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Calcium metal anodes are a promising component of innovative batteries
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The Grand Challenge: Selectively Protecting Ca Metal
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“In contrast to lithium systems, however, calcium deposition
in these solvent systems ... is impossible, due to the nature
of the surface films formed.” — Aurbach et al, J. Electrochem.
Soc. 1991



Characterizing Ca interphases is challenging and often inconsistent

Current: ex situ, microscale characterization Needed: in situ, nanoscale characterization
Cryo FIB and liftout
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Cryo chemical mapping and imaging
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A nanometric, heterogeneous CaO is an effective SEIl for Ca
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Why Ca(BH,),-THF? Why does this SEIl work? How does this SEIl form? How do we control the SEI?
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Ca(BH,),:THF is a model system with a functional SEI

Only Ca electrolyte with high efficiency, low self-discharge, and dimensional control

1 mA cm2, 640 nm, Au WE, Ca CE, Ca RE
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Ca(BH,),:THF is a model system with a functional SEI

Only Ca electrolyte with high efficiency, low self-discharge, and dimensional control

1 mA cm=2, 640 nm, Au WE, Ca CE, Ca RE

1.5
:‘ 16 hr

__1.25 | —8 hr

> t | —4 hr

&1 - 96 > 80% a1 —2hr

S ' —1hr
Q ! .
S 075 ' —0hr !
. |
& :
> 05 !
= 50 > 170 mV .
S 0.25 $ g
3 — |
o 1
|
e

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Capacity (mAh cm-?)

McClary, Long, Sanz Matias, Kotula, Prendergast, Jungjohann, Zavadil. Under Revision



The Ca(BH,),:THF SEl is primarily CaO
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CaO: ~1 eV migration barrier!
(Forero-Saboya et al, Energy Env. Sci. 2020)
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Chemical heterogeneity enhances Ca?* transport

Cal,;-edge O K-edge
B K-edge C K-edge
CaCoO; ref.

Transport enhanced at phase boundaries
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A nanometric, heterogeneous CaO is an effective SEIl for Ca
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How does this SEI form? How do we control the SEI?
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SEI components are dictated by Ca?* solvation structure

3-buten-1-oxide anion
(active oxygen source)
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SEI components are dictated by Ca?* solvation structure

Example: CaBH,* (contact ion pairs) = CaCB,,H,," (solvent-separated ion pairs)

Hahn et al. J. Mat. Chem A. 2020 Landers, Self, McClary, et al. In preparation
Hahn et al. J. Phys. Chem. B. 2021
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SEI heterogeneity and functionality are directly linked

1 mA cm2, 640 nm, Au WE, Ca CE, Ca RE
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SEI heterogeneity and functionality are directly linked

Potential vs. Ca/Ca?* (V)
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A nanometric, heterogeneous CaO is an effective SEIl for Ca
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By rationally designing solvation structure, one can modulate SEIl heterogeneity and hence its properties!
16

McClary, Long, Sanz Matias, Kotula, Prendergast, Jungjohann, Zavadil. Under Revision



Acknowledgements

@ oo [ R
Laboratories |[EZlGTagwY: —_—
Daniel Long (cryo-FIB and -TEM)

Ana Sanz Matias (DFT calculations)

Alan Landers (electrolyte synthesis, deposition)
Kathryn Small (cryo-FIB)

Paul Kotula (cryo-TEM)

Nathan Hahn (electrochemistry, solvation)

David Prendergast (DFT calculations, Pl)
Katherine Jungjohann (FIB and TEM, PI)

Kevin Zavadil (electrochemistry, PI) CEg JOINT CENTER FOR
J q - ENERGY STORAGE RESEARCH

scott.mcclary@sandia.gov 17






Ca-Au alloying reduces nucleation overpotential
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Na additives are critical for Ca electrodeposition

Impurity is present in commercial Ca(BH,), at widely variable concentrations
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