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Revolutionary Systems

 What do we want in the future?
 10-100+ TOPS/W: 
 Supercomputing at the edge

 Deep networks (100M+ parameters) 
execute and train in the field

 Lots of applications enabled and 
enhanced: Safe and fully autonomous 
navigation in ground, air and space 
vehicles, smart particle detectors 

 Getting to this goal may require imperfect 
hardware…and this might be ok.
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Where are we now? Example: Apple A13

 Apple’s iPhone 11 main SoC processor
 7nm+ TSMC process

 Lightening AMX 8-core Neural Engine accelerator IP
 Apple spec: 5 TeraOps/s (TOPS) @ 8 bit precision
 Power is ~2.5-5W 
 State of the art smartphone chip Neural Accelerator:
 ~ 1-2 TOPS/W or ~1pJ per 8 bit operation 

 von Neumann architectures struggling to improve efficiency
 Especially difficult for off chip data movement

 CMOS research is continuing to push efficiency with low voltage, 
weight on chip designs – how much more possible? 

 Where will the next orders of magnitude improvements in 
energy efficiency come from?

apple.com, techinsights.com

Memory

Chip to Main Memory (i.e. DDR) 
: 

Slow and Power Hungry

Logic
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Keep Data in Memory & Exploit Physics for Computing
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Tunable Resistor: Oxide ReRAM

 Known as ReRAM, OxRAM, memristor
 Bipolar resistance modulation in metal-insulator-

metal structure
 +V pulse, R decreases.  -V pulse, R increases

 Fast, scalable, low switching energy, tunable resistor
 Potential for 100 Tbit of ReRAM on chip
 Analog In-Memory Compute weight

Highest current 
switching 
process

Read Window
SET-RESET
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Semiconductor-Oxide-Nitride-Oxide-Semiconductor (SONOS)

 Mature, commercial technology pioneered by Sandia in the 1980’s
 Basis of modern SSD’s (your iPhone uses a SONOS or a variant)
 Can be used as resistive array similar to ReRAM
 Commercial: Infineon 40nm SONOS

SONOS Device SONOS Analog VMM Array 
Implementation
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Neural Network Basics
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Physically Mapping a Neural Network to Resistive Array
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How much computing needs to be done?
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VMM & Outer Product Update Tile Analysis with Ideal ReRAM

Oxide 
ReRAM

Initial results: two orders of magnitude beyond digital!

Component Vector Matrix 
Multiply 
(8-bit, Inference)

Outer Product 
Update 
(8-bit, Training)

Energy/Op ReRAM (fJ) 12.2 2.1

Energy/Op Digital (fJ) 2718 4102

Array Latency ReRAM (µs) 0.38 0.51 

Array Latency Digital (µs) 4 8
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- -- - -
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+++
+

++
+
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MJ Marinella, S Agarwal, et al, IEEE J. Emerging Topics in Circ. And Sys, 8, 2018. 

14nm PDK
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ISAAC (2016) Newton (2018) This work

32 nm, ReRAM 32 nm, ReRAM 40 nm, SONOS

16 bits 16 bits 8 bits

0.63 TOPS/W
(theoretical peak)

0.92 TOPS/W
(theoretical peak)

21.8 TOPS/W
(on ResNet-50)

55 TOPS/W 
(custom net, near 

peak)

78 TOPS/Watt 8-bit Inference using 40nm SONOS

TOPS = TeraOperations / sec

• Based on 40nm SONOS devices from 
our commercial collaborator, Infineon

T.P. Xiao et al, IEEE TCAS, 2022. 

Tile Architecture

CNN
Mesh
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Analog Accuracy Challenges

 Analog in memory compute offers great benefits…
 …but comes with great challenges
 Digital: Deterministic results
 Analog: Device characteristics affect algorithm accuracy!
 Research challenge: analog behavior cannot compromise final result

Inference Accuracy Challenges
 Measured device conductance should be proportional to weight – but 

this is only approximately true
 Caused by analog programming accuracy versus state, current drift, 

read noise

Training Accuracy Challenges
 Actual analog device state change does not match intended weight 

update 
 Caused by write nonlinearity, asymmetry, stochasticity
 Device to device variation

# 
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Multiscale CoDesign Framework Required for Device Accuracy Modeling

17

Algorithms

Sandia Cross-Sim: 
Translates device 
measurements and crossbar 
circuits to algorithm-level 
performance

Architecture

Circuits

Devices

Materials

Target Algorithms
• Deep Convolutional Nets
• Sparse Coding
• Liquid State Machines

