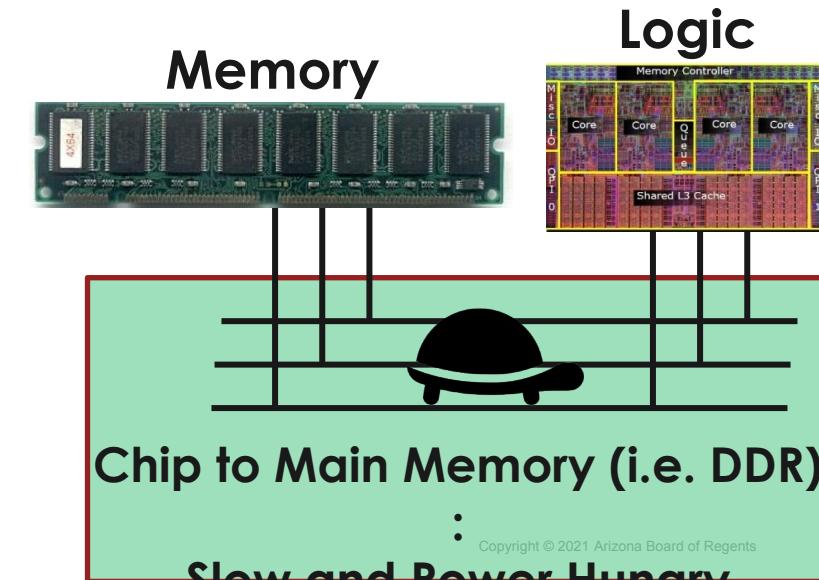
- What do we want in the future?
- **10-100+ TOPS/W:**
- →*Supercomputing at the edge*
- Deep networks (100M+ parameters) execute and train in the field
- Lots of applications enabled and enhanced: Safe and fully autonomous navigation in ground, air and space vehicles, smart particle detectors
- Getting to this goal may require imperfect hardware...and this might be ok.



Where are we now? Example: Apple A13

- Apple's iPhone 11 main SoC processor
- 7nm+ TSMC process
- Lightening AMX 8-core Neural Engine accelerator IP
- Apple spec: 5 TeraOps/s (TOPS) @ 8 bit precision
- Power is ~2.5-5W
- **State of the art smartphone chip Neural Accelerator:**
- ~ 1-2 TOPS/W or ~1pJ per 8 bit operation
- von Neumann architectures struggling to improve efficiency
- Especially difficult for off chip data movement
- CMOS research is continuing to push efficiency with low voltage, weight on chip designs – how much more possible?
- ***Where will the next orders of magnitude improvements in energy efficiency come from?***

apple.com, techinsights.com



Outline

- Motivation and Digital Limits
- Analog In-Memory Compute Energy & Latency
- Accurate Analog Inference
- Accurate Analog Training
- Conclusions

Keep Data in Memory & Exploit Physics for Computing

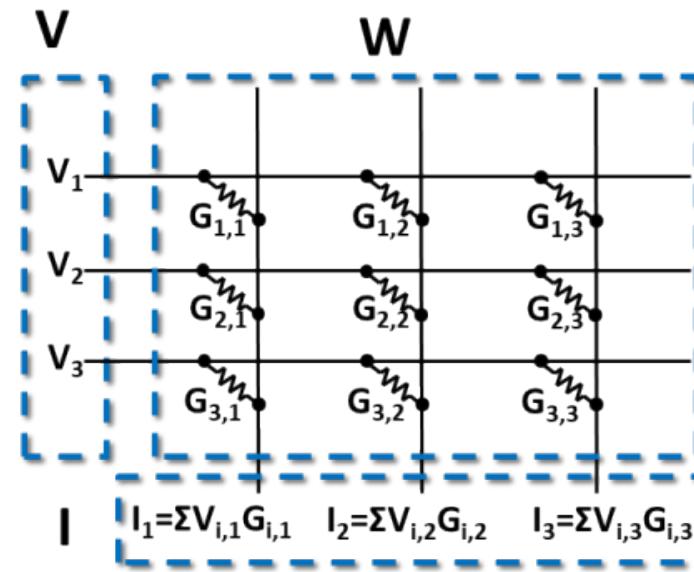
Mathematical

$$V^T W = I$$

$$\begin{bmatrix} V_1 & V_2 & V_3 \end{bmatrix} \begin{bmatrix} W_{1,1} & W_{1,2} & W_{1,3} \\ W_{2,1} & W_{2,2} & W_{2,3} \\ W_{3,1} & W_{3,2} & W_{3,3} \end{bmatrix} =$$

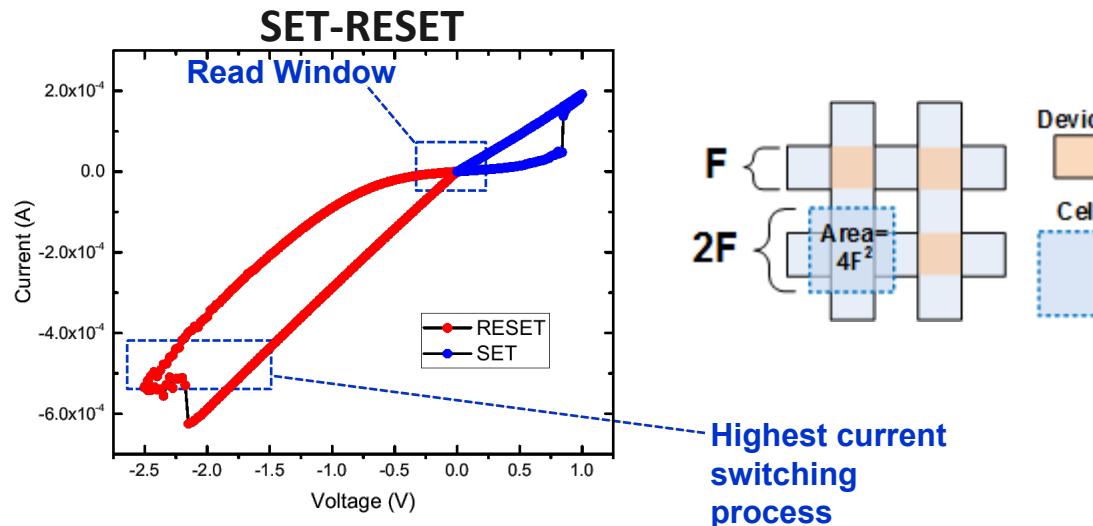
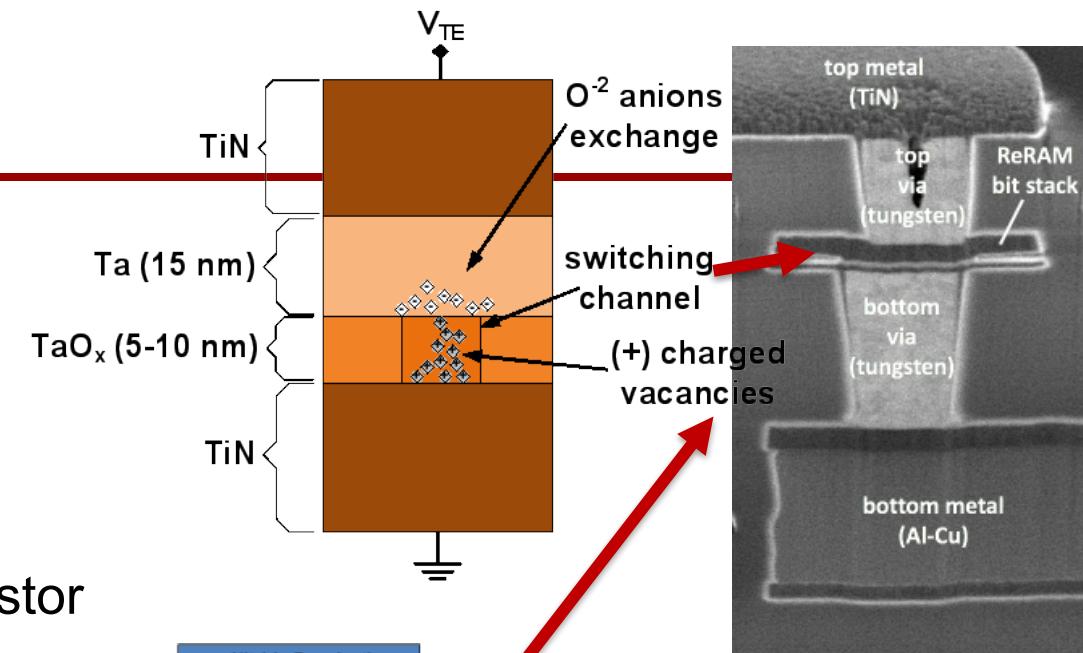
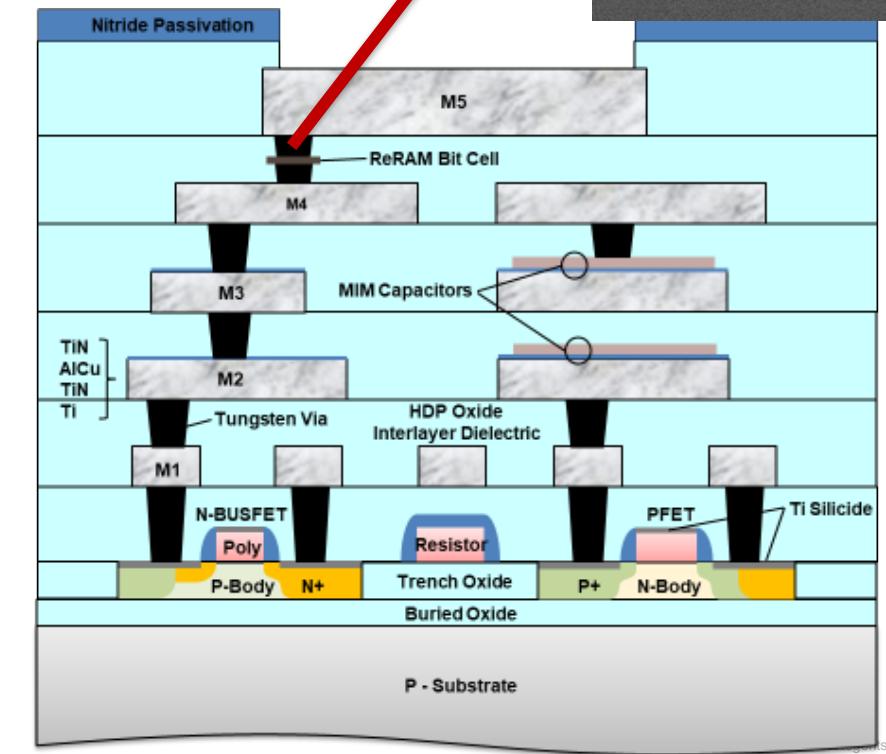
$$\begin{bmatrix} I_1 = \sum V_{i,1} W_{i,1} & I_2 = \sum V_{i,2} W_{i,2} & I_3 = \sum V_{i,3} W_{i,3} \end{bmatrix}$$

Electrical



Tunable Resistor: Oxide ReRAM

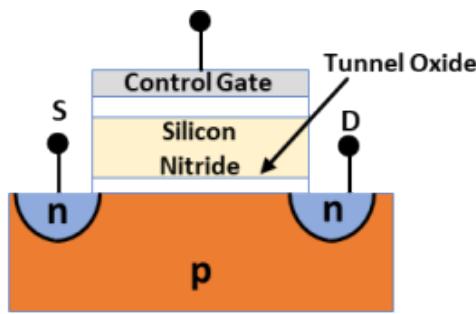
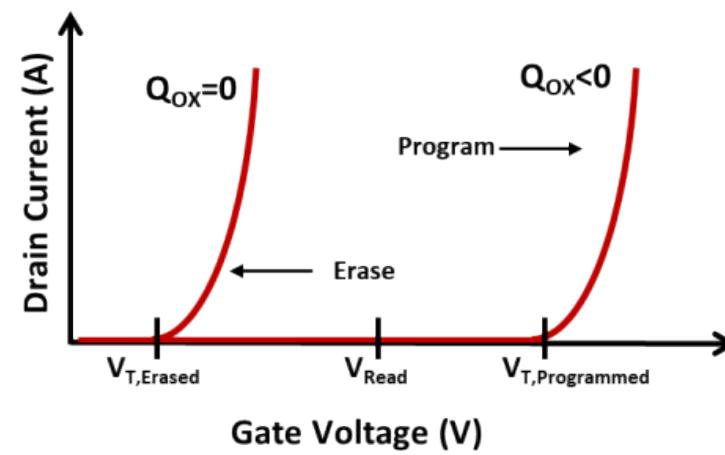
- Known as ReRAM, OxRAM, memristor
- Bipolar resistance modulation in metal-insulator-metal structure
- +V pulse, R decreases. -V pulse, R increases
- Fast, scalable, low switching energy, tunable resistor
- Potential for 100 Tbit of ReRAM on chip
- Analog In-Memory Compute weight



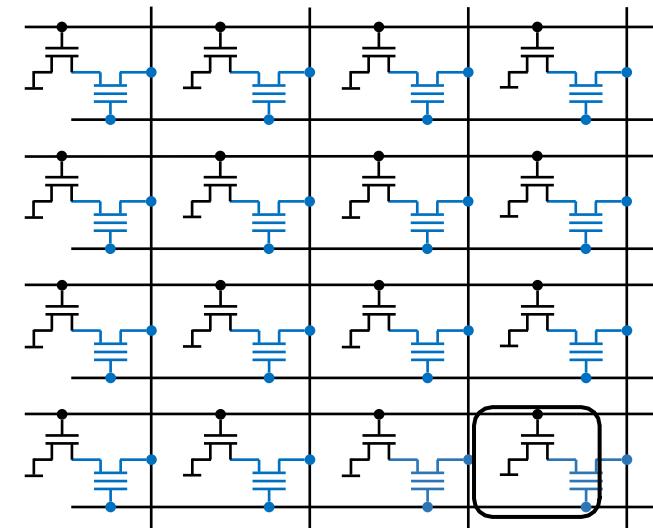
Semiconductor-Oxide-Nitride-Oxide-Semiconductor (SONOS)

- Mature, commercial technology pioneered by Sandia in the 1980's
- Basis of modern SSD's (your iPhone uses a SONOS or a variant)
- Can be used as resistive array similar to ReRAM
- Commercial: Infineon 40nm SONOS

SONOS Device



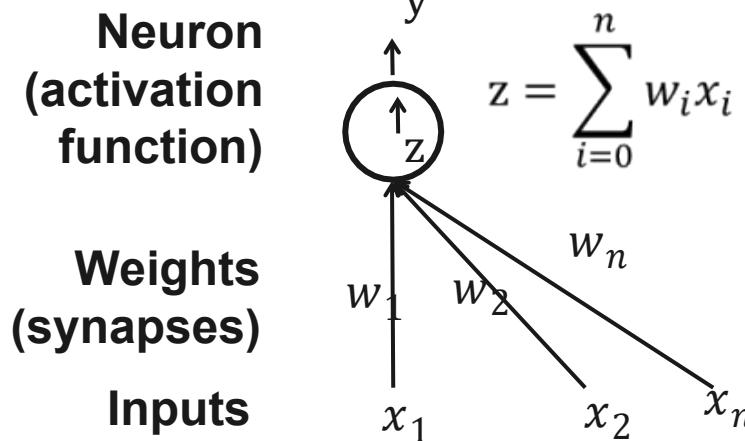
SONOS Analog VMM Array Implementation



Neural Network Basics

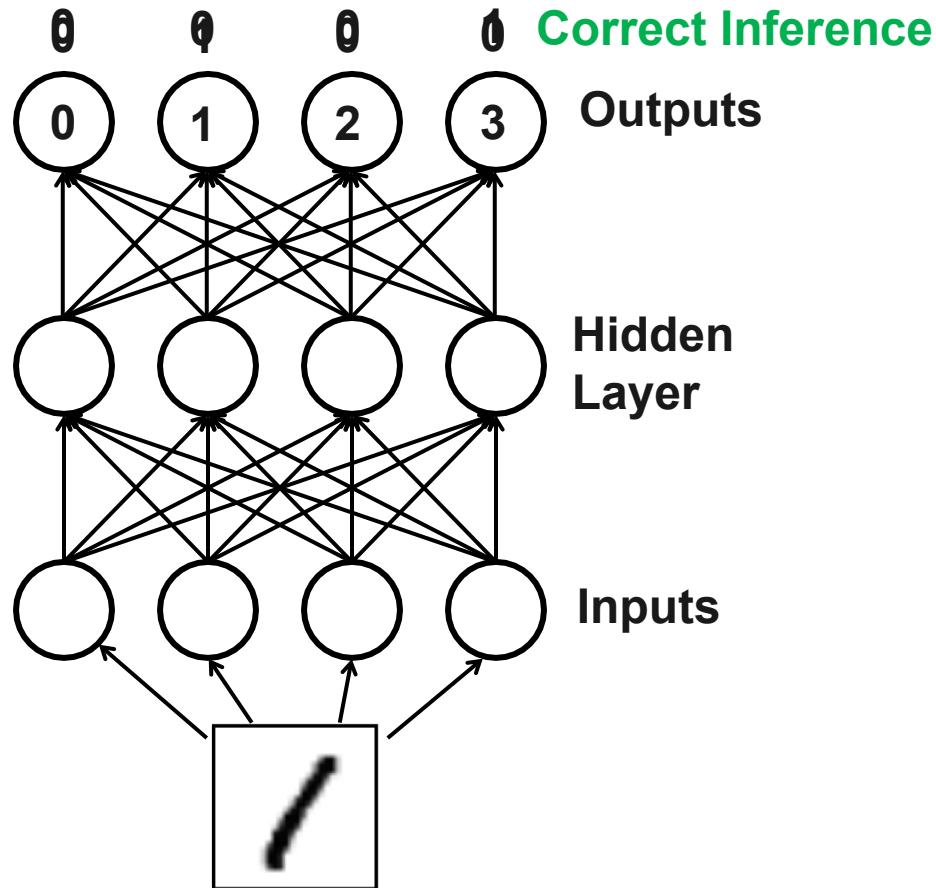
Basic Building Block

$$y = \frac{1}{1 + e^{-z}}, \text{ReLU, etc.}$$

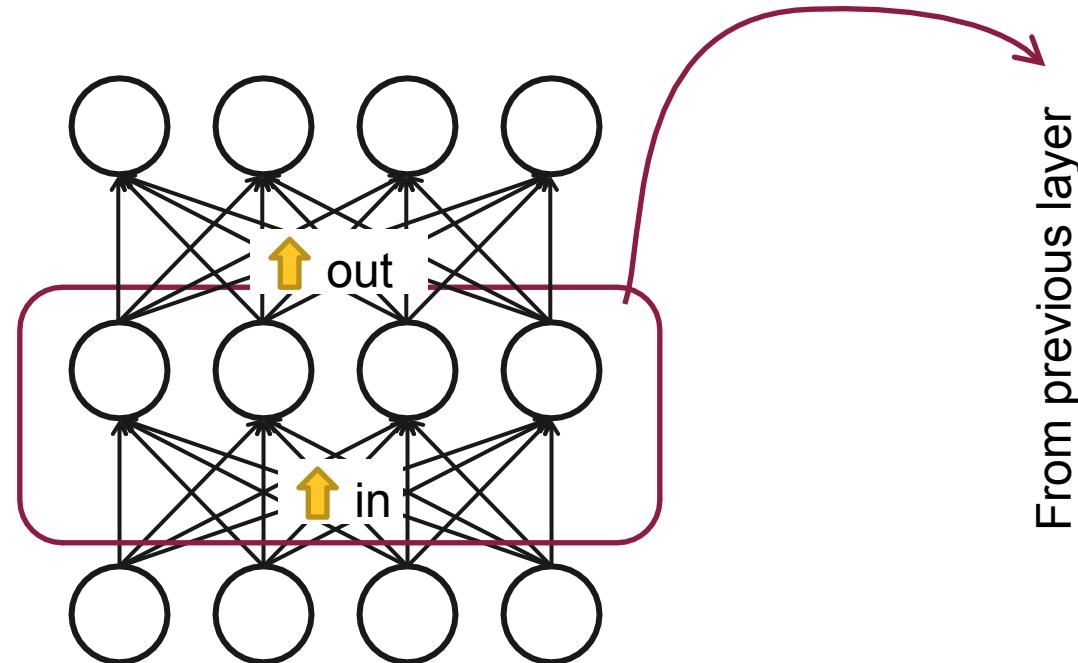
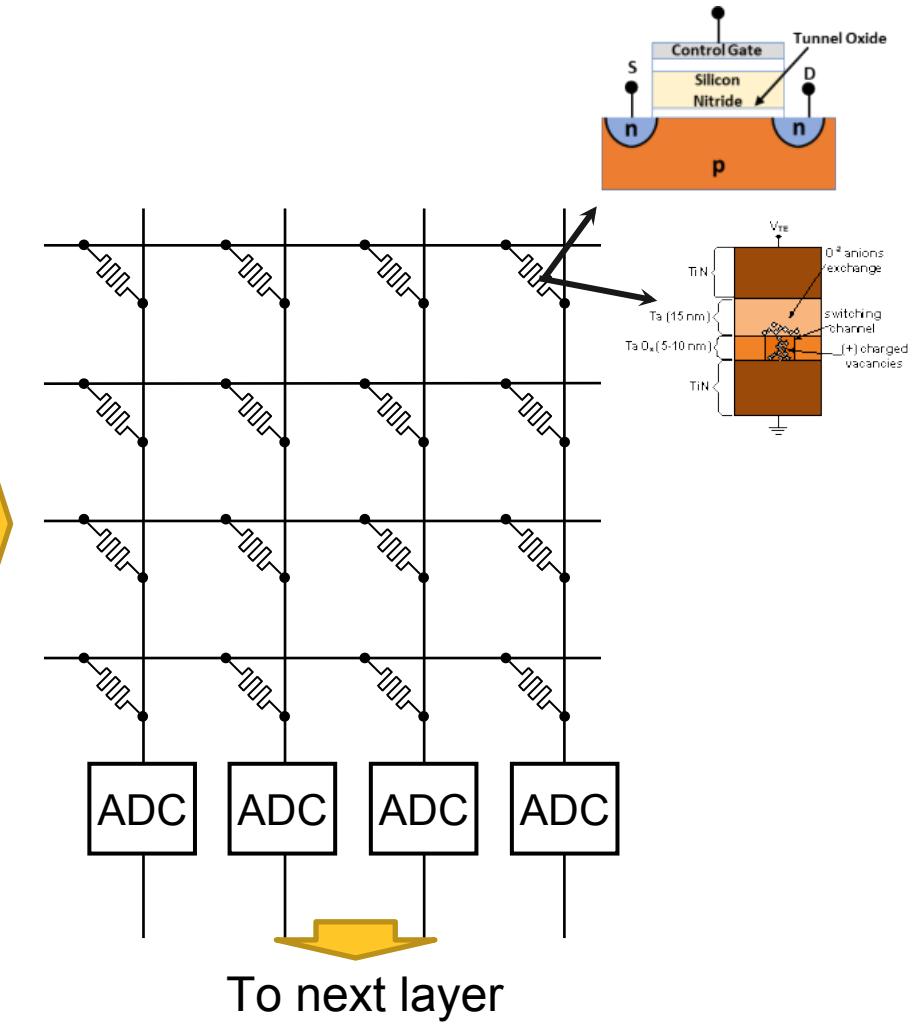


