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ABSTRACT: We propose the use of balanced iterative reducing and clustering using hierarchies (BIRCH) combined with linear
regression to predict the reduced Young’s modulus and hardness of highly heterogeneous materials from a set of nanoindentation
experiments. We first use BIRCH to cluster the dataset according to its mineral compositions, which are derived from the spectral
matching of energy-dispersive spectroscopy data through the modular automated processing system (MAPS) platform. We observe
that grouping our dataset into five clusters yields the best accuracy as well as a reasonable representation of mineralogy in each
cluster. Subsequently, we test four types of regression models, namely linear regression, support vector regression, Gaussian
process regression, and extreme gradient boosting regression. The linear regression and Gaussian process regression provide
the most accurate prediction, and the proposed framework yields R2 = 0.93 for the test set. Although the study is needed more
comprehensively, our results shows that machine learning methods such as linear regression or Gaussian process regression can
be used to accurately estimate mechanical properties with a proper number of grouping based on compositional data.

1 INTRODUCTION

The hydro, mechanical, and chemical properties of shale
formations with compositional and textural heterogeneity
across a range of scales give rise to very complex behavior
under various environmental and engineered conditions.
Various geologic variables, including mineralogy, types
of cement, organic content, and the spatial distribution of
these characteristics, contribute to mechanical properties
(elastic properties, fracture toughness, anisotropy, etc.).
These compositional and structural heterogeneity in very-
fine sedimentary rocks may affect the onset and propa-
gation of brittle fracture in shale and can lead to the for-
mations of flow conduit. Given the formation and oper-
ational conditions (e.g., stress, natural fractures, injection
fluid and pressure) the geometry and extent of fracture net-
works is predominantly determined by shale mechanical
properties.

In our previous work (Yoon et al., 2020) on multiscale
mechanical properties of Mancos shale, Young’s mod-
uli at microscale based on nanoindentation were larger
than those at the laboratory core scale, which is caused
by the combined effect of composition, textures, and in-

terfaces of mineral phases. Analysis of mineralogy dis-
tribution based on MAPS (Modular Automated Process-
ing System) technique and detailed petrographic analysis
of tested samples reveal the important effect of composi-
tional distribution, micropores, and bedding boundaries on
the patterns of microfracture propagation. However, esti-
mated Young’s modulus values using composition-based
mixture models do not match the measured values. In-
stead, measured Young’s modulus and hardness values
have much higher correlations when nanoindentation data
are grouped into three categories such as strong min-
erals (quartz, feldspar, and pyrite), carbonates (calcite,
dolomite), and clay-rich group. With high resolution scan-
ning electron imaging of indentation markers these data
sets show how the mechanical response during indentation
is influenced by compositional distribution at the indenta-
tion location.

In this work We employ multiple machine learning meth-
ods to estimate Young’s modulus of Mancos shale using
nanoindentation experimental data. Detailed mineralogy
data from the MAPS mineralogy provides accurate com-
positional data over the indentation area. This work al-
lows us to develop robust predictive model of estimating
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mechanical properties based on compositional data.

2 METHODOLOGY

2.1. Experimental methods
A Mancos shale sample selected for this work is a Cre-
taceous shale located in the western United States/Rocky
Mountains. Detailed mechanical properties and compo-
sitional analysis work from a large quarry Mancos Shale
block (12 inches high and 15 inches in diameter) was re-
ported in the previous work (Yoon et al., 2020). The Man-
cos shale used in this work has a relatively low total or-
ganic carbon (less than 1-2 % by weight) and contains the
fine scale of interbedding of muds and sands. For micron-
scale characterization, 2 mm thick sample was prepared
from a small cylindrical core sample for mechanical test-
ing. The sample was polished by argon ion milling (Fis-
chione 1060 SEM Mill) and then analyzed with backscat-
tered electron scanning (BSE) and energy dispersive spec-
troscopy (EDS). MAPS (Modular Automated Processing
System) Mineralogy platform was used for SEM-based
automated mineralogical measurement, analysis, data in-
tegration. With spectral matching of EDS data each pixel
can be identified as single or multiple minerals. In this
work we employed BSE and EDS analysis at 0.2 and 2
micron resolution, respectively.