Device Models

Accuracy/Energy/Performance Model
Model accuracy, energy, and 
performance based on device 
attributes

In situ Characterization

Analog 
characterization

Architecture 
Simulation

Ab Initio Modeling
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Sandia TaOx ReRAM Inference Resistance Distributions 
200ohm spacing between resistance targets
100ohm spread between Rmin, Rmax

Resulting conductance distribution
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TaOx ReRAM Error Model
Conductance Error as a Function of 

Conductance Target

• Conductance error approx parabolic with 
conductance target – this is ideal:
• Lower conductances have lowest error and map to 

weights near zero. 
• Weights near zero hold most information, hence 

device error is minimized

• Modeled Accuracy in CrossSim Inference
• ResNet50 CNN, ImageNet Dataset
• 1000 image average
• 8-bit ADC, 8-bit weight quant
• Assume GON/GOFF = 10 

• ReRAM accuracy on ImageNet: 
• Top-1 76.4%
• Top-5 92.91%

• Compared to Digital (32 bit FP)
• Top-1 77.18% (analog loss = 0.78%)
• Top-5 93.06% (analog loss = 0.15%)

• Analog Inference predicted <1% loss!
• Caveat: preliminary data – relaxation may 

degrade

Conductance-Weight Distribution 

Sandia 
ReRAM
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40nm SONOS Analog Inference Experimental Characterization 

 Infineon 40nm SONOS 
Characterization Chip

 1024x1024 test array

 Write verify routine programs all 
cells with analog values

 Experimental statistical 
assessment of analog 
programming error as a function 
of target drain current

Agrawal et al, IEEE IMW 2020.
T.P. Xiao et al, IEEE TCAS, 2022.
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SONOS Deep CNN Inference Modeling: State Overlap

T.P. Xiao et al, IEEE TCAS, 2022.

Modeled 7-bit Weight Distribution and Mapping
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SONOS Accuracy Model Results
 Conductance error proportional to conductance target 

– this is ideal:
 Lower conductances have lowest error and map to 

weights near zero. 
 Weights near zero are most common
 Result: device-induced accuracy degradation minimized

 Modeled Accuracy in CrossSim Inference
 ResNet50 CNN, ImageNet Dataset
 50,000 images
 8-bit ADC, 8-bit weight quantization 

SONOS accuracy on ImageNet: 
 Top-1 74.30%
 Top-5 91.97%

 Compare this to Ideal Digital (32 bit FP)
 Top-1 76.46% (analog loss = 2.16%)
 Top-5 93.00% (analog loss = 1.03%)

 >10x Performance/Watt Improvement with only ~2% 
accuracy loss
 Uses Commercial 40nm Technology

Conductance-Weight Distribution 

Target conductance (μS)

Er
ro

r (
μS

)

Conductance Error as a Function of 
Conductance Target
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Effect of SONOS State Drift on Inference Accuracy

T.P. Xiao et al, IEEE TCAS, 2022.
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ImageNet (top-1)
ResNet-50

25.6M weights

CIFAR-10
ResNet-56v1
858K weights

MNIST
6-layer CNN
119K weights

Effect of Network and Dataset on Accuracy
 Different common datasets and CNN architectures often 

analyzed
 MNIST (simple CNN)
 28x28 pixel grayscale

 10 classes

 60k training images, 10k test images
 ImageNet (requires large CNN arch.)
 224x224 pixel color

 1000 classes

 1.3M training images, 100k test images
 ImageNet represents production-grade dataset
 Sometimes smaller nets like MNIST are used due to computing 

constraints, esp for modeling training
 Key Takeaway: Excellent accuracy on MNIST does 

not translate to excellent accuracy on ImageNet!

ImageNet, CIFAR-10, & MNIST 
Accuracy vs Write Error



Copyright © 2021 Arizona Board of Regents

Error and Inference Accuracy Summary: SONOS, ReRAM, PCM

PCM2,*

SONOS1

HfO2 
ReRAM3,*

SNL TaOx
4 

ReRAM

Technology+ Top-1 
accuracy**

Top-5 
accuracy**

Floating point 
digital (ideal) 77.5% 93.3%

SONOS1 74.0% ± 
1.0%

92.5% ± 
0.4%

SNL TaOx 
ReRAM4

76.4% ± 
0.2%

93.3% ± 
0.1%

PCM2 28.2% ± 
6.4%

49.7% ± 
7.8%

References and notes:
1T.P. Xiao et al, IEEE TCAS, 2022.
2V. Joshi et al, Nat Comm. 11, 2020. 
3Milo et al, IEEE IRPS, 2021.
4State drift/relaxation not yet measured, which may reduce accuracy.  
+All analog simulation also includes 8-bit weight quantization, 8-bit activations, and 8-bit ADCs
*PCM and HfO2 error are modeled entirely from data and programming used in publication only.
**Based on 1000 ImageNet images