Incorrect –
adjust if
training

Simple Network:
Inference & Training
(Backpropagation)



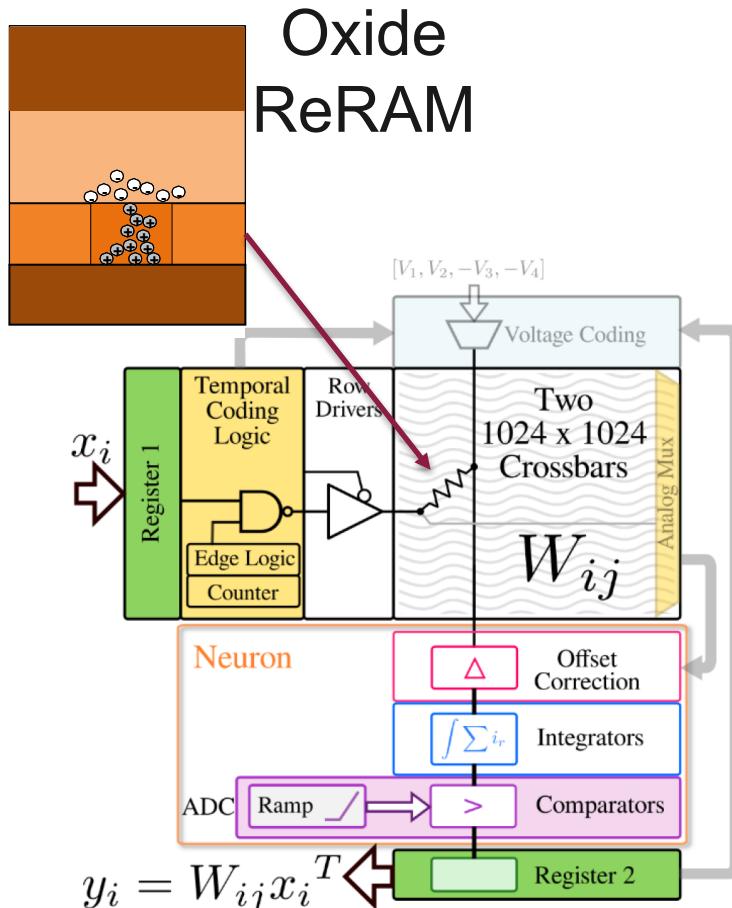
Physically Mapping a Neural Network to Resistive Array



How much computing needs to be done?

Metrics	LeNet 5	AlexNet	Overfeat fast	VGG 16	GoogLeNet v1	ResNet 50
Top-5 error[†]	n/a	16.4	14.2	7.4	6.7	5.3
Top-5 error (single crop)[†]	n/a	19.8	17.0	8.8	10.7	7.0
Input Size	28×28	227×227	231×231	224×224	224×224	224×224
# of CONV Layers	2	5	5	13	57	53
Depth in # of CONV Layers	2	5	5	13	21	49
Filter Sizes	5	3,5,11	3,5,11	3	1,3,5,7	1,3,7
# of Channels	1, 20	3-256	3-1024	3-512	3-832	3-2048
# of Filters	20, 50	96-384	96-1024	64-512	16-384	64-2048
Stride	1	1,4	1,4	1	1,2	1,2
Weights	2.6k	2.3M	16M	14.7M	6.0M	23.5M
MACs	283k	666M	2.67G	15.3G	1.43G	3.86G
# of FC Layers	2	3	3	3	1	1
Filter Sizes	1,4	1,6	1,6,12	1,7	1	1
# of Channels	50, 500	256-4096	1024-4096	512-4096	1024	2048
# of Filters	10, 500	1000-4096	1000-4096	1000-4096	1000	1000
Weights	58k	58.6M	130M	124M	1M	2M
MACs	58k	58.6M	130M	124M	1M	2M
Total Weights	60k	61M	146M	138M	7M	25.5M
Total MACs	341k	724M	2.8G	15.5G	1.43G	3.9G
Pretrained Model Website	[56] [‡]	[57, 58]	n/a	[57-59]	[57-59]	[57-59]

VMM & Outer Product Update Tile Analysis with Ideal ReRAM

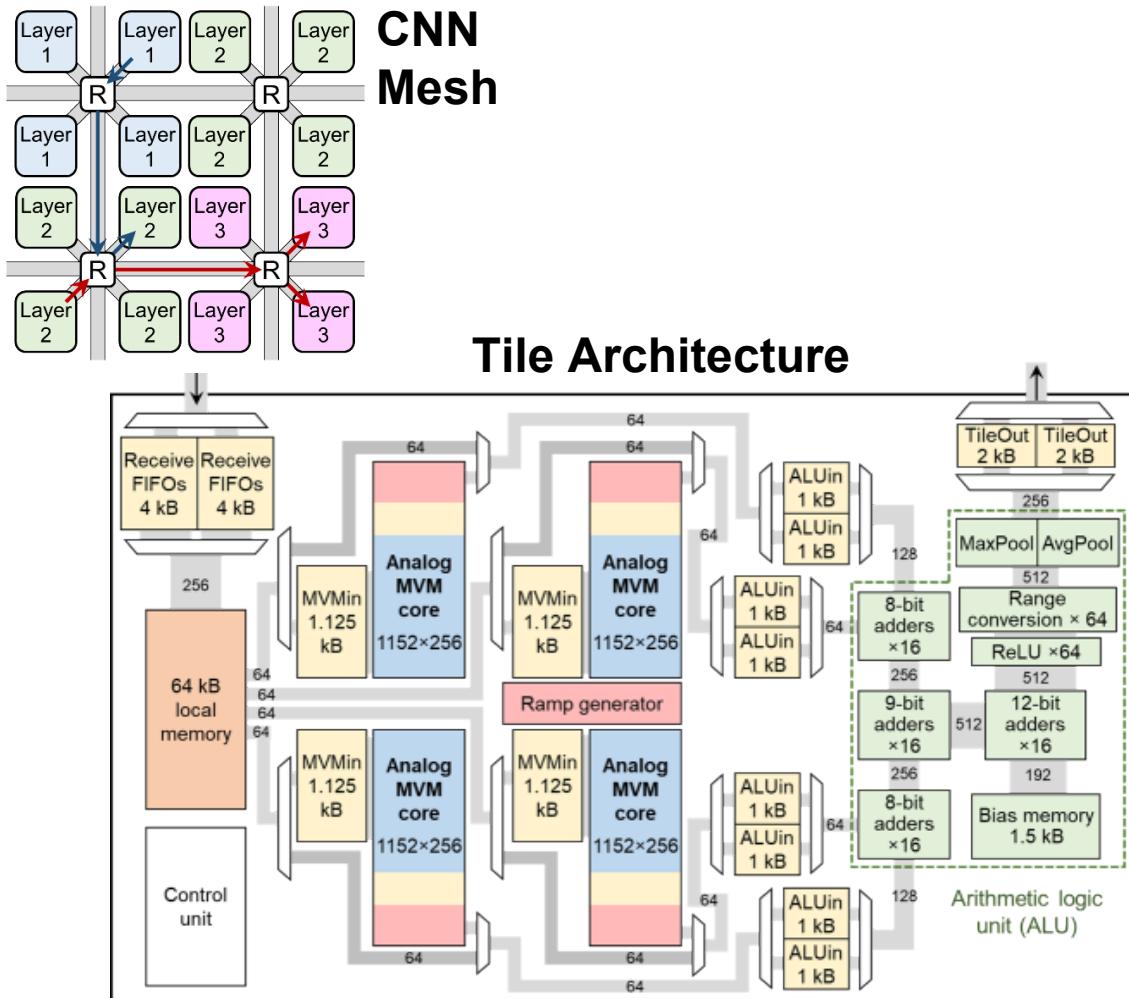


Component	Vector Matrix Multiply (8-bit, Inference)	Outer Product Update (8-bit, Training)
Energy/Op ReRAM (fJ)	12.2	2.1
Energy/Op Digital (fJ)	2718	4102
Array Latency ReRAM (μs)	0.38	0.51
Array Latency Digital (μs)	4	8

14nm PDK

Initial results: two orders of magnitude beyond digital!

78 TOPS/Watt 8-bit Inference using 40nm SONOS



ISAAC (2016)	Newton (2018)	This work
32 nm, ReRAM	32 nm, ReRAM	40 nm, SONOS
16 bits	16 bits	8 bits
0.63 TOPS/W (theoretical peak)	0.92 TOPS/W (theoretical peak)	21.8 TOPS/W (on ResNet-50) 55 TOPS/W (custom net, near peak)

- Based on 40nm SONOS devices from our commercial collaborator, Infineon

TOPS = TeraOperations / sec

Outline

- Motivation and Digital Limits
- Analog In-Memory Compute Energy & Latency
- Accurate Analog Inference
- Accurate Analog Training
- Conclusions

Analog Accuracy Challenges

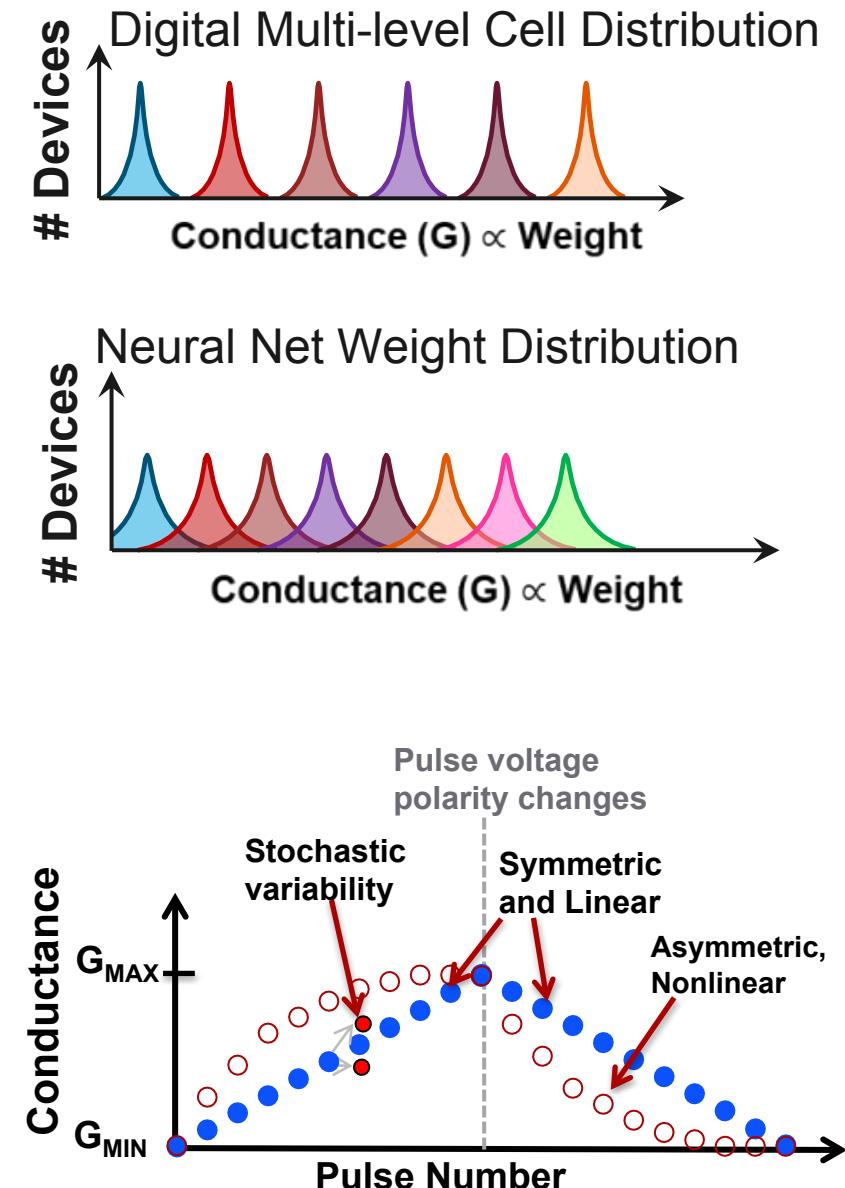
- Analog in memory compute offers great benefits...
- ...but comes with great challenges
- Digital: Deterministic results
- Analog: Device characteristics affect *algorithm accuracy*!
 - Research challenge: analog behavior cannot compromise final result

Inference Accuracy Challenges

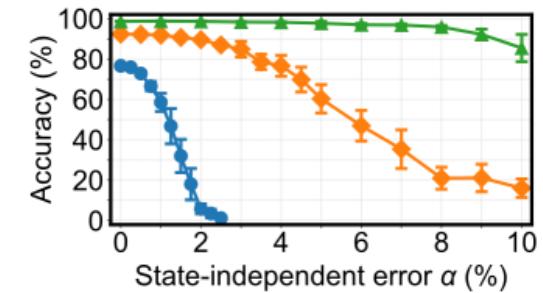
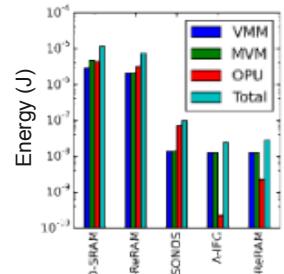
- Measured device conductance should be proportional to weight – but this is only approximately true
- Caused by **analog programming accuracy versus state, current drift, read noise**

Training Accuracy Challenges

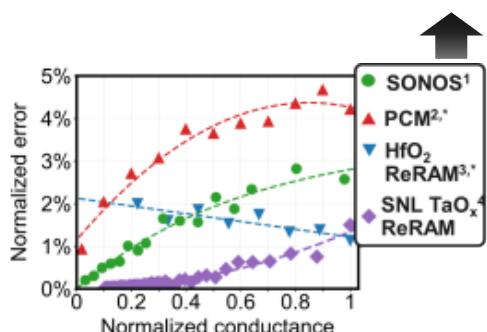
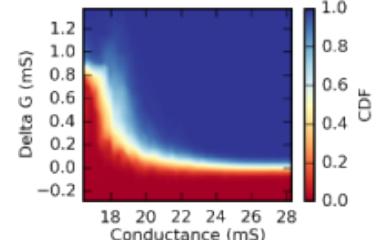
- Actual analog device state change does not match intended weight update
- Caused by **write nonlinearity, asymmetry, stochasticity**
- **Device to device variation**



Multiscale CoDesign Framework Required for Device Accuracy Modeling



Accuracy/Energy/Performance Model
Model accuracy, energy, and performance based on device attributes



ROSS SIM

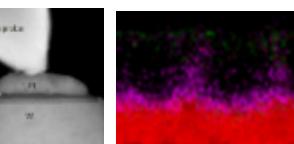
Sandia Cross-Sim:
Translates device measurements and crossbar circuits to algorithm-level performance



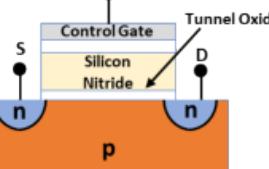
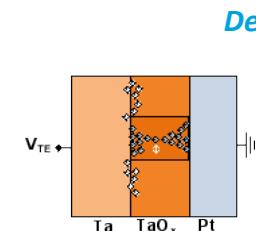
Analog characterization

Devices

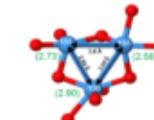
In situ Characterization



Materials



Ab Initio Modeling

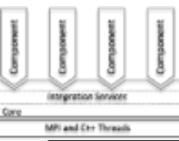
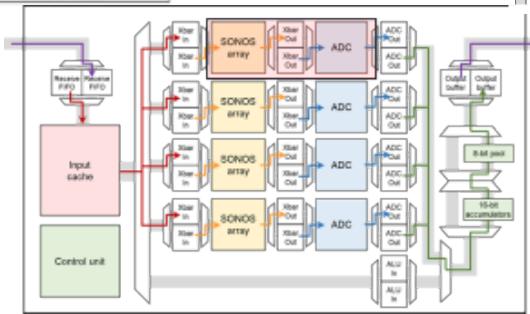


Algorithms

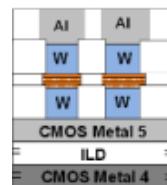
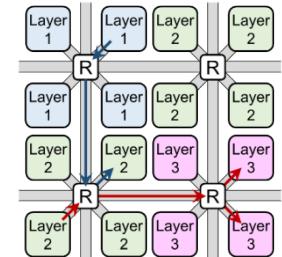
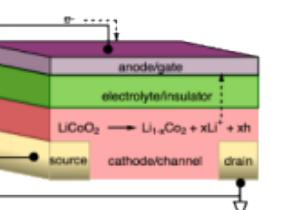
Target Algorithms

- Deep Convolutional Nets
- Sparse Coding
- Liquid State Machines

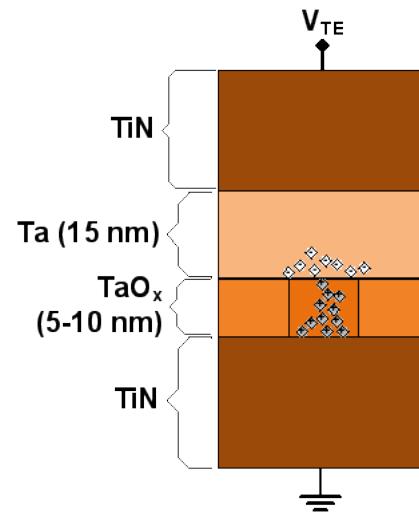
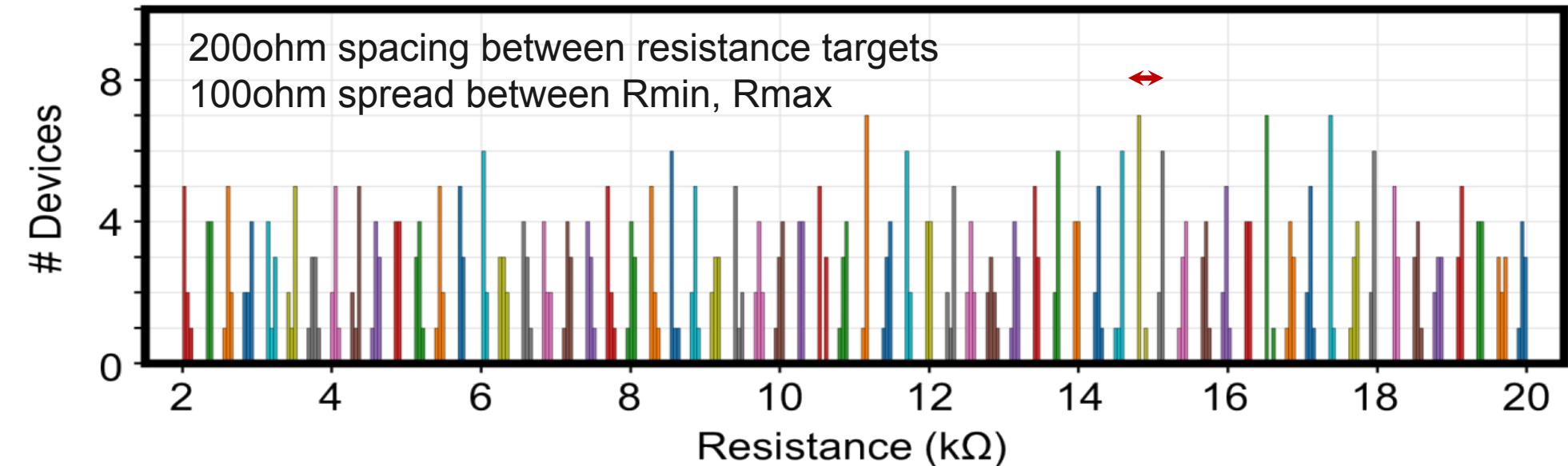
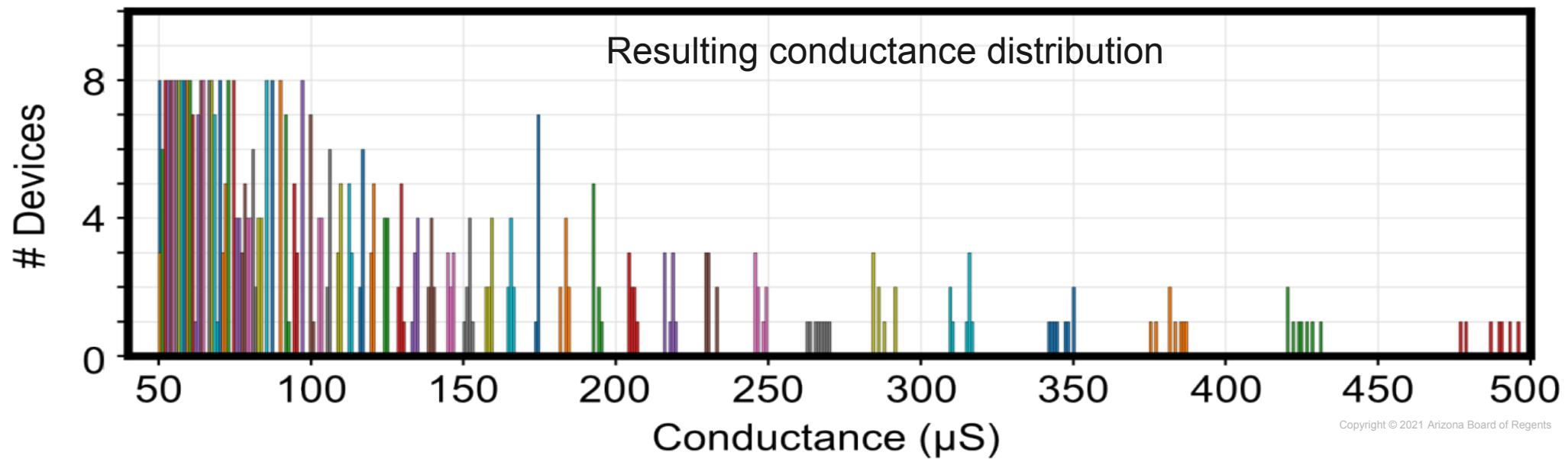
Architecture Simulation