Nanoindentation was conducted using a Hysitron TriboIn-
denter 900 with a Berkovich geometry diamond tip over
multiple regions selected based on BSE and EDS map-
ping in 2cm and 1.5 cm area. A 5 x 5 grid array of stan-
dard indents spaced 20 um apart with an indentation strain
rate of 0.1 (Lucas et al., 1996) and a maximum load of 10
mN. Hardness and Young’s modulus measurement over a
total of nine different arrays were performed to provide
225 data points. Hardness was computed by the maxi-
mum load over the contact area and the reduced Young’s
modulus was computed with the stiffness calculated as the
slope of initial unloading, a geometrical constant of the
Berkovich tip, and contact area. After indentation testing,
SEM image of each indentation impression was obtained
using a FEI Helios Nanolab G3 CX DualBeam FIB/SEM.
An example of these images is shown in Figure 1

The mineral composition used in this study is listed in Ta-
ble 1. There are 17 types of mineral, the unclassified label
to represent a part of SEM images that we cannot define,
the Porosity label represents a void inside a porous media,
and organics.

2.2. Machine learning methods
We use the balanced iterative reducing and clustering us-
ing hierarchies (BIRCH) to cluster our dataset through
the mineral compositions shown in Table 1 (Zhang et al.,

Table 1: List of mineral composition

mineral composition

quartz feldspar muscovite kaolinite
illite smectite Mg-chlorite Fe-chlorite

zircon calcite dolomite ankerite
apatite monazite pyrite sphalerite
rutile unclassified porosity organics

1996). BIRCH constructs a tree structure from which clus-
ter centroids are extracted. To elaborate, it clusters incom-
ing multi-dimensional metric data points to produce the
best quality clustering. BIRCH has two primary hyperpa-
rameters, threshold and number of clusters. The threshold
constraints a radius of the sub-cluster obtained by merg-
ing a new sample and the closest sub-cluster. We set it
as 0.001 throughout this study. The number of clusters is
self-explanatory, and in short, it represents the number of
clusters after the final clustering step (i.e., the final num-
ber of clusters). We utilize the BIRCH implementation
provided by Pedregosa et al. (2011).

Throughout this study, we test four types of regression
models; 1. linear regression (LR), 2. support vector re-
gression (SVR), 3. Gaussian process regression (GP), and
4. extreme gradient boosting regression (XGBoost). We
will briefly summarize these models in the following para-
graphs. We multiple LR in this study, which means it uses
many explanatory, or independent, variables to predict the
outcome of one response, or dependent, variable. We use
an API provided by Buitinck et al. (2013).

For the SVR, which also takes many explanatory vari-
ables; and subsequently maps them to one response. We
utilize a quadratic polynomial kernel with an indepen-
dent term of one, a regularization parameter (𝐶) of 100,
and kernel coefficient (Γ) of one over number explanatory
variables. Again, we employ an API provided by Buitinck
et al. (2013). For the GP, the model itself is also a multi-
ple regressor, which means it can take many independent
variables and predict one dependent variable. We use an
API developed by Buitinck et al. (2013) with Dot-Product
kernel given by
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Fig. 1: (A) an example of MAPS image of mineralogical distribution in this study and (B) an SEM image of an indentation area of
25 indentations corresponding to a lower-left red box in (A)

The last regressor is XGBoost (Chen and Guestrin, 2016),
which is an ensemble tree-based algorithm. It attempts to
predict a dependent variable by combining the estimates
of a set of weaker models. We use 100 weaker estimator
with maximum tree depth of five, regularization parameter
𝜆 = 1.0, and regularization parameter Γ = 0.0.

3 RESULTS

3.1. Using mineral composition to predict hardness
or reduced Young’s modulus

We here use the mineral composition listed in Table 1 as
input and either hardness (H) or reduced Young’s modulus
(𝐸𝑟 ) as output to a regressor. In Table 1, there are 17 types
of mineral. We use the unclassified and Porosity labels to
represent a part of SEM images that we cannot define and
a void inside a porous media, respectively. So, in total, our
regressor has an input of 20 features.

As described earlier, we test four types of regressors;
1. linear regression (LR), 2. support vector regression
(SVR), 3. Gaussian process regression (GP), and 4. ex-
treme gradient boosting regression (XGBoost). The de-
tailed settings of each model, as well as how we train
them, are provided in Section 2. The results of the co-
efficient of determination R2 calculated by

R2 = 1− RSS
TSS

, (3)

where RSS is a sum of squares of residuals, and TSS is
a total sum of squares of all regressors, are presented in
Table 2. These R2 results are calculated from the test set,
which is randomly selected from the training set (5 % of
the training set). From this table, we observe that all mod-
els perform poorly (i.e., R2 < 0.5). We will discuss how to
improve these results in the following sections.