Low error @ low 
conductance: 
this is ideal
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Device-Level Radiation Impacts Algo Accuracy

TP Xiao et al, IEEE Trans Nuclear Sci, 2022 

How will the accuracy 
degrade in radiation 

environments ?

erase ‘1’ program ‘0’

Total ionizing 
dose (Si)

oxide
nitride

poly

n+ n+

poly

n+
p-well

Select gate Control gate

–
–
–

–– –––
–
–– –

Ionizing Radiation

Threshold Distribution Shifts due to TID 
Algorithm Accuracy Degradation due to TID 

Refresh to restore accuracy
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Device Challenges for Training

 Training has an overlapping set of 
challenges

 Ideally weight increases and decreases 
linearly proportional to learning rule result

 Issue for open loop nonvolatile memory: 
altered the relationship between intended 
and actual update

 Nonlinear and asymmetric state change
 Cycle to cycle random variability (write 

stochasticity)
 Device to device random variability

 Also: very high endurance (>1012)

C
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Pulse Number

Symmetric 
and Linear

Asymmetric, 
Nonlinear

Stochastic 
variability

Pulse voltage 
polarity changes

GMIN

GMAX
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Characterization for Training

29

10 ns 1 µs100 ns

SET

RESET

SNL 
TaOx 

ReRAM
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Initial TaOx ReRAM Training Accuracy Modeling (MNIST)

TaOx ReRAM has 
challenges for open loop 
training…

Why?

Increasing Network Size

Performance 
Gap

Performance 
Gap

Performance 
Gap
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Physical Insight from Multiscale Model - CrossSim
Challenges using Filamentary ReRAM for Training

Stochasticity
G depends on 
position of a few 
atoms

Asymmetry
Inherent property 
of bipolar device – 
Schottky-like and 
ohmic junctions

Nonlinearity
1. Tunneling current, esp in high resistances
2. Current crowding – high temperature 

required for change give runaway effect
3. Nonlinear E-field

Linear Resistive Device 

Loss due to fabrication

R. Jacobs-Gedrim et al, Proc. 2017 IEEE ICRC, 2017. 

MNIST Training Accuracy
SNL TaOx ReRAM
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Electrochemical RAM (ECRAM) Synapse

 Lithium acts as dopant in LCO cathode
 Resistivity across cathode changes linearly with 

Li insertion (battery charge/discharge)
 Functions as an analog nonvolatile transistor!
 Much smoother state change than filament devices

E. Fuller et al, Adv Mater, 2017

Li
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Conductance vs Voltage
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ECRAM

PCM Array

ECRAM Characterization

GW Burr et al, IEEE TED 2015

TaOx ReRAM

E. Fuller et al, Adv Mater, 2017

ECRAM-MNIST
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Electrochemical Neuromorphic Organic Device (eNode)

van de Burgt et al, Nature Mater., 16, 414, 2017
Proton-based polymer ECRAM synapse: fast, better endurance
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ECRAMs Array Parallel Update Training Demonstration

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D. 
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).

Near ideal Near ideal 
accuracyaccuracy
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Analog Device Requirements
Property Inference Training

Analog programing error (w/ write verify) Critical Less Important

Long term retention Important Less Important

Read noise Important Less Important

Conductance Range Important Important

Short term state drift Important Important

Device to device variability Important Important

Write stochasticity Less Important Important

Write speed Less Important Important

Write linearity Less Important Important

Write symmetry Less Important Critical 

Endurance Less Important Critical
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Perspective: IMC Devices

Property ReRAM PCRAM SONOS/FG ECRAM

Analog programing error (w/ write verify)

Long term retention

Read noise

Conductance range

Short term state drift

Device to device variability

Write stochasticity

Write speed

Write linearity

Write symmetry

Endurance
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Inference 

Electrode

Electrode

Heater

Inference  Training 
(Future Work)
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Final Thoughts

 Traditional digital CMOS computing is hitting disruptive roadblocks for continuing 
energy efficiency (or equivalently, performance per watt)

 Analog In Memory Computing offers path to >10 TOPS/W 
 Ideal for deep neural nets and deep convolutional nets

 Analog In Memory Computing has significant new challenges
 Algorithm accuracy depends on the device

 This creates significant, new device electrical characterization requirements

 Inference and training have distinct challenges, with some overlap. 