Device Models

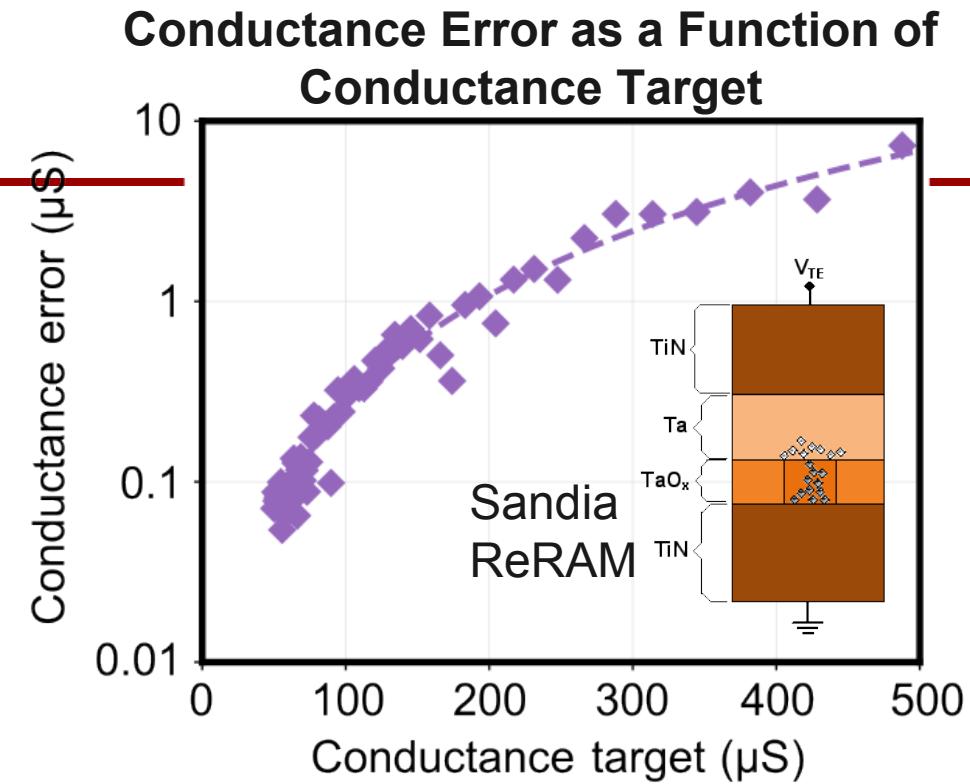
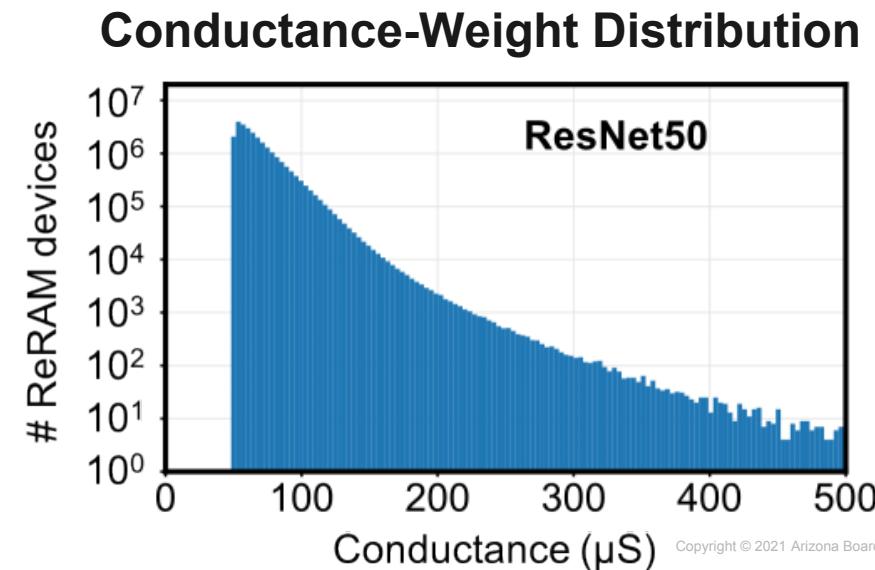


Sandia TaOx ReRAM Inference Resistance Distributions



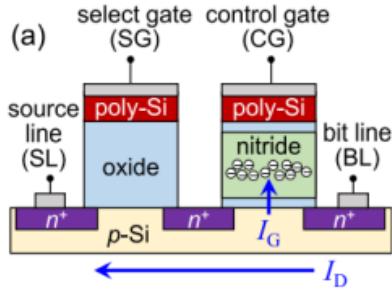
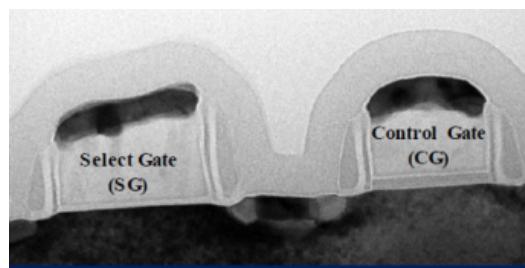
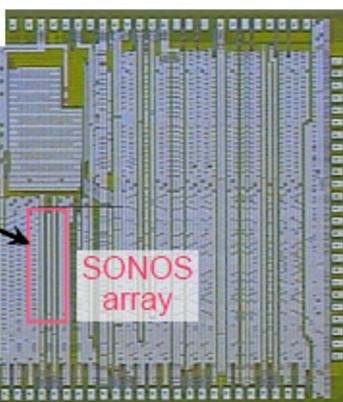
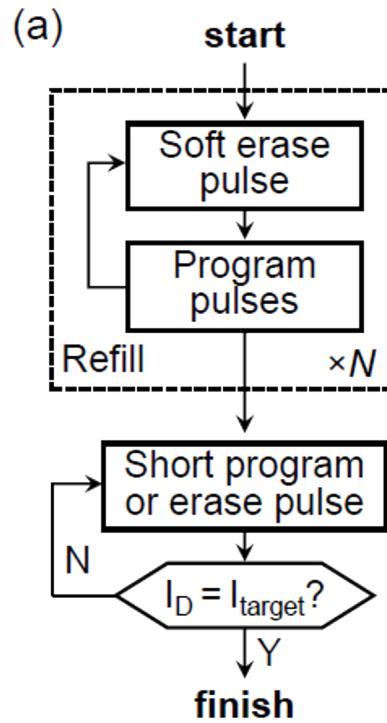
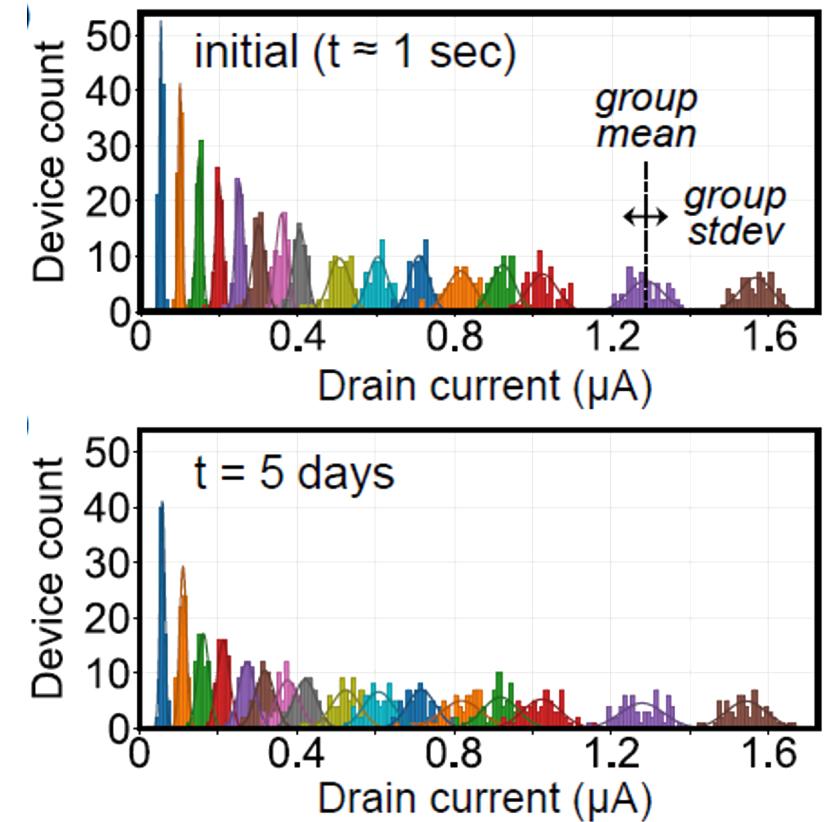
TaOx ReRAM Error Model

- Conductance error approx parabolic with conductance target – this is ideal:
 - Lower conductances have lowest error and map to weights near zero.
 - Weights near zero hold most information, hence device error is minimized
- Modeled Accuracy in CrossSim Inference
 - ResNet50 CNN, ImageNet Dataset
 - 1000 image average
 - 8-bit ADC, 8-bit weight quant
 - Assume $G_{ON}/G_{OFF} = 10$
- ReRAM accuracy on ImageNet:
 - Top-1 76.4%
 - Top-5 92.91%
- Compared to Digital (32 bit FP)
 - Top-1 77.18% (analog loss = 0.78%)
 - Top-5 93.06% (analog loss = 0.15%)
- Analog Inference predicted <1% loss!
 - Caveat: preliminary data – relaxation may degrade



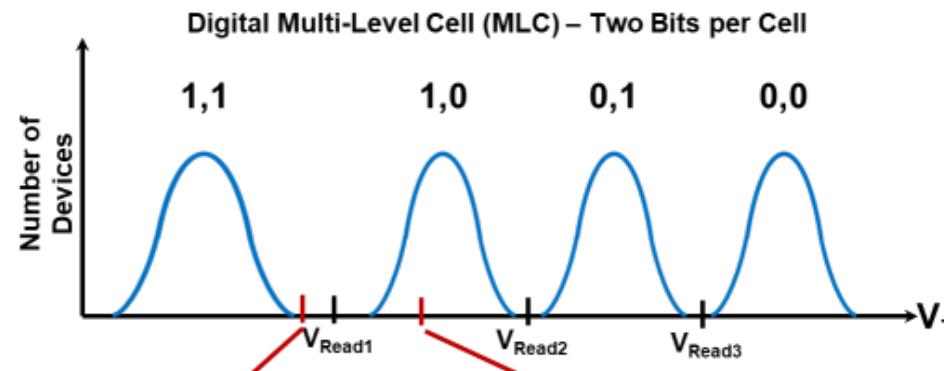
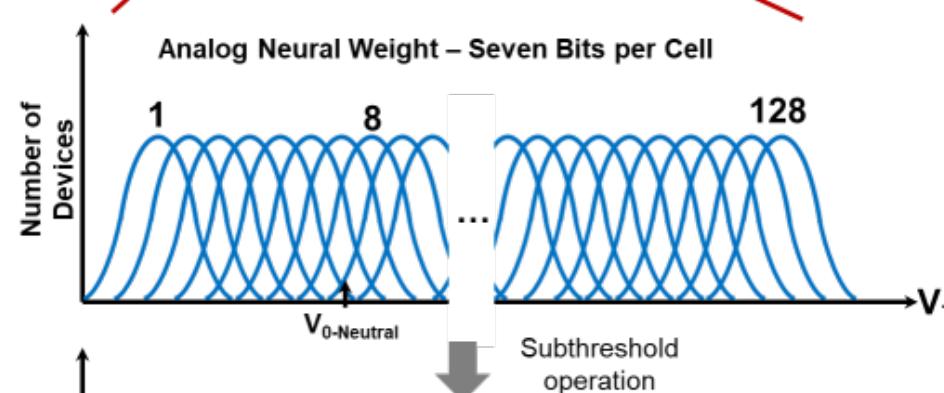
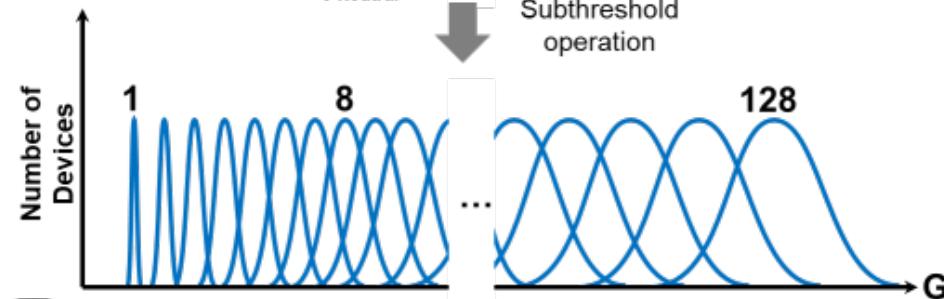
40nm SONOS Analog Inference Experimental Characterization

- Infineon 40nm SONOS Characterization Chip
- 1024x1024 test array
- Write verify routine programs all cells with analog values
- Experimental statistical assessment of analog programming error as a function of target drain current

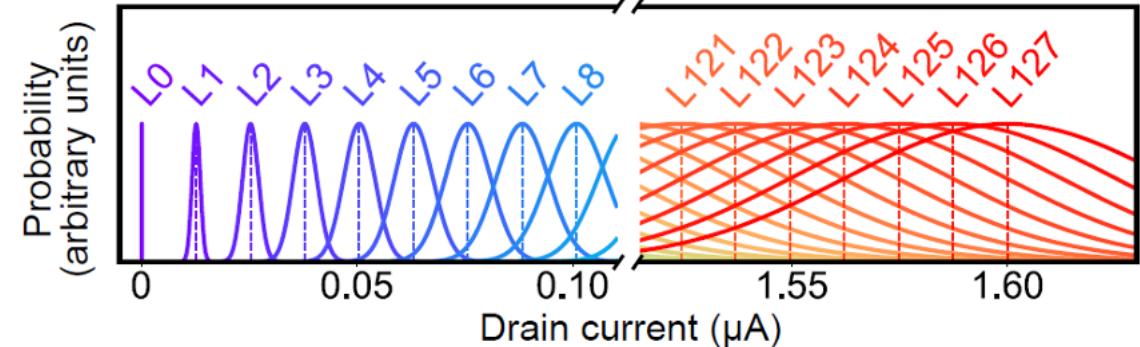
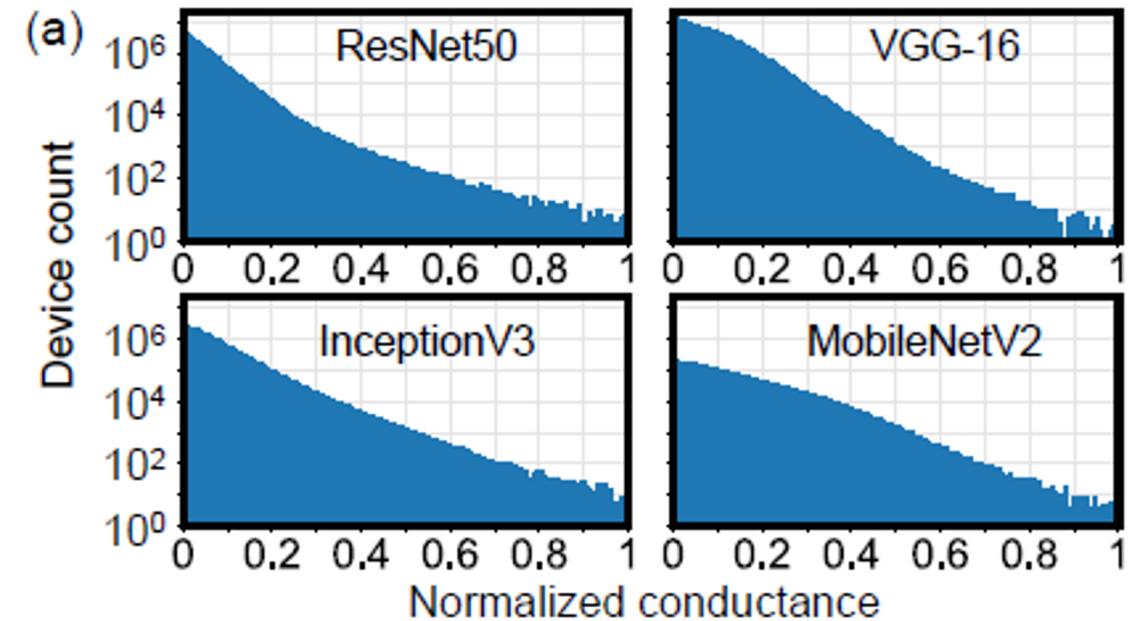


Agrawal et al, IEEE IMW 2020.
T.P. Xiao et al, IEEE TCAS, 2022.

SONOS Deep CNN Inference Modeling: State Overlap



Modeled 7-bit Weight Distribution and Mapping

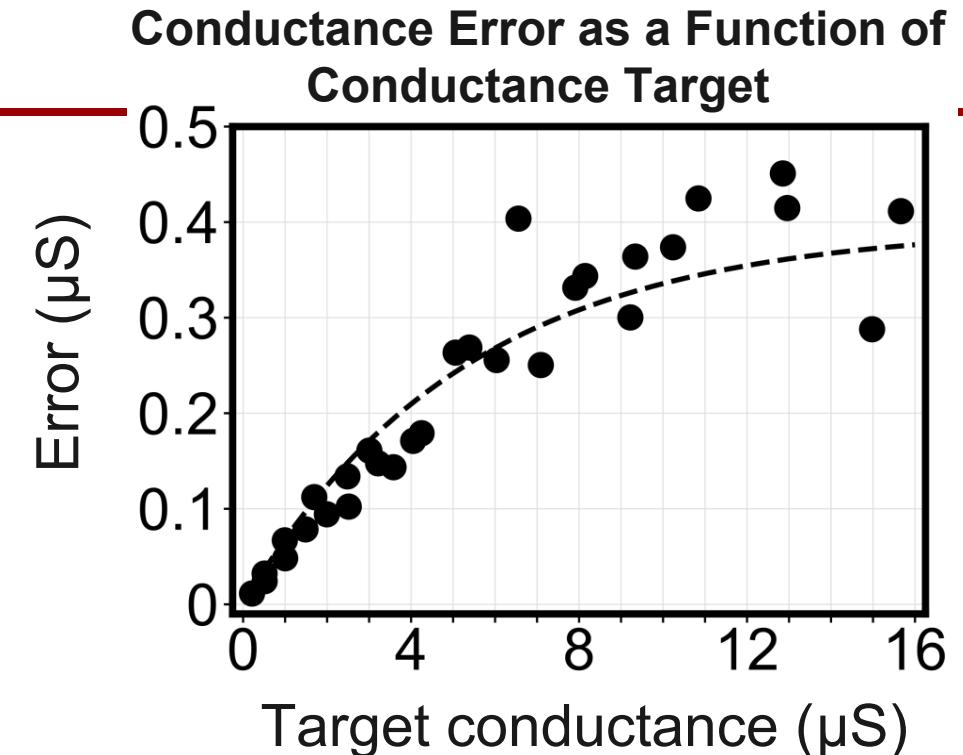
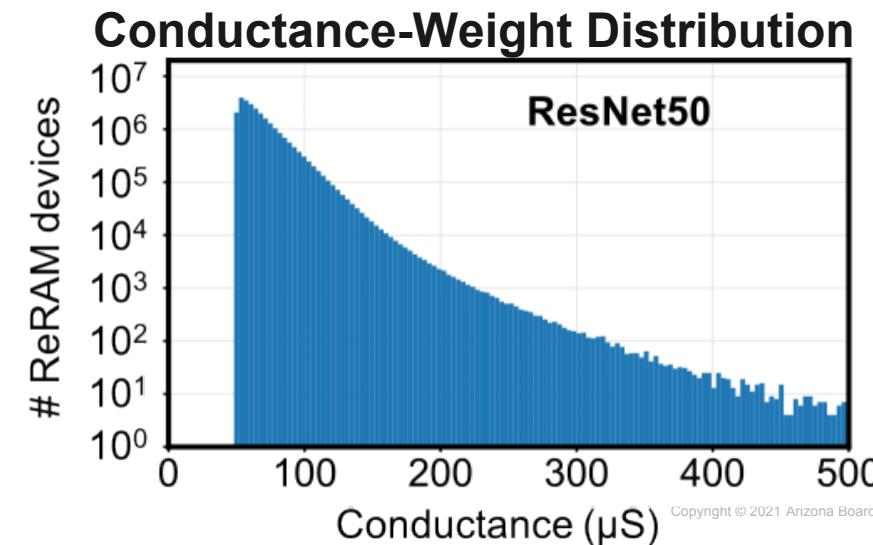