Table 2: R2 results of using mineral composition as an input and
either hardness (H) or reduced Young’s modulus (𝐸𝑟 ) as output.

output R2

LR SVR GP XGBoost
H 0.241 0.347 0.249 0.345
𝐸𝑟 0.333 0.427 0.355 0.161

3.2. Using mineral composition to cluster the data
and hardness to predict reduced Young’s modu-
lus

To improve the predictability of 𝐸𝑟 , we now first cluster
our dataset by mineral composition using BIRCH algo-
rithm (Zhang et al., 1996). We fix threshold as 0.001 and
use number of clusters as hyperparameters. Our results are
presented in Table 3. These R2 results are calculated from
the test set, which is randomly selected from the training
set (5 % of the training set). Here, we use a number of
clusters from 1 to 5 and four types of regressors; 1. linear
regression (LR), 2. support vector regression (SVR), 3.
Gaussian process regression (GP), and 4. extreme gradi-
ent boosting regression (XGBoost). We observe that as the
number of clusters increases, the R2 improves. Besides,
these R2 results are much better than those presented in
Table 2. The LR and GP regressors provide the best R2.
However, LR is much computationally cheaper than GP.

Table 3: R2 results of different models using hardness (H) as
input and reduced Young’s modulus (𝐸𝑟 ) as output. We cluster
the data using mineral composition.

number of clusters R2

LR SVR GP XGBoost
1 0.717 0.722 0.717 0.649
2 0.921 0.906 0.921 0.923
3 0.921 0.906 0.921 0.916
4 0.923 0.915 0.924 0.905
5 0.933 0.925 0.933 0.906

The number training data per cluster is presented in Ta-



ble 4, and the clustering results presented by box plots for
each mineralogy for the number of clusters of 5 in Figure
2. We present box plots only for the number of clusters of
5 because, from Table 3, it shows to deliver the best R2.
We note that Table 3 is constructed from the test set (ran-
domly selected 5 % of the training set) while Table 4 and
Figure 2 are constructed from the training set.

From Table 4, the number of members for each cluster
represents the number of training data that are classified
in each cluster. For example, in the case of the number
of clusters is = 1, all the training data, 237 data points, is
classified as the first cluster. In the case of the number of
clusters = 3, there are 167 data points in the first cluster, 61
data points are in the second cluster, and 9 data points are
classified in the third cluster. We can observe that the first
cluster of the number of clusters = 4 case is a combined
the first and the second clusters of the number of clusters
= 5 case. The first cluster of the number of clusters = 3
case is a combined the first and the second clusters of the
number of clusters = 4 case. This trend goes on until the
number of clusters = 1 case.

Table 4: Clustering results for the training set: we cluster the
data using mineral composition.

number of members number of clusters
for each cluster 1 2 3 4 5

1 237 x x x x
2 228 9 x x x
3 167 61 9 x x
4 103 64 61 9 x
5 37 66 64 61 9

Figure 2 presents box plots of a composition fraction for
each mineralogy presented in Table 1 for each cluster
(only for the number of clusters = 5 case). To elaborate
Figures 2a-e, represent 1st, 2nd, 3rd, 4th, and 5th cluster,
respectively. From these figures, we observe that the 1st,
Figure 2a, cluster represents the most heterogeneous ma-
terial where many minerals co-exists. The 2nd, Figure 2b,
cluster is dominated by feldspar while the 3rd, Figure 2c,
cluster is predominantly quartz. The 4th, Figure 2d, major-
ity contains smectite. The 5th, Figure 2e, cluster is domi-
nated by dolomite and akerite. We show examples of the
SEM images corresponding to each cluster shown in Fig-
ure 2.

4 CONCLUSIONS

We want to estimate reduced Young’s modulus of highly
heterogeneous materials given a set of nanoindentation ex-
periments. We cluster the dataset from mineralogy classi-
fication through scanning electron microscope (SEM) im-
ages and observe that the number of clusters of five deliv-

ers the most accurate results. We also illustrate the min-
eralogy representing each cluster. Subsequently, we test
four types of regression models, namely linear regression,
support vector regression, Gaussian process regression,
and extreme gradient boosting regression. The R2 results
are not much different, and linear regression and Gaus-
sian process regression provide the most accurate predic-
tion (R2 = 0.93 for the test set). Although further analysis
needs to be performed with more data, our work suggests
that the balanced iterative reducing and clustering using
hierarchies (BIRCH) in conjunction with linear regression
or Gaussian process regression can be very accurate to
predict the reduced Young’s modulus of highly heteroge-
neous materials from nanoindentation experiments.
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Fig. 2: Clustering results presented by box plots for each mineralogy for the number of clusters of 5. (a) 1st cluster, (b) 2nd cluster,
(c) 3rd cluster, (d) 4th cluster, (e) 5th cluster. We cluster the data using mineral composition.
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Fig. 3: Examples of scanning electron microscope (SEM) images of (a) 1st cluster, (b) 2nd cluster, (c) 3rd cluster, (d) 4th cluster, (e)
5th cluster corresponding to each cluster shown in Figure 2