 Inference: high accuracy predicted with commercial SONOS and ReRAM

 Inference challenge: write-verify with short term state drift

 Training: is more challenging, but devices such as ECRAM and related nonfilamentary 
devices provide a path forward
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Thank You – Questions?
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Microelectronics Grand Challenge

SRC Decadal Plan for Semiconductors, 2020
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Impact of Ionizing Radiation on Deep Net Accuracy

erase ‘1’ program 
‘0’

Total ionizing 
dose (Si)

oxide
nitride

poly

n+ n+

poly

n+
p-well

Select gate Control gate

–
–
–

–– –––
–
–– –

Ionizing Radiation

Threshold Distribution 
Shifts Across Array

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 

Uniform Gamma 
Irradiation
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Analog Neuromorphic SONOS In Space: Physics to Algorithm

nitride

+

–

blocking 
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ionizing 
radiation
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Program 
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synapse range (two
-sided)

VT versus Total Ionizing 
Dose: Model and 

Experiment

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 
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Neural Network Basics

Inference 
 Feed forward operation of the 

network to perform task, i.e. 
classification

 Ex: Image recognition
 Computationally requires ingle feed 

forward pass through network
 Typical device update through 

write-verify

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017

Training 
 Adjusting the weights to reduce error 

and improve
 Typically done with backprop
 Parallel update possible on crossbar 

architecture
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Analog Neuromorphic SONOS In Space: Physics to Algorithm

CoDesign provides insight for fielding neuromorphic devices
TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 

ResNet-50 for ImageNet
25.6M weights, 4.1B ops

How will the accuracy degrade in space?

6-layer CNN for CIFAR-10
4.36M weights, 100.4M ops
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Mesh architecture

Analog MVM core

Neural network

Data batch 1

ADC ALUIn SRAM 
W/R Out

ADC ALUIn OutSRAM 
W/R

MVM

MVM

Data batch 2

Pipelined MVM tile

295 clock 
cycles

Circuits designed and simulated 
using commercial 40nm PDK

Neural Network Inference Architecture 

T.P. Xiao et al, In preparation, IEEE J. Circuits and Systems, 2021. 
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Comparison of State of the Art Accelerators
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Neural Networks

Inference 
 Feed forward operation of the network to perform 

task, i.e. classification
 Ex: Image recognition
 Computationally requires ingle feed forward pass 

through network
 Typical device update through write-verify

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017

Training 
 Adjusting the weights to reduce error and 

improve
 Typically done with backprop
 Parallel update possible on crossbar 

architecture
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Example Standard Visual Recognition Datasets

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017

• 28x28 pixel grayscale
• 10 classes
• 60k training images 
• 10k test images

• 256x256 pixel color
• 1000 classes
• 1.3M training images 
• 100k test images
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Key Circuit Block/Kernel Analysis

Vector Matrix Multiply 
(Inference)

Rank-1 Update 
(Training)

Marinella, Agarwal, et al, IEEE JETCAS, 2018

S&H S&H S&H S&H

ramp 
generator

+ + + +– – – –

V

t

registers
digital 

counter
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Compact Modeling Dataset for Neural Accuracy Model

Measure Devices Construct Lookup Tables
Assess Neural 

Algorithm 
Accuracy, 
Efficiency, 

Performance, 
Radiation 

Degradation 

Model Array Circuitry, 
Architecture, &  

Algorithms

Component VMM OPU

Energy/Op 
ReRAM (fJ)

12.2 2.1

Array Latency 
ReRAM (µs)

0.38 0.51 

Xiao et al TCAS, 2022. 

100 ns
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Component Vector 
Matrix 
Multiply

Matrix Vector 
Multiply

Outer 
Product 
Update 

Energy/Op ECRAM (fJ) 11.9 11.9 0.2
Energy/Op ReRAM (fJ) 12.2 12.2 2.1
Energy/Op SONOS (fJ) 13.7 13.7 68.2
Energy/Op SRAM (fJ) 2718 4630 4102
Array Latency ECRAM (µs) 0.39 0.39 1.9
Array Latency ReRAM (µs) 0.38 0.38 0.51 
Array Latency SONOS (µs) 0.40 0.40 20 
Array Latency SRAM (µs) 4 32 8

Training Accuracy and Tile Energy/Summary

ECRAM

ECRAM: Use for training ECRAM: Use for training 
& inference& inference

SONOS: While accuracy, program SONOS: While accuracy, program 
is slow: use for inferenceis slow: use for inference

Codesign to Model Performance & Energy

ReRAM: Training is not ReRAM: Training is not 
accurate: better for accurate: better for 
inferenceinference