SONOS Accuracy Model Results

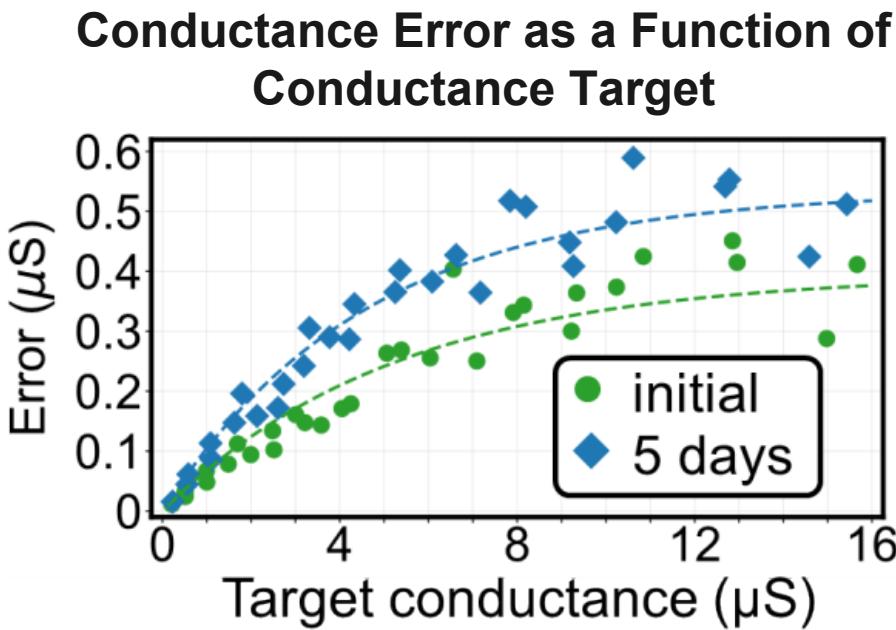
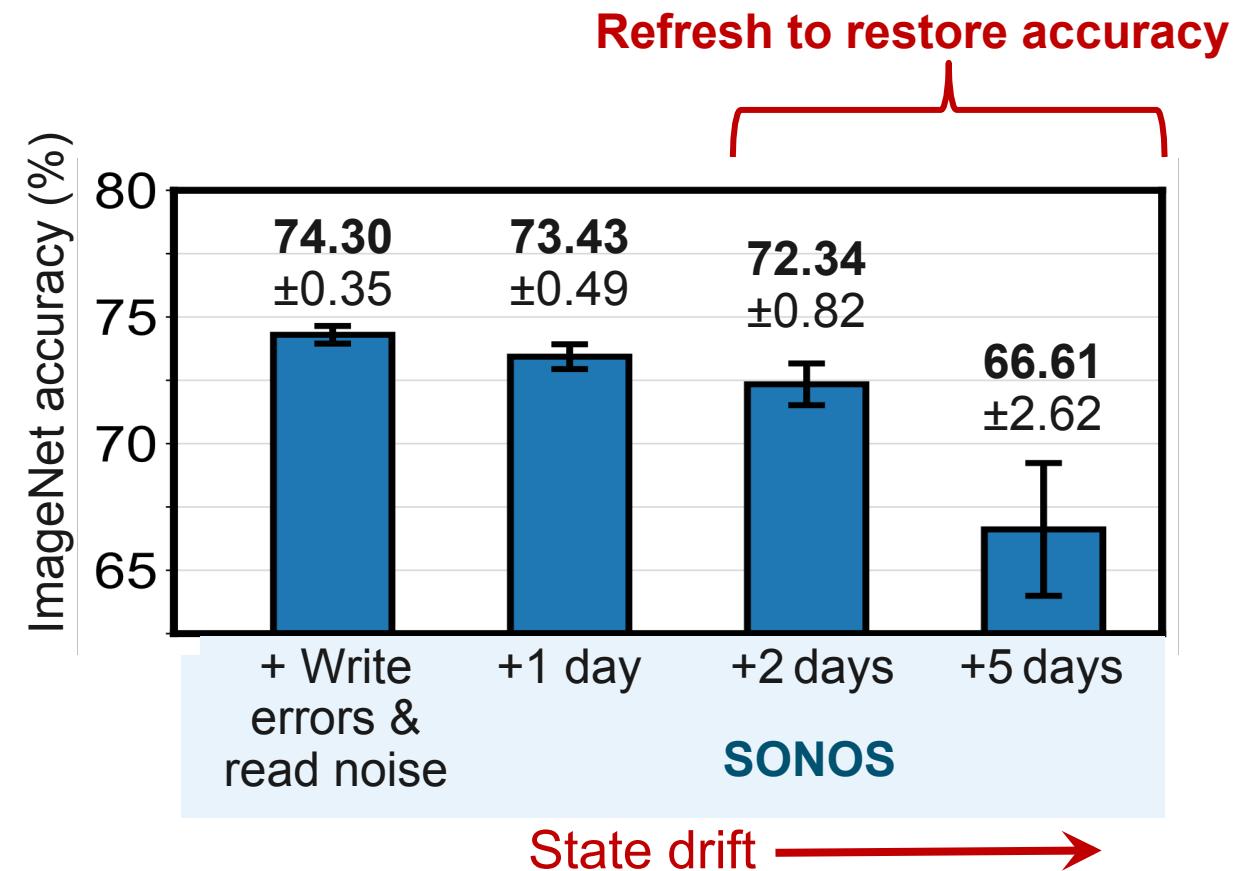
- Conductance error proportional to conductance target – this is ideal:
 - Lower conductances have lowest error and map to weights near zero.
 - Weights near zero are most common
 - Result: device-induced accuracy degradation minimized
- Modeled Accuracy in CrossSim Inference
 - ResNet50 CNN, ImageNet Dataset
 - 50,000 images
 - 8-bit ADC, 8-bit weight quantization

SONOS accuracy on ImageNet:

- Top-1 74.30%
- Top-5 91.97%
- Compare this to Ideal Digital (32 bit FP)
 - Top-1 76.46% (analog loss = 2.16%)
 - Top-5 93.00% (analog loss = 1.03%)
- **>10x Performance/Watt Improvement with only ~2% accuracy loss**
 - *Uses Commercial 40nm Technology*

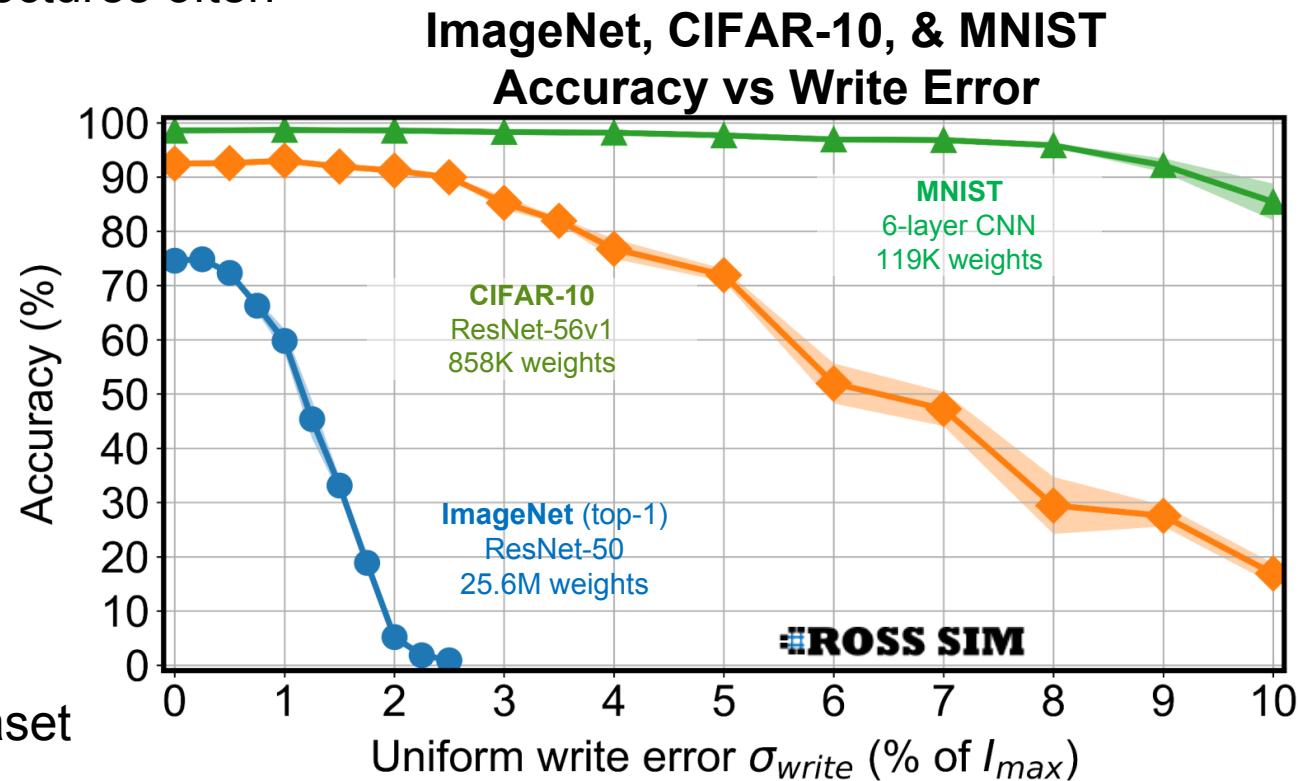


Effect of SONOS State Drift on Inference Accuracy

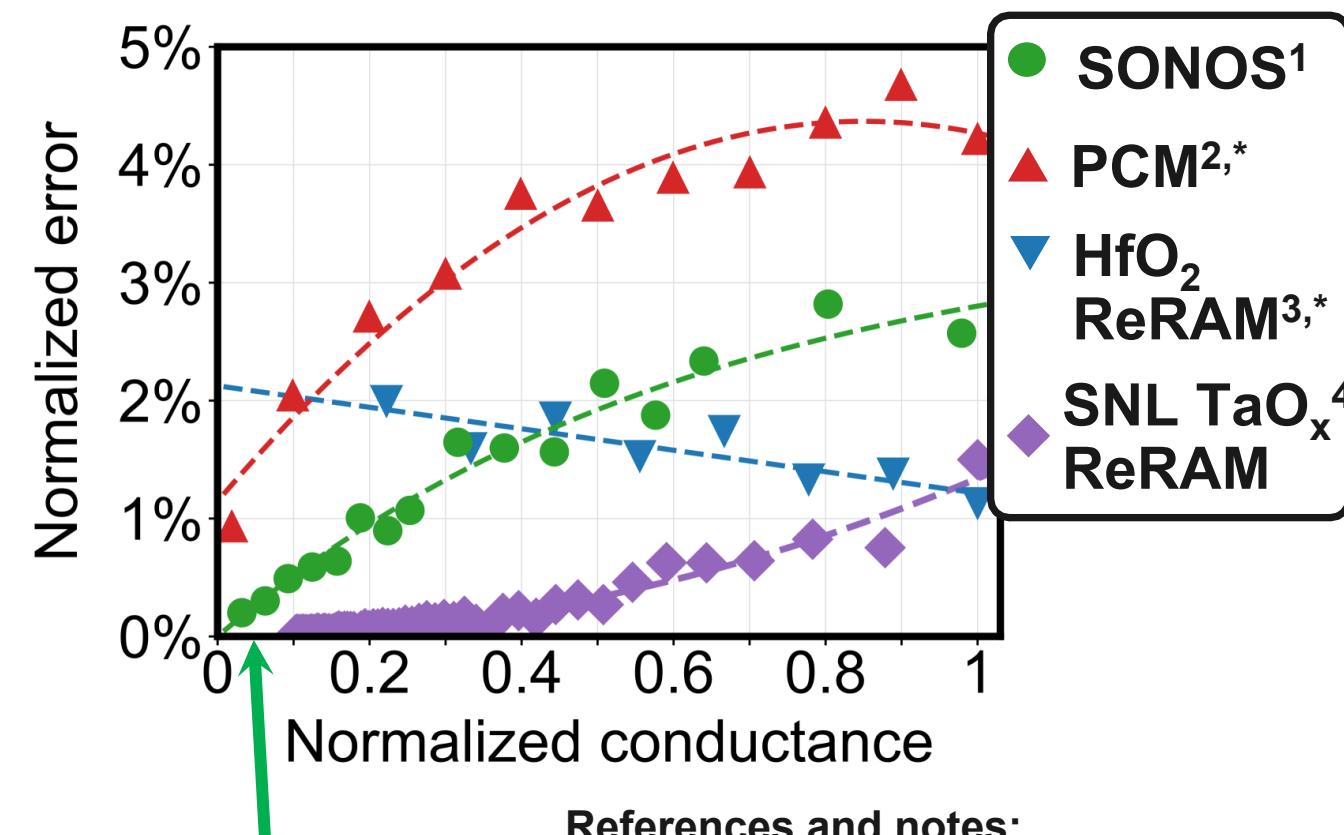


Effect of Network and Dataset on Accuracy

- Different common datasets and CNN architectures often analyzed
- MNIST (simple CNN)
 - 28x28 pixel grayscale
 - 10 classes
 - 60k training images, 10k test images
 - ImageNet (requires large CNN arch.)
 - 224x224 pixel color
 - 1000 classes
 - 1.3M training images, 100k test images
 - ImageNet represents production-grade dataset
 - Sometimes smaller nets like MNIST are used due to computing constraints, esp for modeling training
- **Key Takeaway: Excellent accuracy on MNIST does not translate to excellent accuracy on ImageNet!**



Error and Inference Accuracy Summary: SONOS, ReRAM, PCM



Low error @ low conductance:
this is ideal

References and notes:

¹T.P. Xiao et al, IEEE TCAS, 2022.

²V. Joshi et al, Nat Comm. 11, 2020.

³Milo et al, IEEE IRPS, 2021.

⁴State drift/relaxation not yet measured, which may reduce accuracy.

^{*}All analog simulation also includes 8-bit weight quantization, 8-bit activations, and 8-bit ADCs

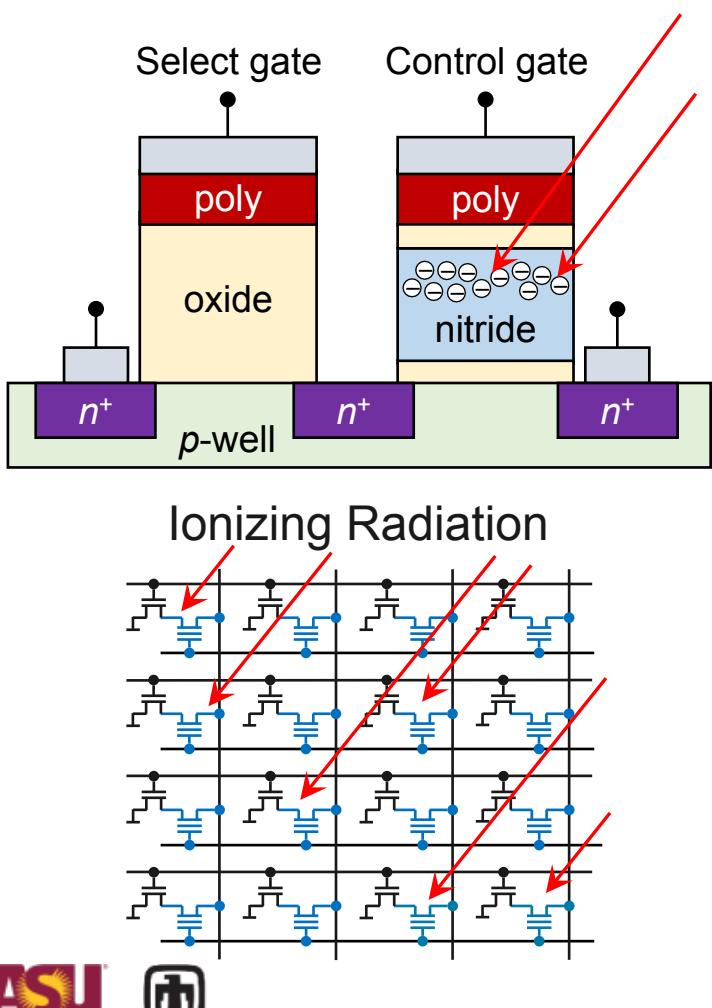
^{*}PCM and HfO₂ error are modeled entirely from data and programming used in publication only.

^{**}Based on 1000 ImageNet images

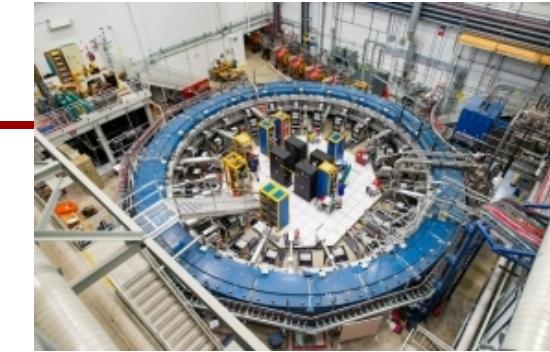
Technology ⁺	Top-1 accuracy ^{**}	Top-5 accuracy ^{**}
Floating point digital (ideal)	77.5%	93.3%
SONOS ¹	74.0% \pm 1.0%	92.5% \pm 0.4%
SNL TaO _x ReRAM ⁴	76.4% \pm 0.2%	93.3% \pm 0.1%
PCM ²	28.2% \pm 6.4%	49.7% \pm 7.8%

ROSS SIM

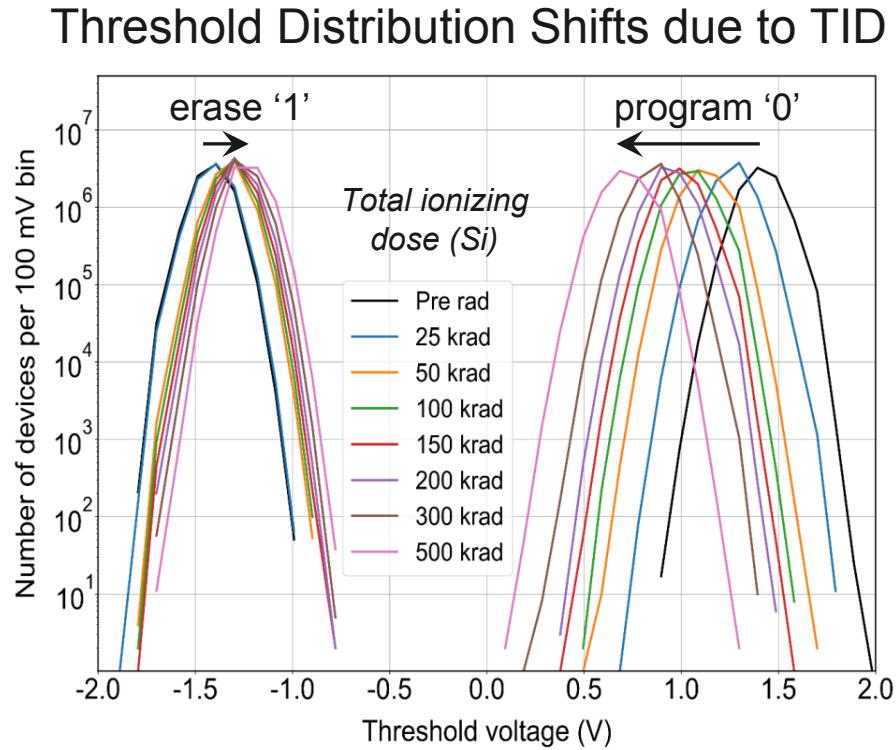
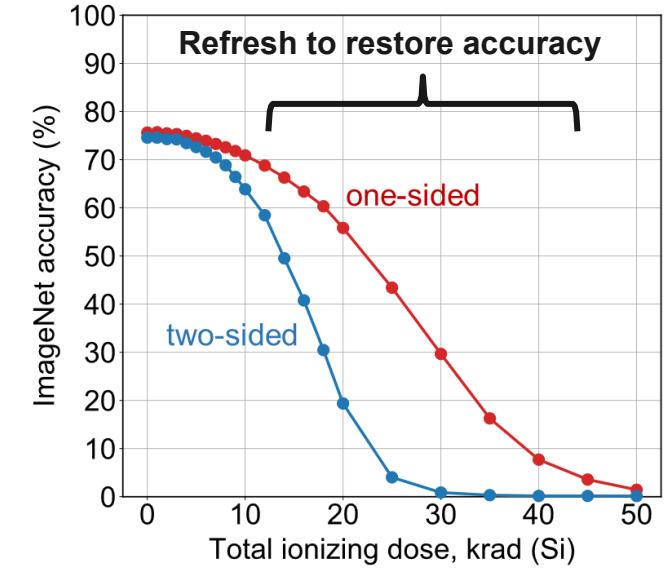
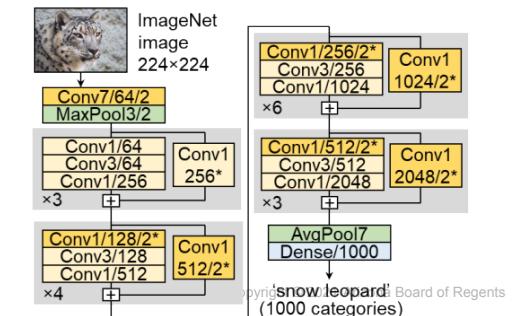
Device-Level Radiation Impacts Algo Accuracy



How will the accuracy
degrade in radiation
environments ?



Algorithm Accuracy Degradation due to TID

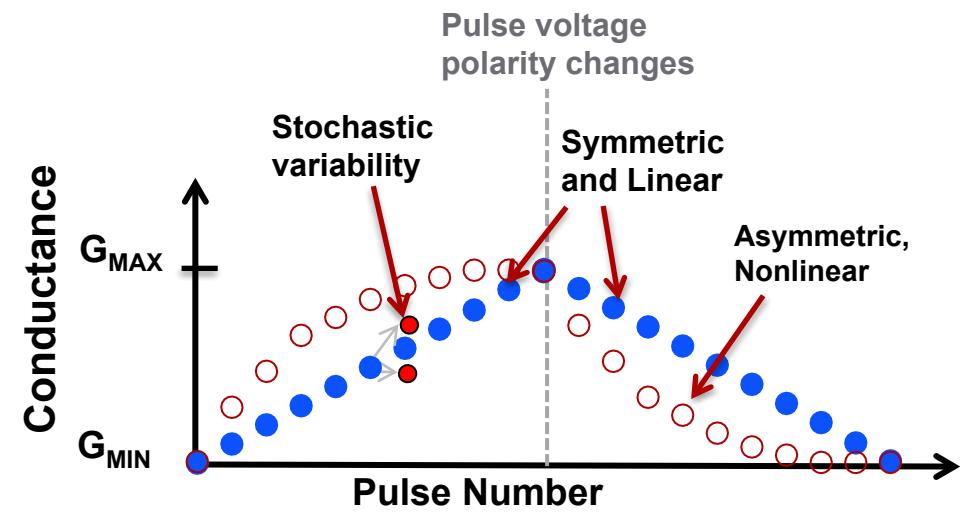


Outline

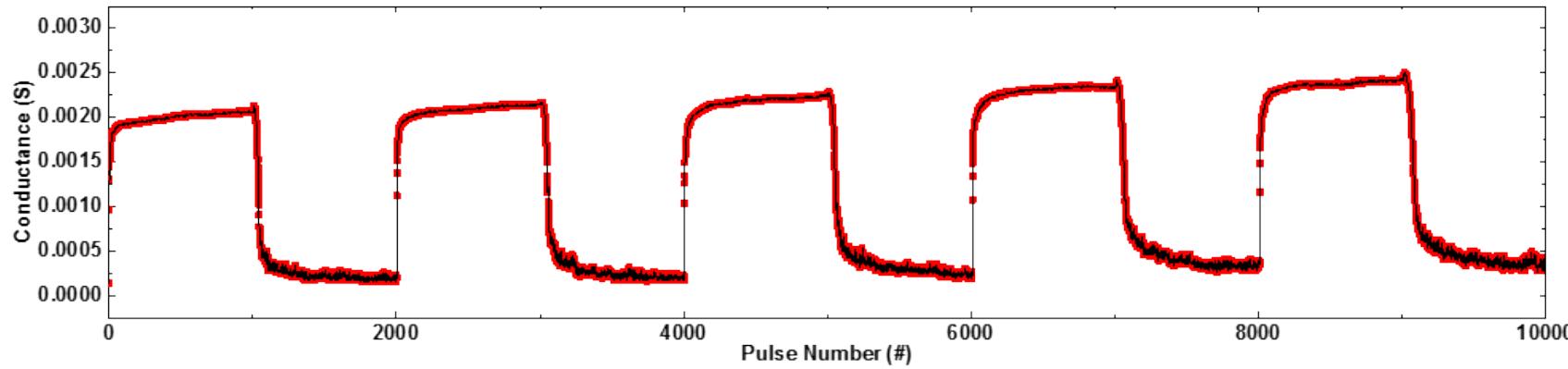
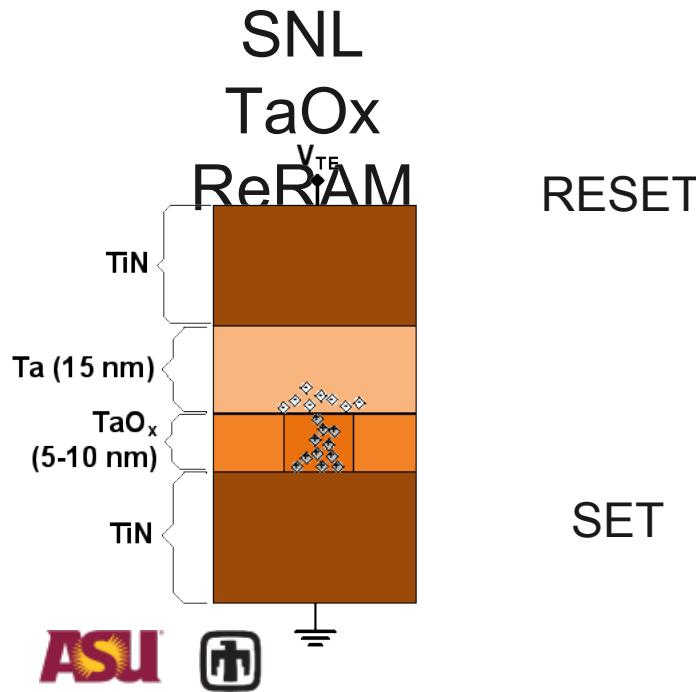
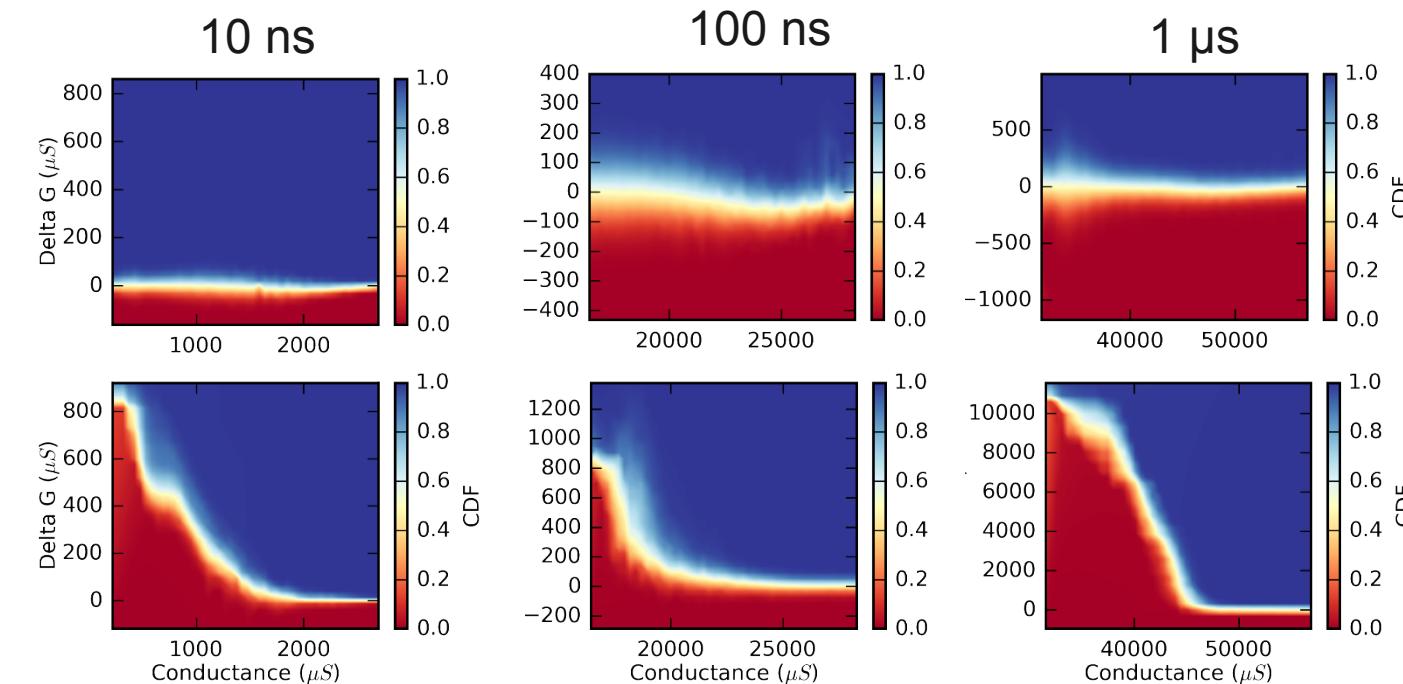
- Motivation and Digital Limits
- Analog In-Memory Compute Energy & Latency
- Accurate Analog Inference
- Accurate Analog Training
- Conclusions

Device Challenges for Training

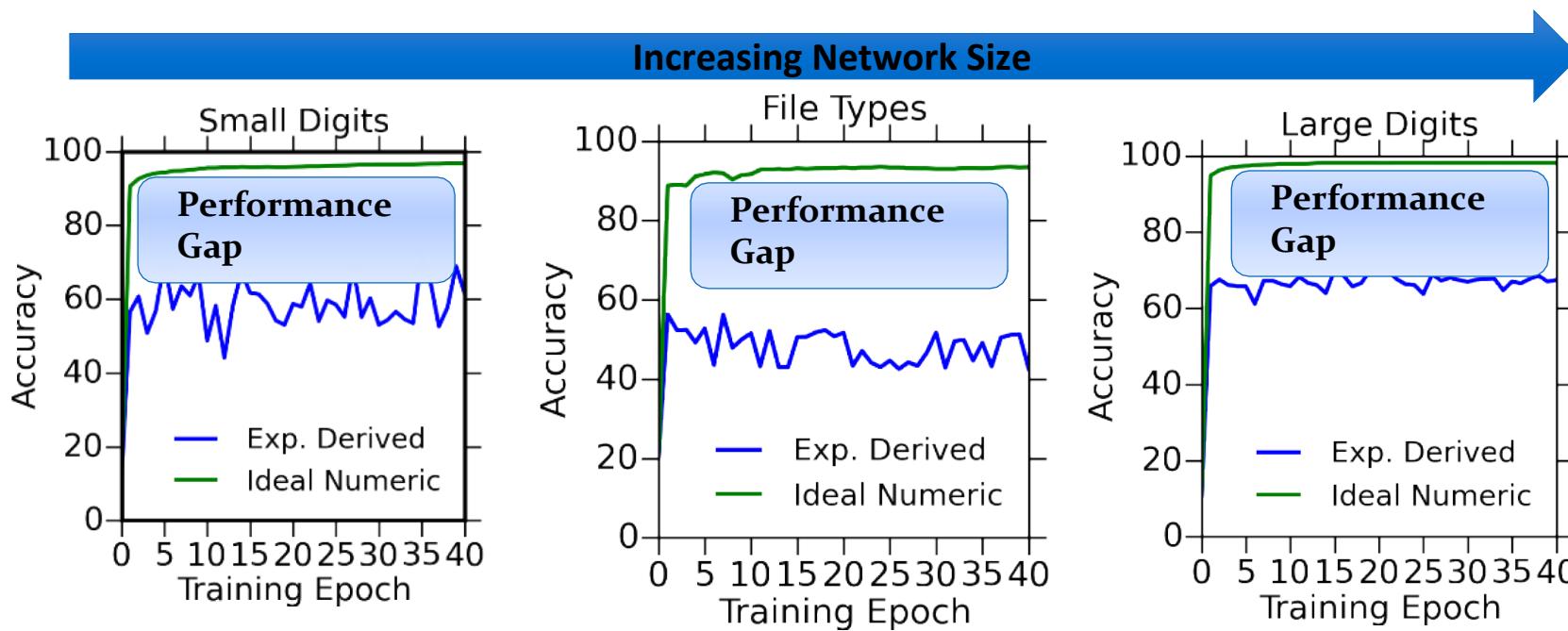
- Training has an overlapping set of challenges
- Ideally weight increases and decreases linearly proportional to learning rule result
- Issue for open loop nonvolatile memory: altered the relationship between intended and actual update
- Nonlinear and asymmetric state change
- Cycle to cycle random variability (write stochasticity)
- Device to device random variability
- Also: very high endurance ($>10^{12}$)



Characterization for Training

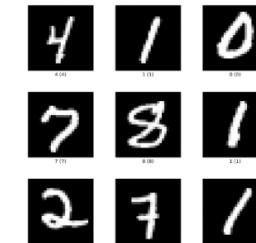


Initial TaOx ReRAM Training Accuracy Modeling (MNIST)



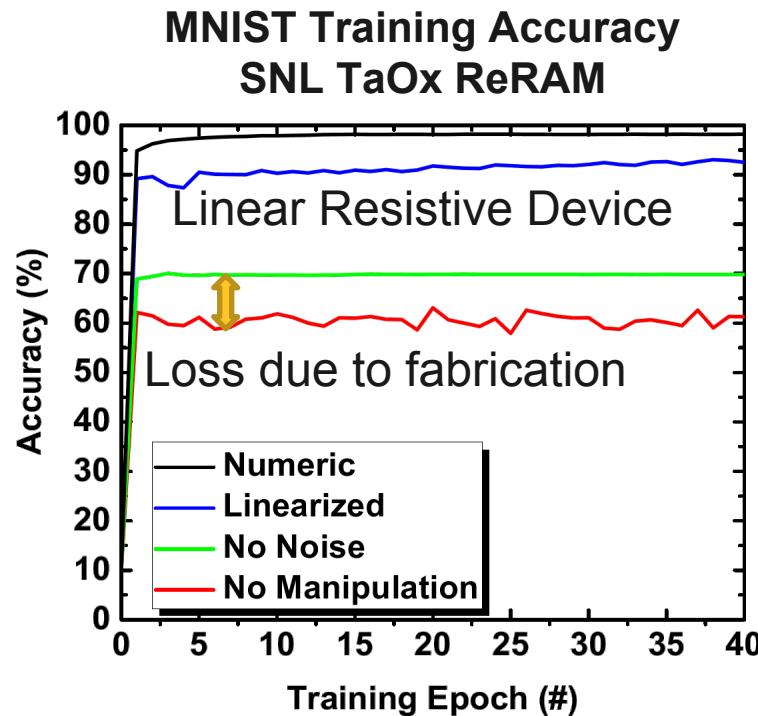
#ROSS SIM

- TaOx ReRAM has challenges for open loop training...
- Why?



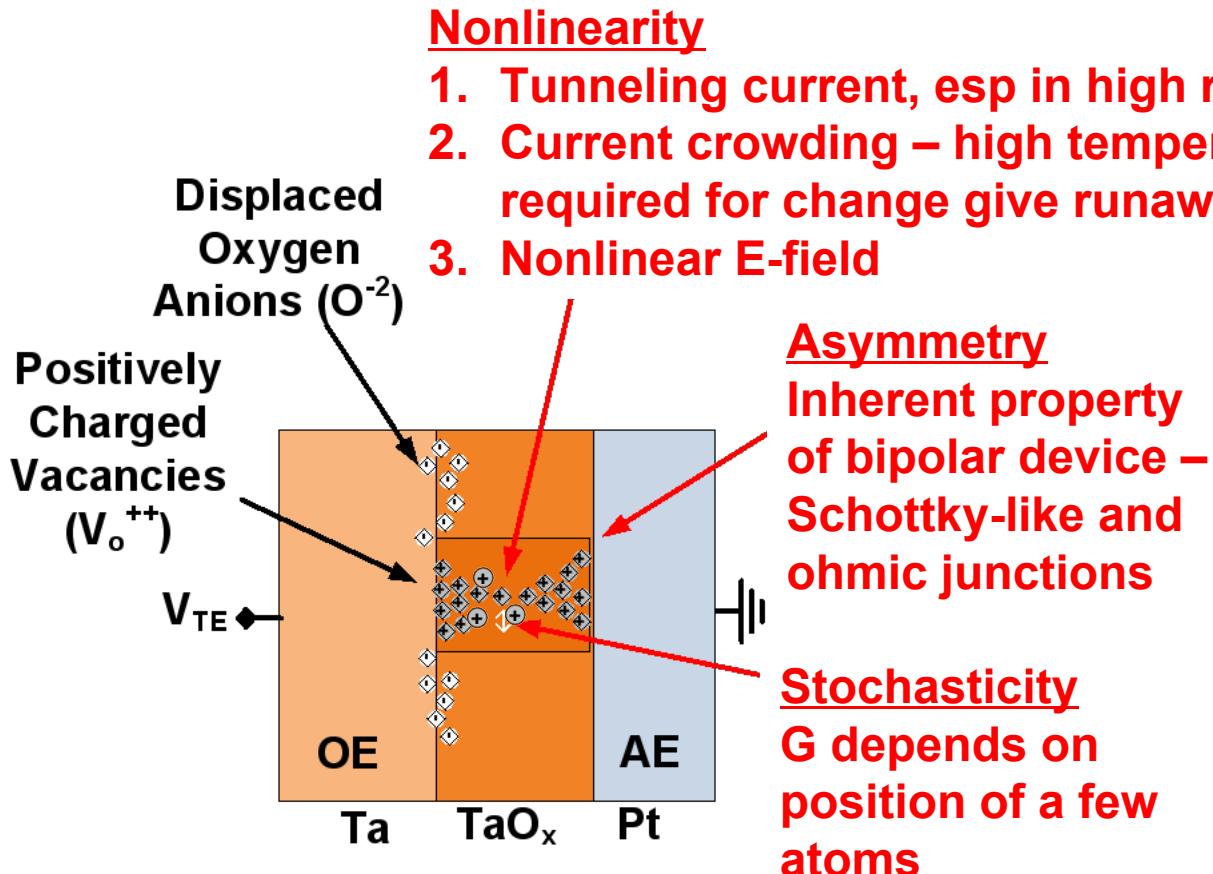
Physical Insight from Multiscale Model - CrossSim

Challenges using Filamentary ReRAM for Training



R. Jacobs-Gedrim et al, Proc. 2017 IEEE ICRC, 2017.

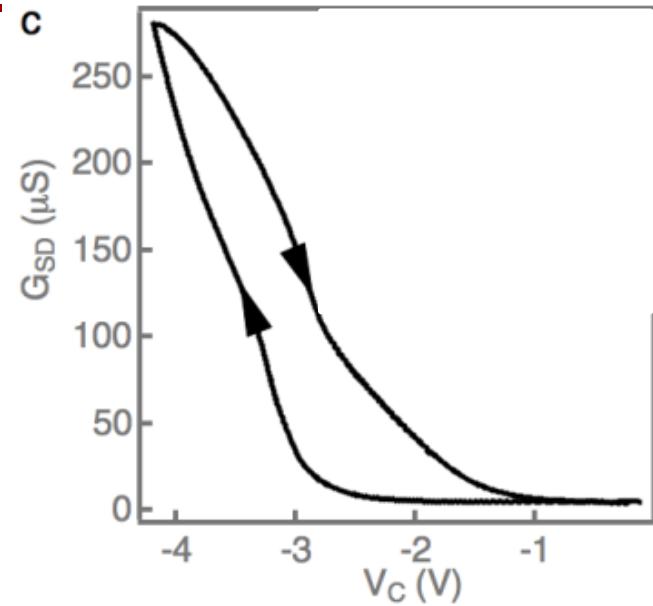
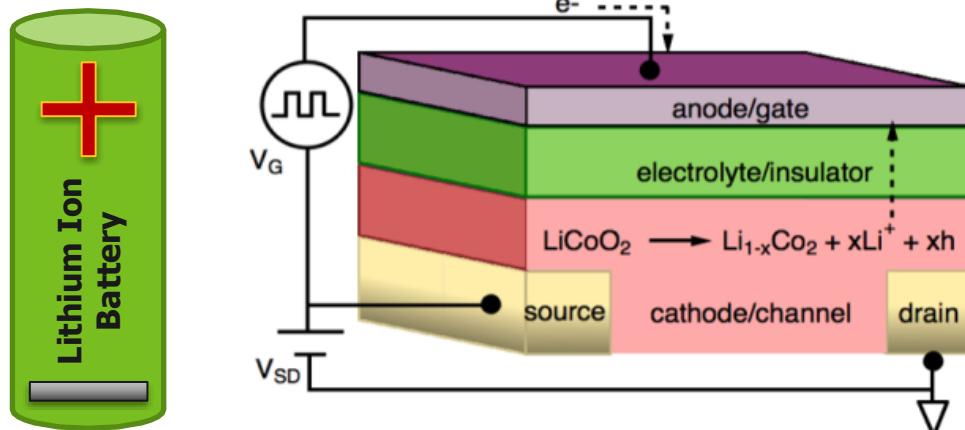
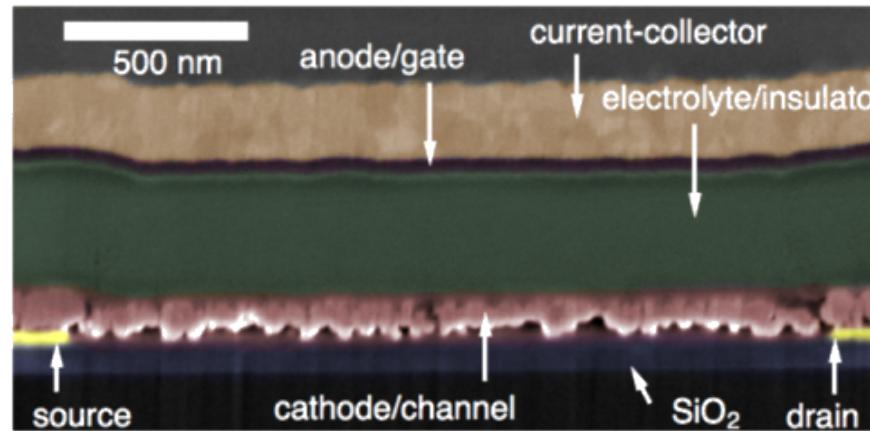
CROSS SIM



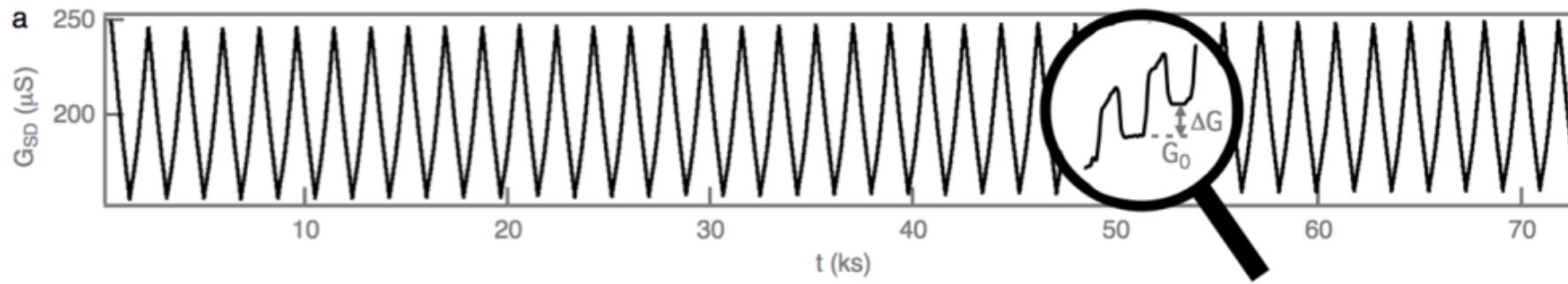
Electrochemical RAM (ECRAM) Synapse

- Lithium acts as dopant in LCO cathode
- Resistivity across cathode changes linearly with Li insertion (battery charge/discharge)
- Functions as an analog nonvolatile transistor!
- Much smoother state change than filament devices

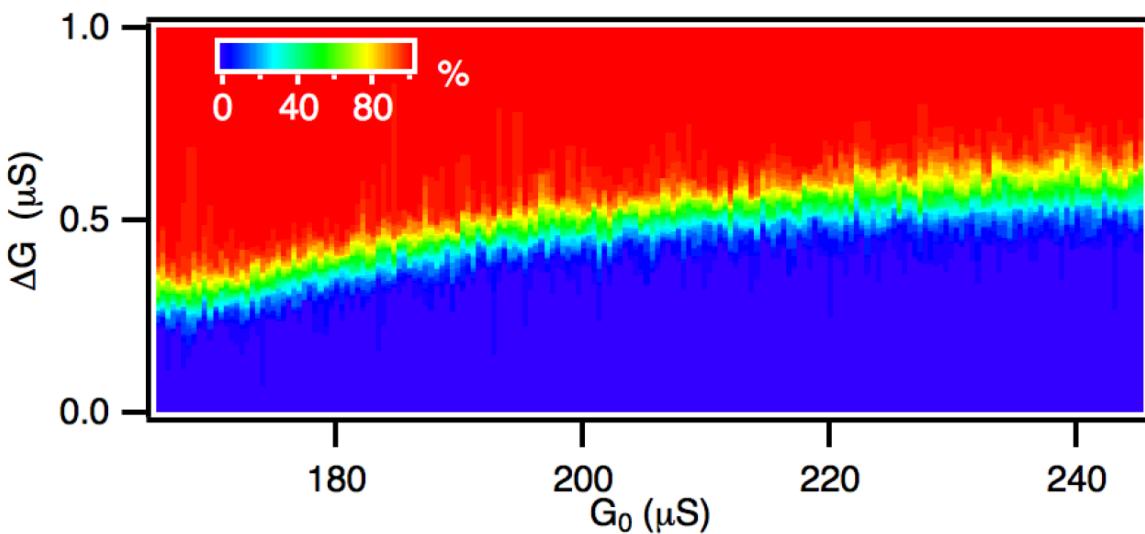
Conductance vs Voltage



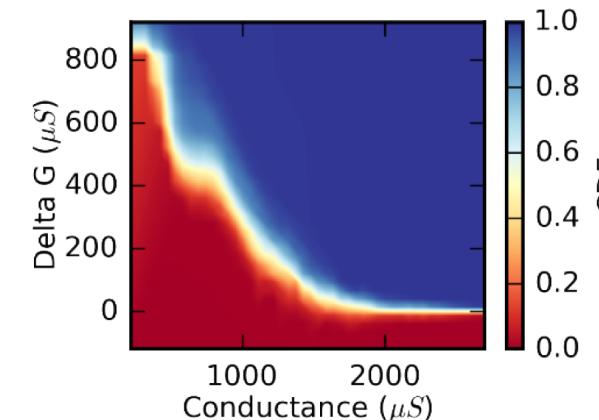
ECRAM Characterization



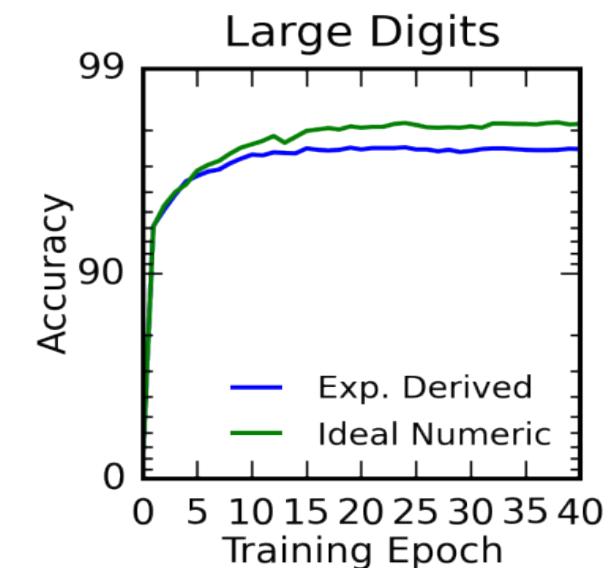
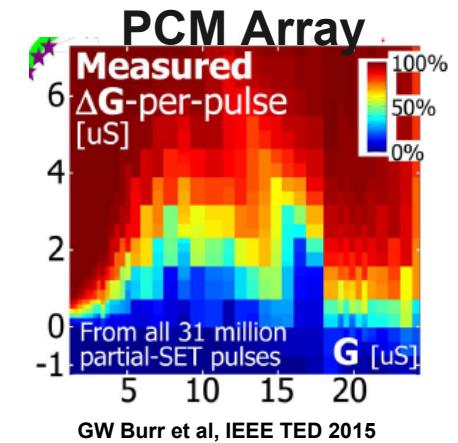
ECRAM



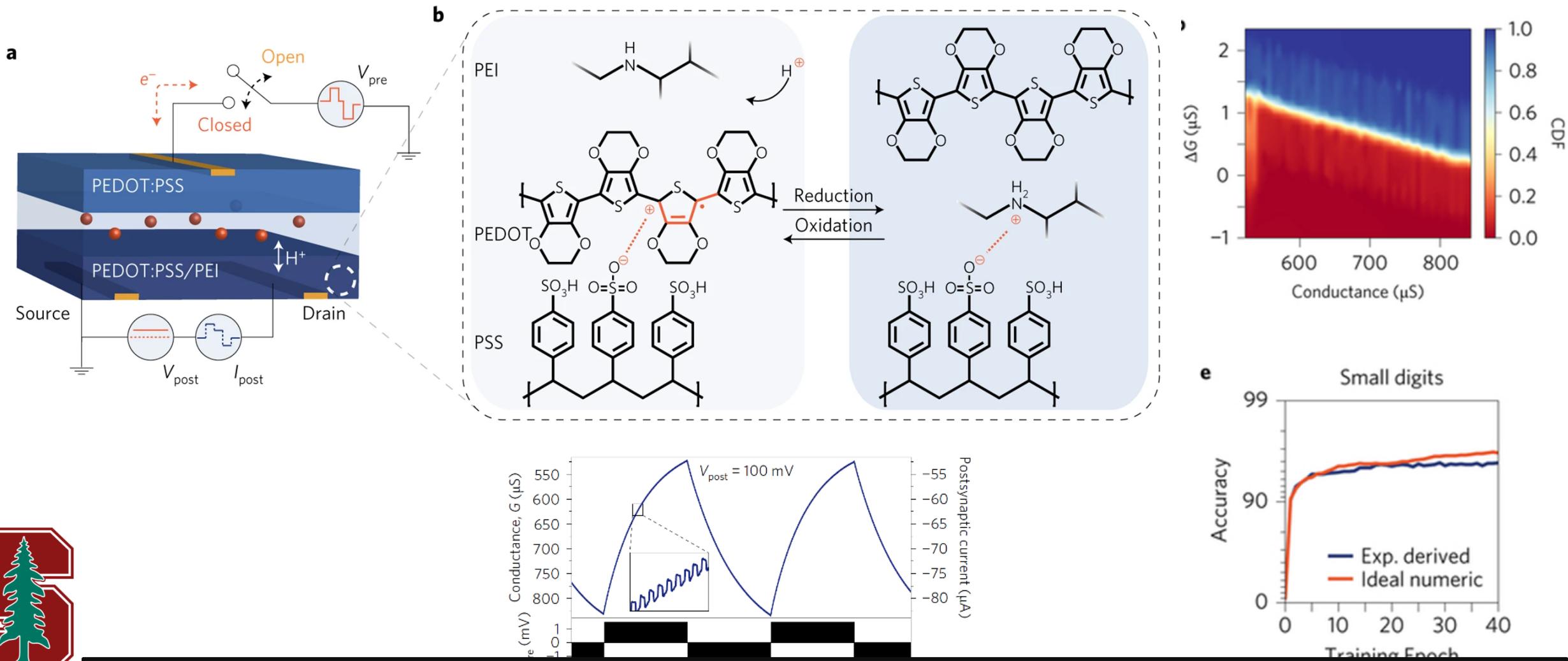
TaOx ReRAM



ECRAM-MNIST

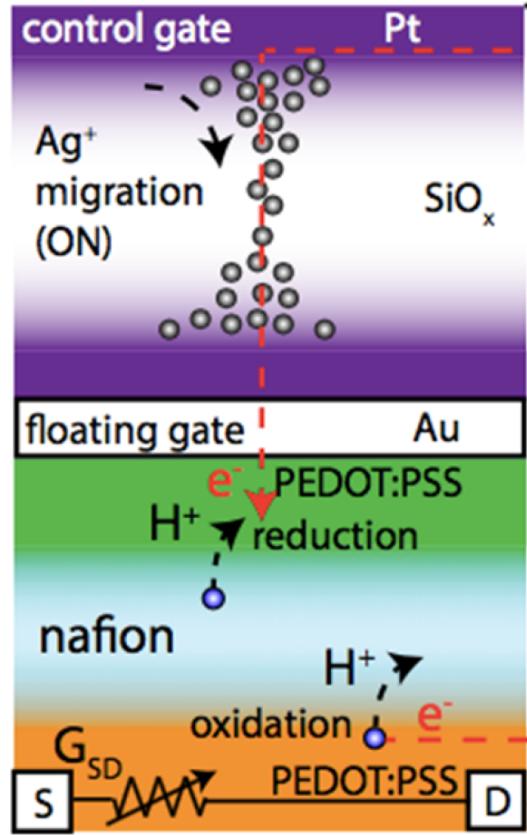
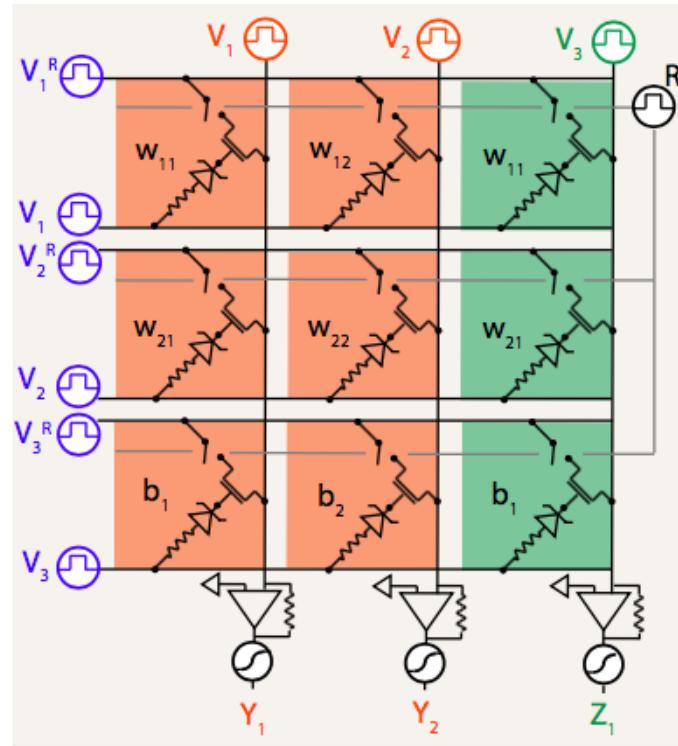
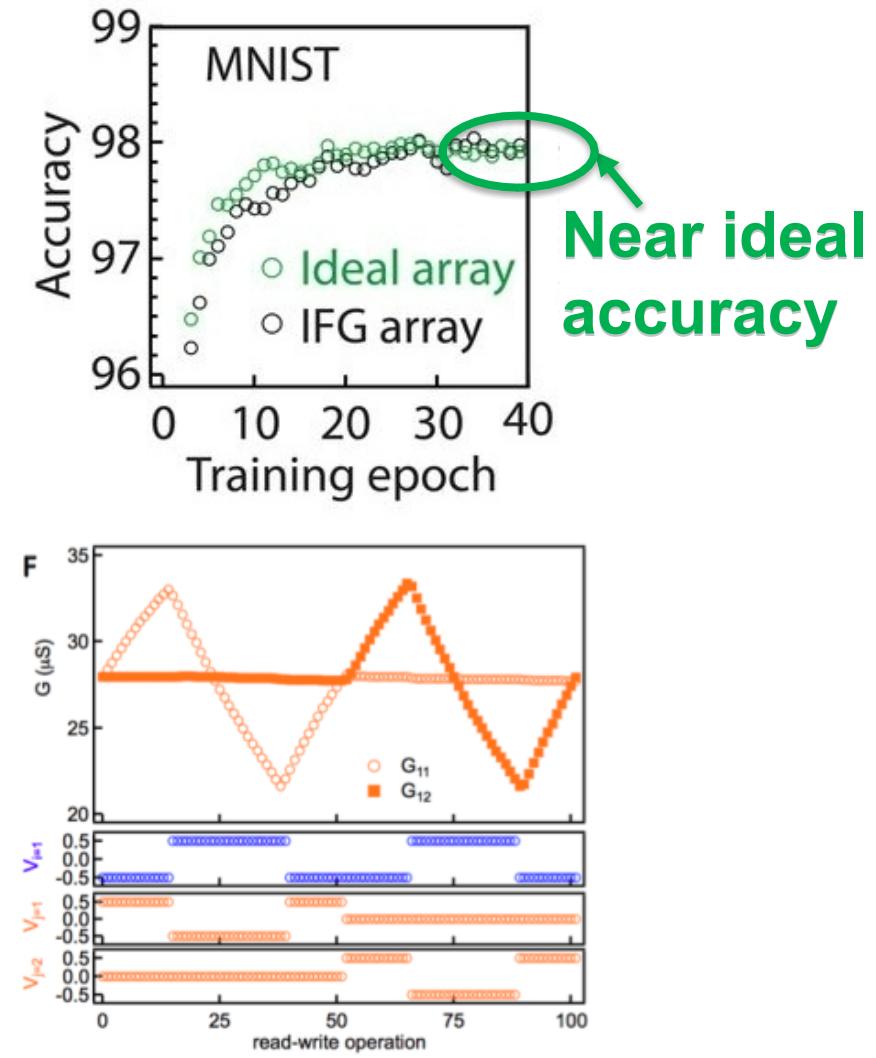


Electrochemical Neuromorphic Organic Device (eNode)



Proton-based polymer ECRAM synapse: fast, better endurance

ECRAMs Array Parallel Update Training Demonstration



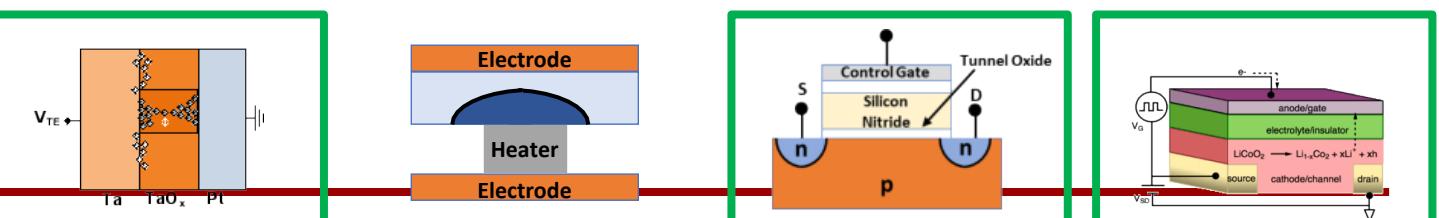
Outline

- Motivation and Digital Limits
- Analog In-Memory Compute Energy & Latency
- Accurate Analog Inference
- Accurate Analog Training
- Conclusions

Analog Device Requirements

Property	Inference	Training
Analog programing error (w/ write verify)	Critical	Less Important
Long term retention	Important	Less Important
Read noise	Important	Less Important
Conductance Range	Important	Important
Short term state drift	Important	Important
Device to device variability	Important	Important
Write stochasticity	Less Important	Important
Write speed	Less Important	Important
Write linearity	Less Important	Important
Write symmetry	Less Important	Critical
Endurance	Less Important	Critical

Perspective: IMC Devices



Property	ReRAM	PCRAM	SONOS/FG	ECRAM
Analog programing error (w/ write verify)	😊	😐	😊	😊
Long term retention	😊	😊	😊	😐
Read noise	😊	😊	😊	😊
Conductance range	😐	😐	😊	😊
Short term state drift	😐	😐	😐	😐
Device to device variability	😐	😐	😊	😊
Write stochasticity	😢	😢	😊	😊
Write speed	😊	😊	😐	😐
Write linearity	😢	😢	😐	😊
Write symmetry	😢	😢	😊	😊
Endurance	😐	😐	😐	😐

Final Thoughts

- Traditional digital CMOS computing is hitting disruptive roadblocks for continuing energy efficiency (or equivalently, performance per watt)
- Analog In Memory Computing offers path to >10 TOPS/W
 - Ideal for deep neural nets and deep convolutional nets
 - Analog In Memory Computing has significant new challenges
 - *Algorithm* accuracy depends on the *device*
 - This creates significant, new device electrical characterization requirements
 - Inference and training have distinct challenges, with some overlap.
 - Inference: high accuracy predicted with commercial SONOS and ReRAM
 - Inference challenge: write-verify with short term state drift
 - Training: is more challenging, but devices such as ECRAM and related nonfilamentary devices provide a path forward

Acknowledgements

- This work was funded by:
- DOE Office of Science Microelectronics Codesign Research Program, Supported ASCR, BES, HEP, and FES, Under the Abisko Project (Oak Ridge National Laboratories, Sandia National Labs), PM Robinson Pino, (ASCR).
- Sandia National Laboratories Laboratory Directed Research and Development (LDRD)
- Defense Threat Reduction Agency (PM, Jacob Calkins)

Office of
Science

Acknowledgements

Sandia Contributors

Patrick Xiao
Chris Bennett
Will Wahby
Sapan Agarwal
Alec Talin
Robin Jacobs-Gedrim
David Hughart
Elliot Fuller
Ben Feinberg

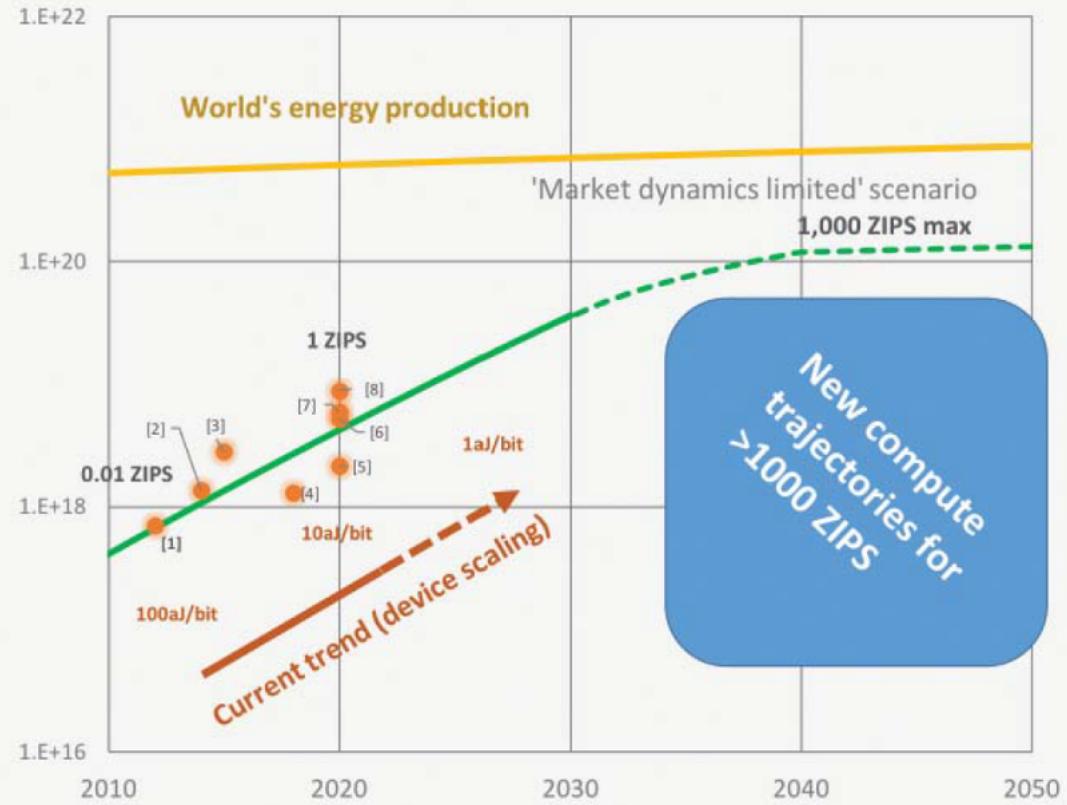
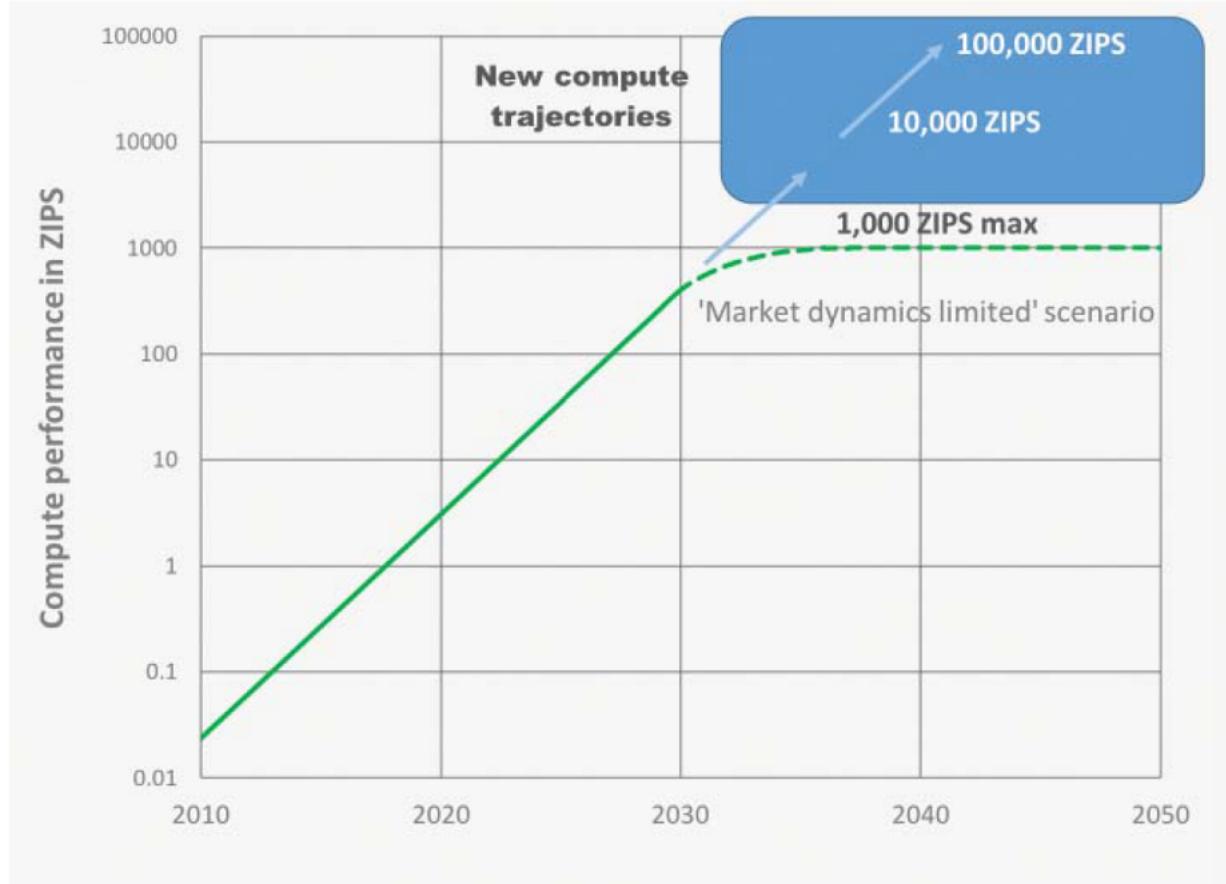
**Hewlett Packard
Enterprise**

External Collaborators

Helmut Puchner, Infineon
Vineet Agarwal, Infineon
Jean Anne Incovia, UT
Stan Williams, TAMU
Hugh Barnaby, ASU
Jesse Mee, AFRL
Yiyang Li, U Michigan
John Paul Strachan, HPE
Victor Zhirnov, SRC

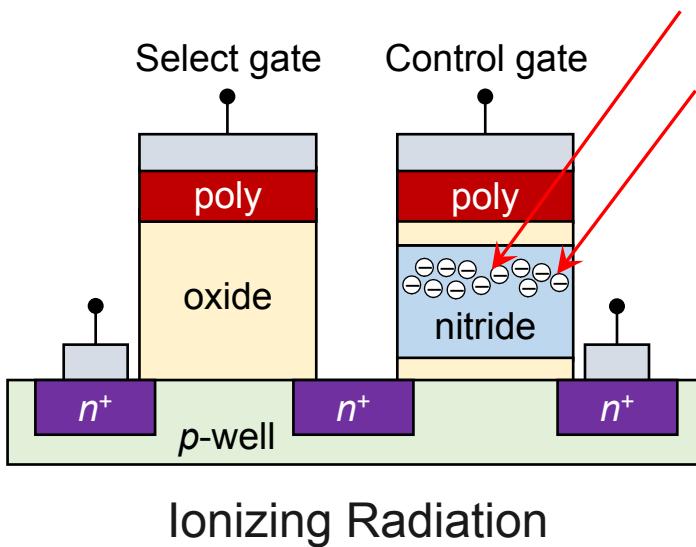
Thank You – Questions?

Microelectronics Grand Challenge

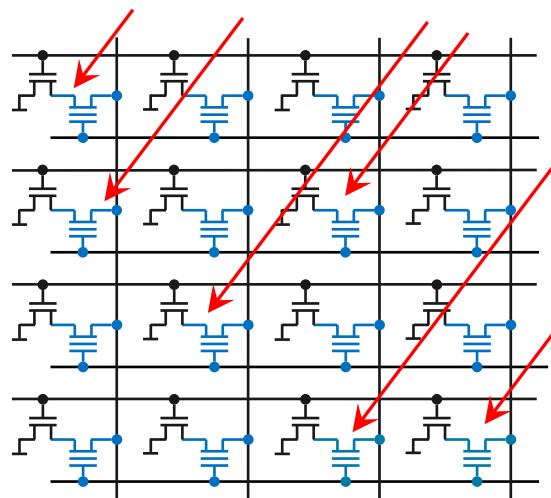


SRC Decadal Plan for Semiconductors, 2020

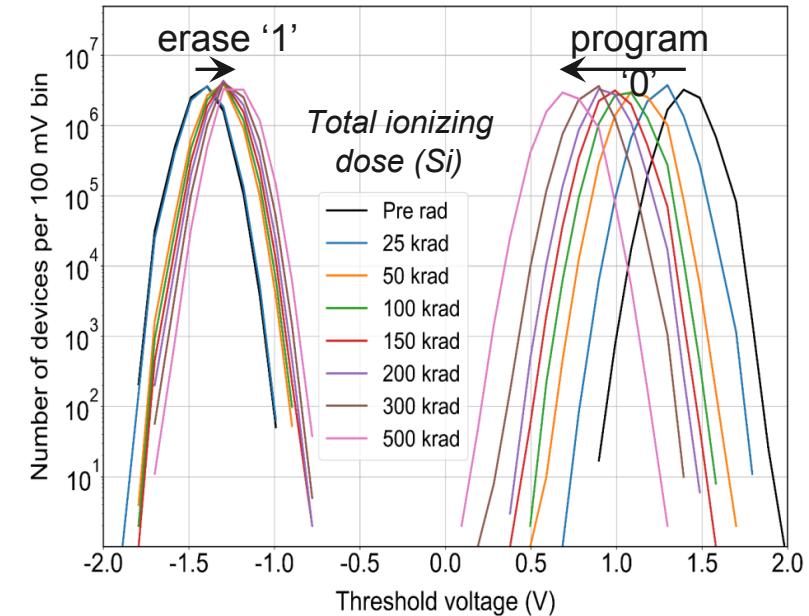
Impact of Ionizing Radiation on Deep Net Accuracy



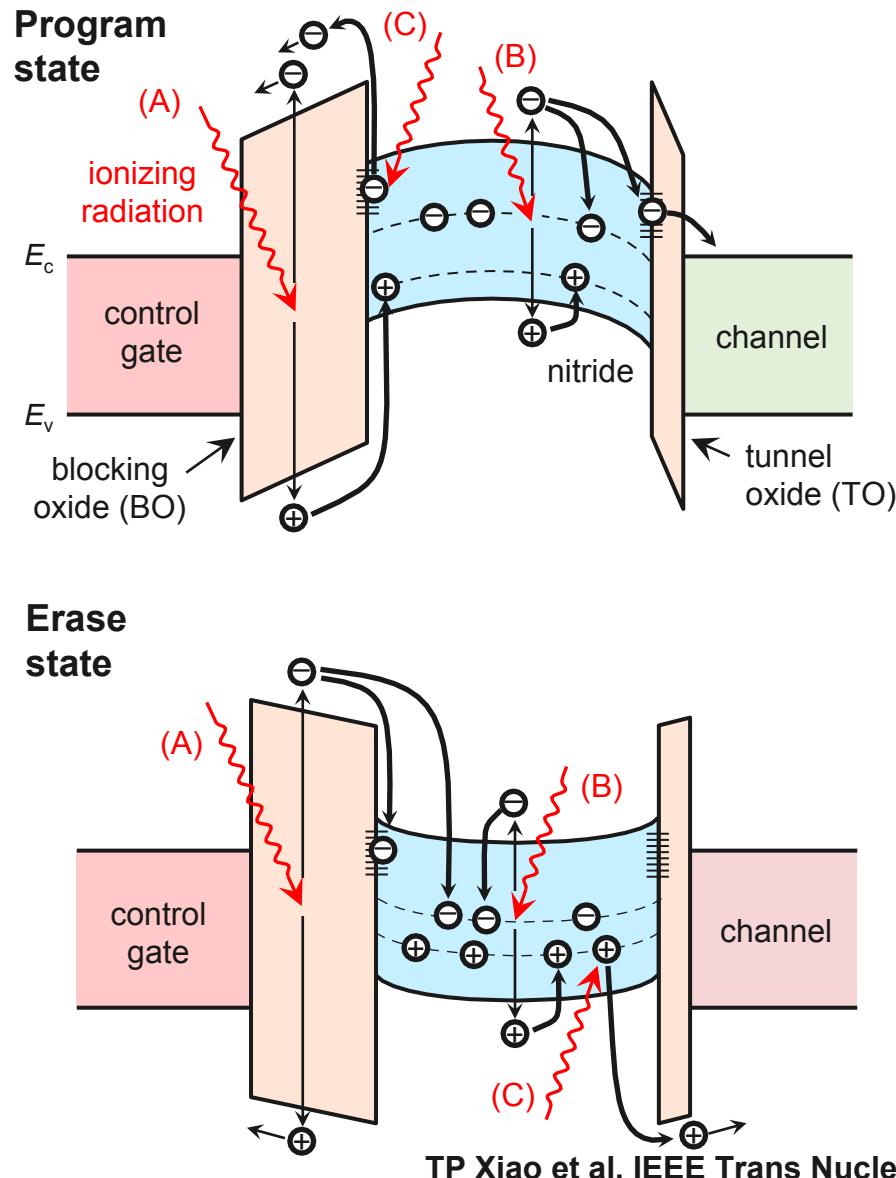
Uniform Gamma Irradiation



Threshold Distribution Shifts Across Array

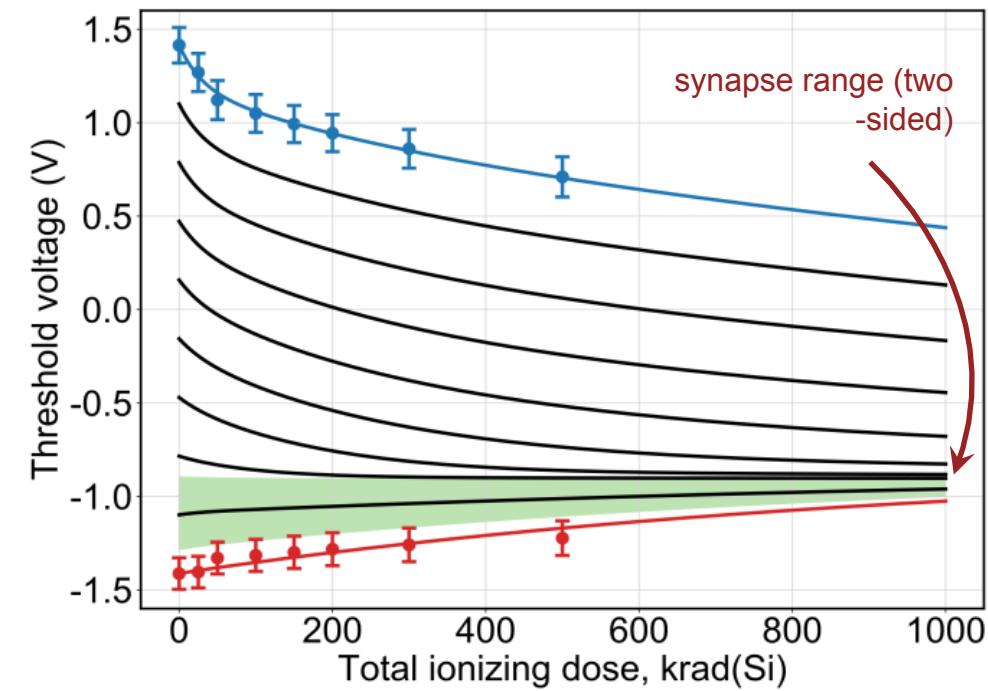


Analog Neuromorphic SONOS In Space: Physics to Algorithm



TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press).

V_T versus Total Ionizing Dose: Model and Experiment

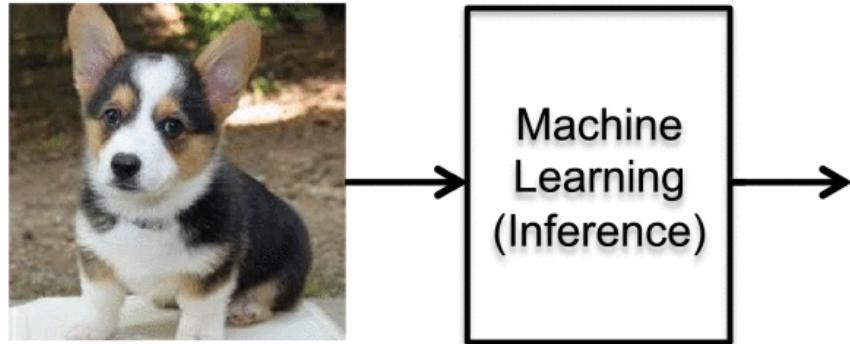


Copyright © 2021 Arizona Board of Regents

Neural Network Basics

Inference

- Feed forward operation of the network to perform task, i.e. classification
- Ex: Image recognition
- Computationally requires single feed forward pass through network
-

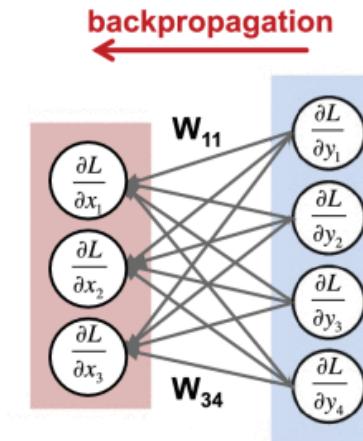


Class Probabilities

Dog (0.7)
Cat (0.1)
Bike (0.02)
Car (0.02)
Plane (0.02)
House (0.04)

Training

- Adjusting the weights to reduce error and improve
- Typically done with backprop
- **Parallel update possible on crossbar architecture**

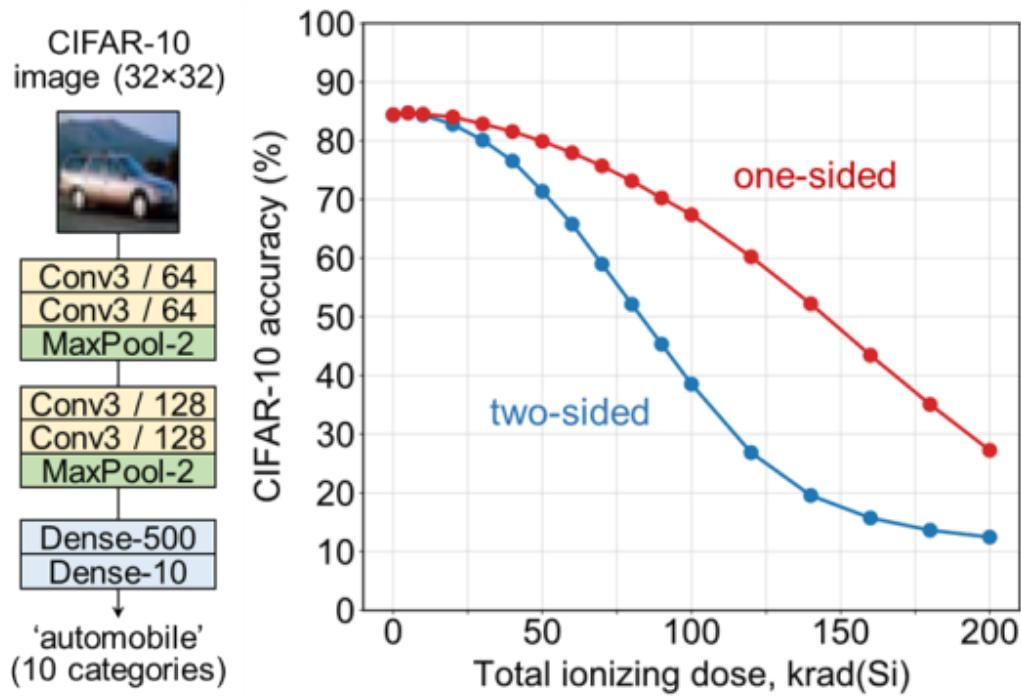
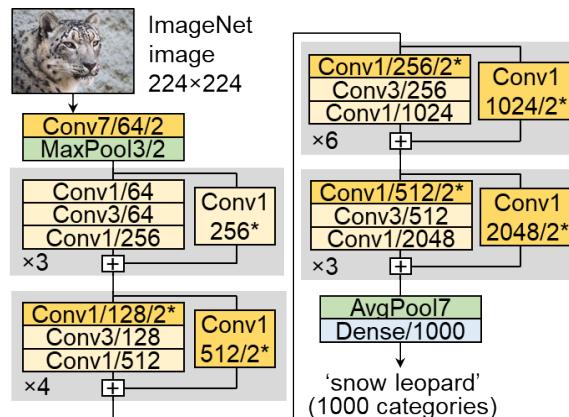
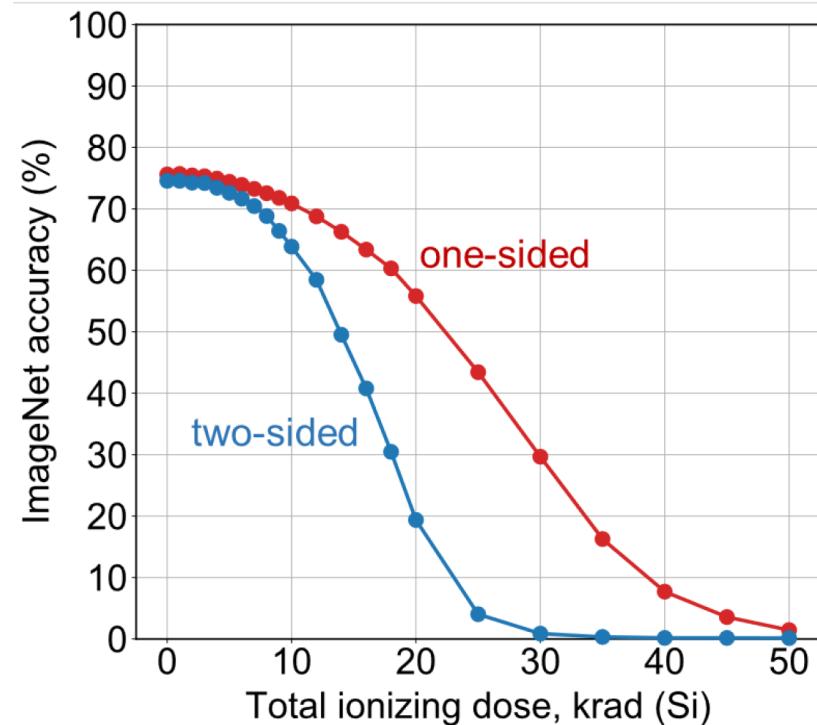


(b) Compute the gradient of the loss relative to the filter inputs

Analog Neuromorphic SONOS In Space: Physics to Algorithm

How will the accuracy degrade in space?

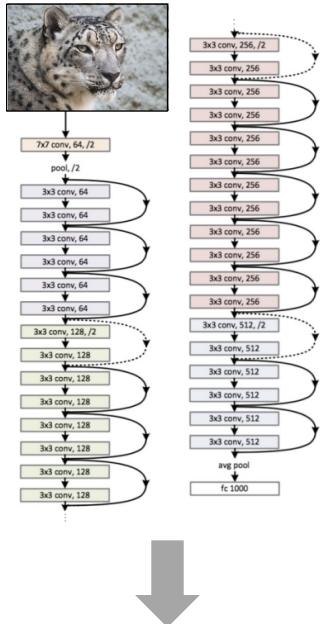
6-layer CNN for CIFAR-10
4.36M weights, 100.4M ops



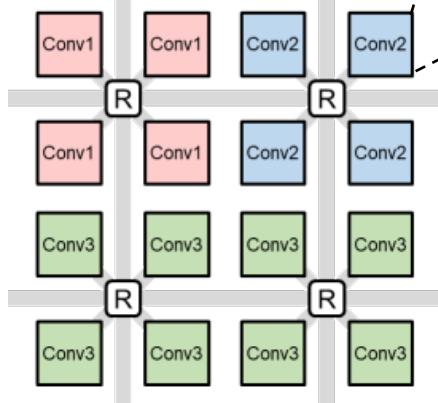
CoDesign provides insight for fielding neuromorphic devices

Neural Network Inference Architecture

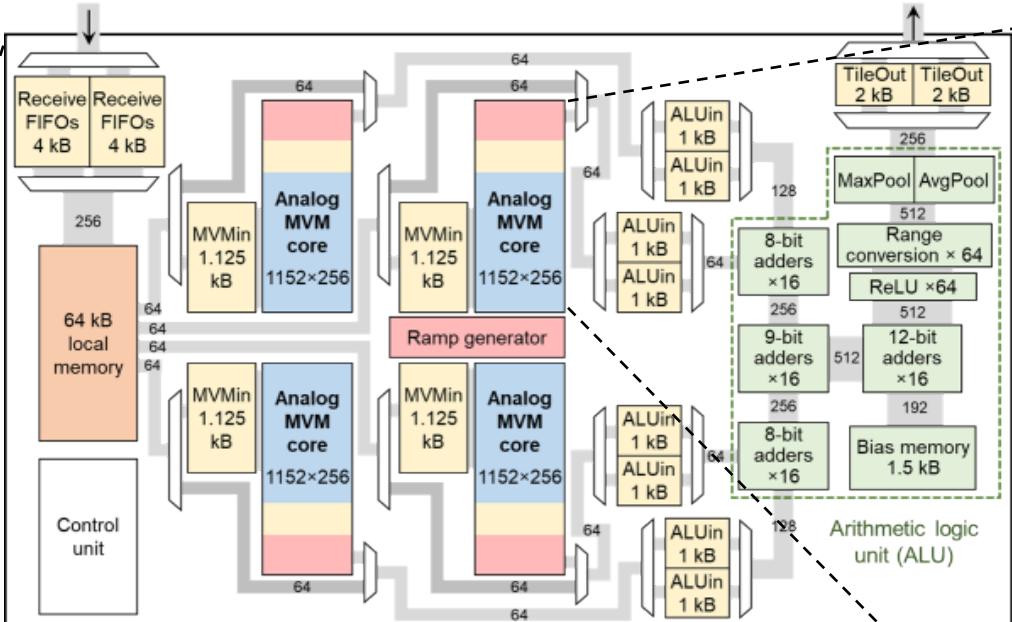
Neural network



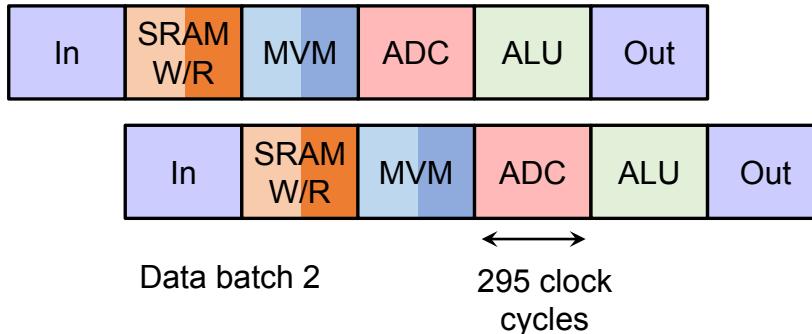
Mesh architecture



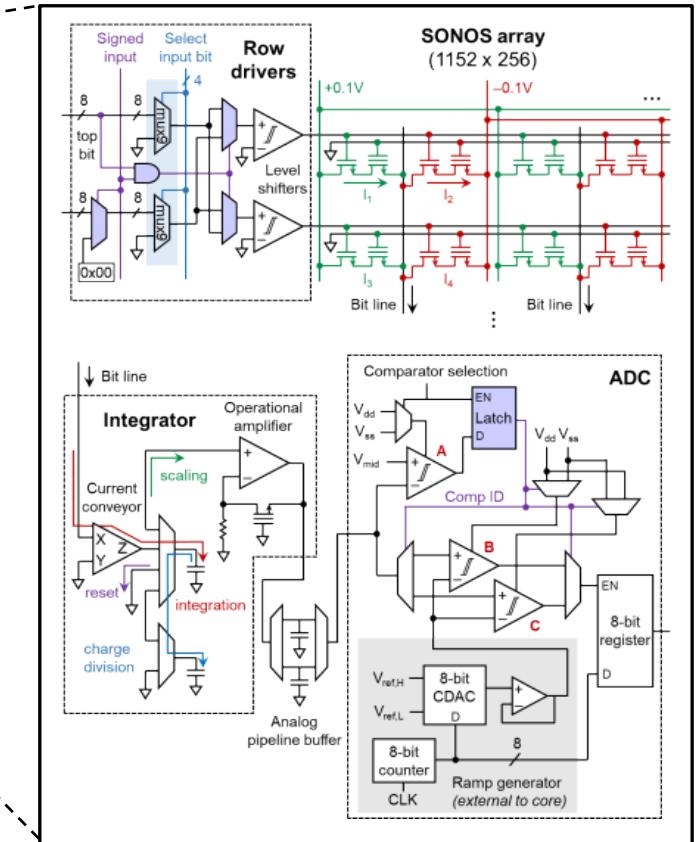
Pipelined MVM tile



Data batch 1



Analog MVM core



Circuits designed and simulated using commercial 40nm PDK

Comparison of State of the Art Accelerators

TABLE II. Comparison of selected digital and mixed-signal neural network inference accelerators from industry and research.^a TOPS: Tera-Operations per second. We have counted MACs as single operations where possible. Note that performance (TOPS) is measured at the specified level of weight and activation precision, which differs between accelerators. The results for NVIDIA T4, TPU, Goya, UNPU, and Ref. 122 are measured; others are simulated. TOPS/mm² values are based on the die area, where provided.

	NVIDIA T4 ¹⁷⁵	Google TPU v1 ^{22,b}	Habana Goya HL-1000 ¹⁷⁶	DaDianNao ⁴⁴	UNPU ⁵¹	Reference 122 mixed-signal ^c
Process	12 nm	28 nm	16 nm	28 nm	65 nm	28 nm
Activation resolution	8-bit int	8-bit int	16-bit int	16-bit fixed-pt.	16 bits	1 bit
Weight resolution	8-bit int	8-bit int	16-bit int	16-bit fixed-pt.	1 bit ^d	1 bit
Clock speed	2.6 GHz	700 MHz	2.1 GHz (CPU)	606 MHz	200 MHz	10 MHz
Benchmarked workload	ResNet-50 ¹⁷⁷ (batch = 128)	Mean of six MLPs, LSTMs, CNNs	ResNet-50 (batch = 10)	Peak performance	Peak performance	Co-designed binary CNN (CIFAR-10)
Throughput (TOPS)	22.2, 130 (peak)	21.4, 92 (peak)	63.1	5.58	7.37	0.478
Density (TOPS/mm ²)	0.04, 0.24 (peak)	0.06, 0.28 (peak)	...	0.08	0.46	0.10
Efficiency (TOPS/W)	0.32	2.3 (peak)	0.61	0.35	50.6	532

^aTo enable performance comparisons across a uniform application space, we did not consider accelerators for spiking neural networks.

^bThe TPU v2 and v3 chips, which use 16-bit floating point arithmetic, are commercially available for both inference and training on the cloud. MLPerf inference benchmarking results for the Cloud TPU v3 are available,¹⁷⁹ but power and area information is undisclosed. The TPU v1 die area is taken to be the stated upper bound of 331 mm²; the listed TOPS/mm² values are therefore a lower bound.

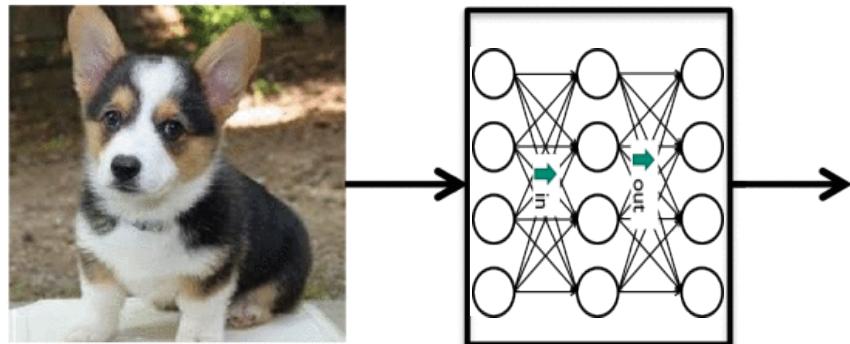
^cThe mixed-signal accelerator in Ref. 122 performs multiplication using digital logic and summation using analog switched-capacitor circuits.

^dThe UNPU architecture flexibly supports any weight precision from 1 to 16 bits. The results are listed for 1-bit weights.

Neural Networks

Inference

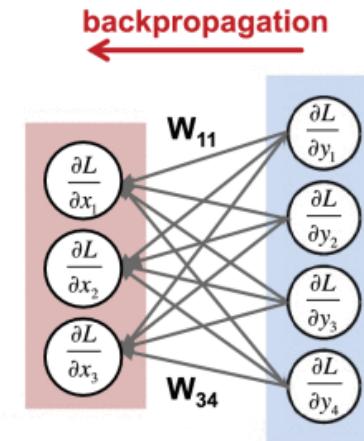
- Feed forward operation of the network to perform task, i.e. classification
- Ex: Image recognition
- Computationally requires single feed forward pass through network
- **Typical device update through write-verify**



Class Probabilities

Training

- Adjusting the weights to reduce error and improve
- Typically done with backprop
- **Parallel update possible on crossbar architecture**



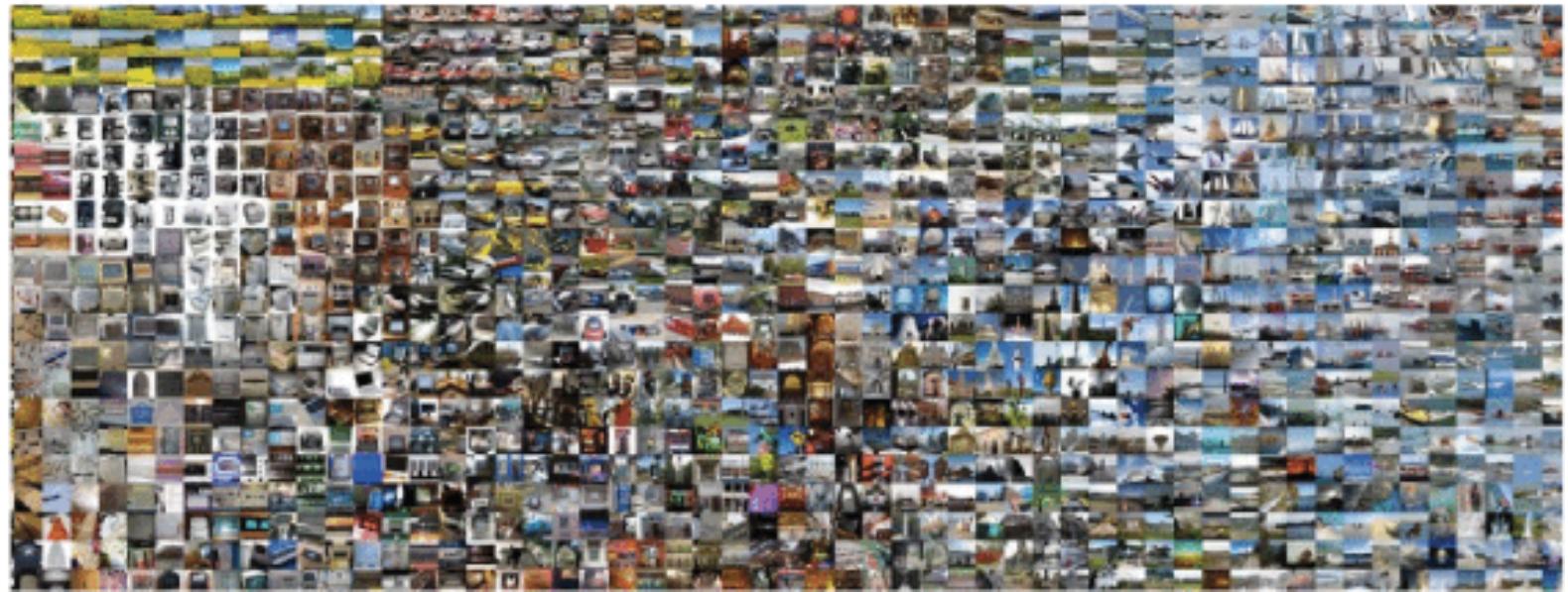
(b) Compute the gradient of the loss relative to the filter inputs

Example Standard Visual Recognition Datasets

MNIST

3 6 8 1 7 9 6 6 9 1
6 7 5 7 8 6 3 4 8 5
2 1 7 9 7 1 2 8 4 6
4 8 1 9 0 1 8 8 9 4
7 6 1 8 6 4 1 5 6 0
7 5 9 2 6 5 8 1 9 7
1 2 2 2 2 3 4 4 8 0
0 2 3 8 0 7 3 8 5 7
0 1 4 6 4 6 0 2 4 3
7 1 2 8 7 6 9 8 6 1

ImageNet

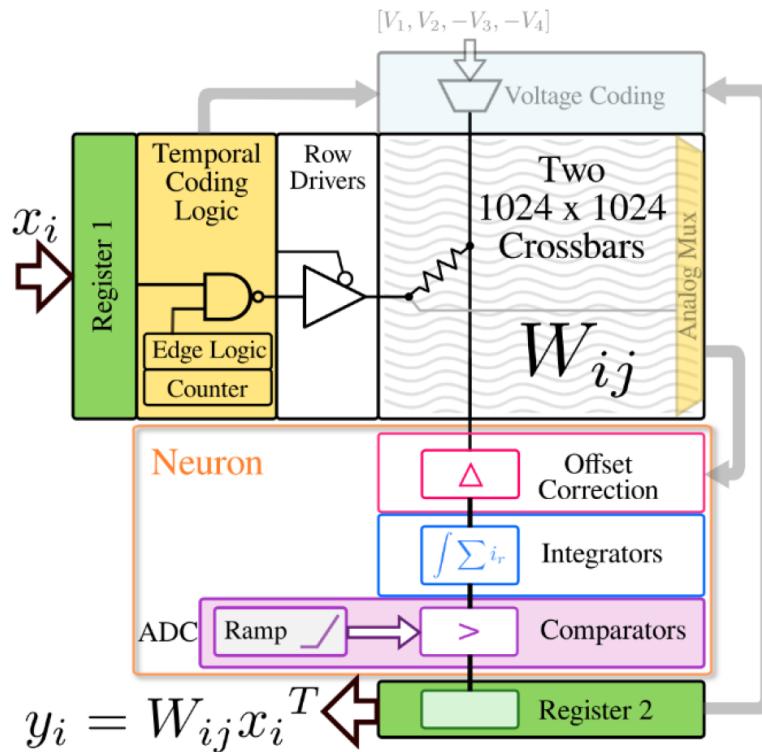
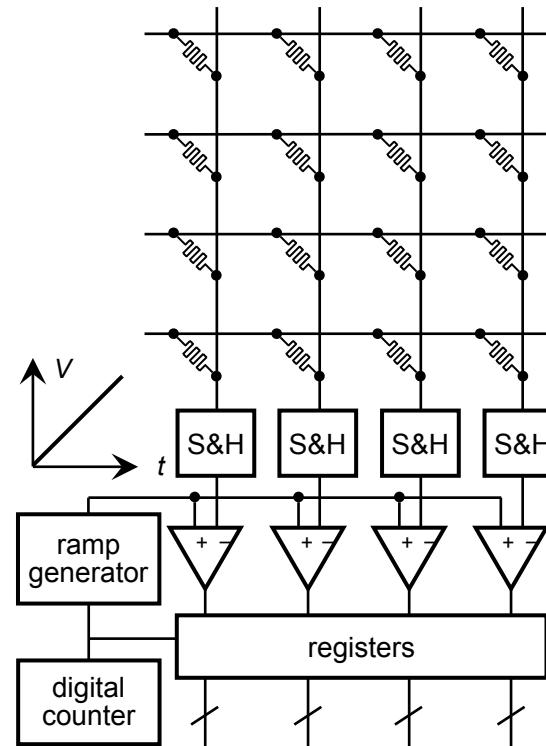


- 28x28 pixel grayscale
- 10 classes
- 60k training images
- 10k test images

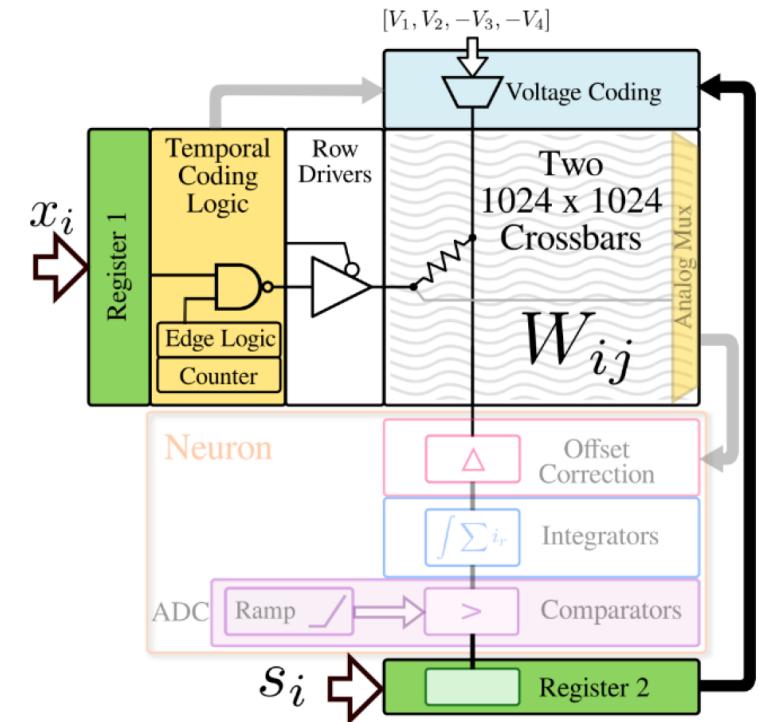
- 256x256 pixel color
- 1000 classes
- 1.3M training images
- 100k test images

Key Circuit Block/Kernel Analysis

Vector Matrix Multiply (Inference)

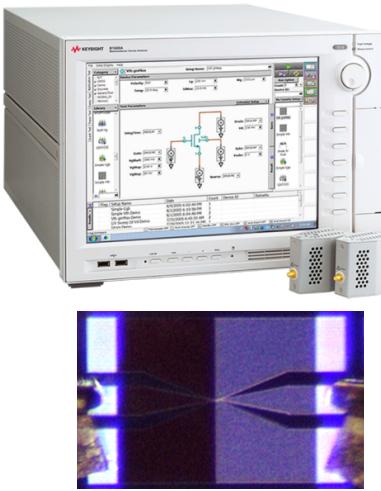
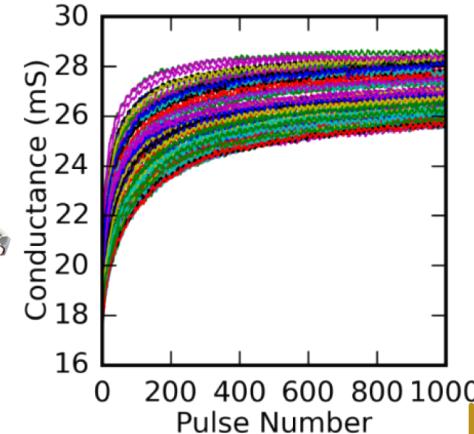
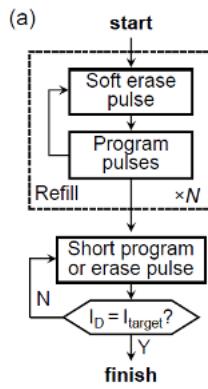
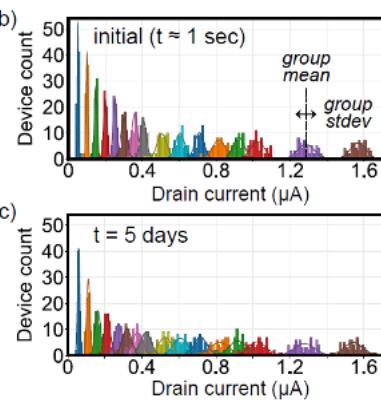


Rank-1 Update (Training)



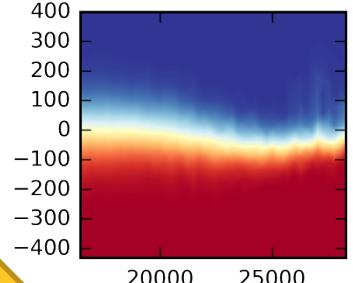
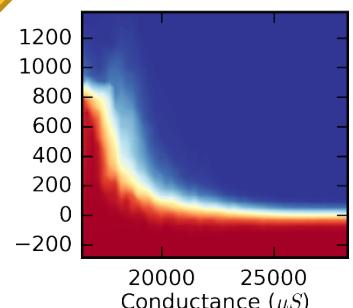
Compact Modeling Dataset for Neural Accuracy Model

Measure Devices



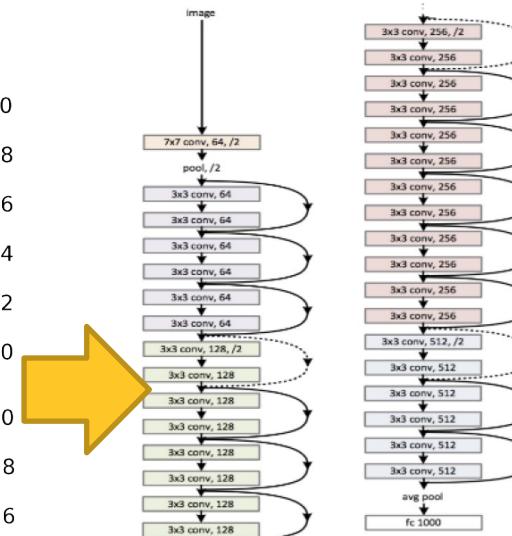
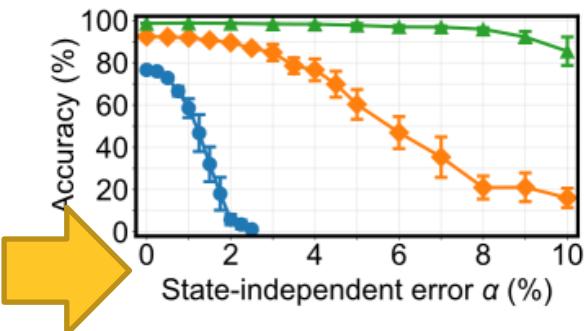
Construct Lookup Tables

100 ns



#ROSS SIM

Model Array Circuitry, Architecture, & Algorithms



Assess Neural
Algorithm
Accuracy,
Efficiency,
Performance,
Radiation

Component VMM OPU

Energy/Op ReRAM (fJ)	12.2	2.1
Array Latency ReRAM (μs)	0.38	0.51

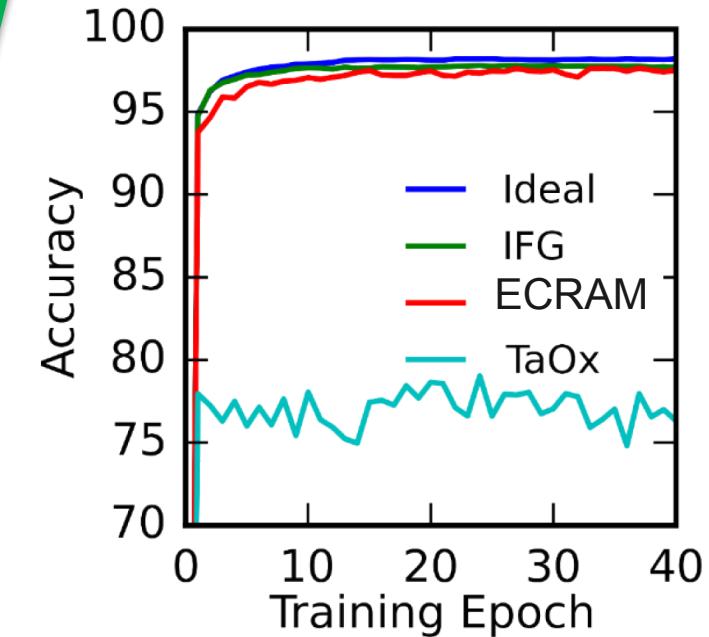
Training Accuracy and Tile Energy/Summary

Codesign to Model Performance & Energy

Component	Vector Matrix Multiply	Matrix Vector Multiply	Outer Product Update
Energy/Op ECRAM (fJ)	11.9	11.9	0.2
Energy/Op ReRAM (fJ)	12.2	12.2	2.1
Energy/Op SONOS (fJ)	13.7	13.7	68.2
Energy/Op SRAM (fJ)	2718	4630	4102
Array Latency ECRAM (μs)	0.39	0.39	1.9
Array Latency ReRAM (μs)	0.38	0.38	0.51
Array Latency SONOS (μs)	0.40	0.40	20
Array Latency SRAM (μs)	4	32	8

**SONOS: While accuracy, program
is slow: use for inference**

**ECRAM: Use for training
& inference**



**ReRAM: Training is not
accurate: better for
inference**