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Benefits &

Limitations of in situ TEM

Benefits
1. Real-time nanoscale resolution observations of microstructural dynamics
Limitations Ak : I,
1. Predominantly limited to microstructural characterization i ,,: ; o
Some work in thermal, optical, and mechanical properties e i ‘ﬂfﬁ:‘i“"’ v
2. Limited to electron transparent films w.j_f,jﬁi; ,;:;
Can often prefer surface mechanisms to bulk mechanisms 'Z:..ﬁg.l’é&““"ﬁ
Local stresses state in the sample is difficult to predict tw’“"”%‘hﬁ?
3. Electron beam effects Bk, jj_f%j"ﬁi%!‘;“
Radiolysis and Knock-on Damage e ond 49 o ey
4.  Vacuum conditions _ , ,;
- 107" Torr limits gas and liquid experlments feasibility X !
5. Local probing ' - p‘ .
- Portions of the world study is small } f
- —

Fig. & Wing surface of the house fly. Fig. 2: Sketch by the author (9 March 1931) of the cathode ray tube for testing one-stage and two-
(First intemnal pho hy, U = 60 kV, M, = 2200) - § . .
L E., m:u ler FHO Z. Wizs. Mikro: y_l e 52, 53.57 (1935) stage electron-optical imaging by means of two magnetc electron lenses (electron myicroscope) [S]



IBIL from a quartz stage inside the TEM

Sandia’s Concurrent In situ lon
Irradiation TEM FaCiIity Collaborator: D.L. Buller
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Quantifying Damage in Nanocrystalline W
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Collaborator: W.S. Cinningham and J. Trelewicz




“ ¢ Damage Evolution in NC W and W-Ti Films
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Evolution of Radiation Defects in Cu TEM Foil

Collaborators: N. Li, A. Misra
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. Defect are Altered Little by the (=00~ = =
Presence of Grain Boundaries w ' |

Collaborators: N. Li, A. Misra
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SFT appear to be directly at GB
’ No change in defect density is observed near GB




Applying Machine Learning to I’'TEM Data

Collaborators: K. Bruns, M.C. Scott, A. Minor

1. Data Normalization 2. Unet™ Training
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Defect Counts

A 2" Look at Self-ion Irradiation of Cu

Collaborators: K. Bruns, M.C. Scott, A. Minor
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Cavities Role on Grain Boundary Motion

Collaborator: C. Taylor, B. Muntifering, J. Sugar & D. Adams

Cavities in helium
implanted, Pd foil
during annealing
at 700 °C

Cavities effect grain grain boundary
boundary mobility, ﬁ motion alters
triple junction angle cavity coalescence
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Quantifying Grain Boundary Radiation Stability
of Nanocrystalline Au

Collaborators: D.C. Bufford, F. Abdeljawad, & S.M. Foiles
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“ ©__ Direct Comparison to Mesoscale Modeling

Collaborators: D.C. Bufford, F. Abdeljawad, & S.M. Foiles
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Because of the matching length scale, the initial microstructure
can serve as direct input to either MD of mesoscale models &
subsequent structural evolution can be directly compared. fl"
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- Radiation Tolerance in Phase Change Memory

Contributors: Trevor Clark, Eric Lang, Ethan Scott, and David Adams
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1D Brownian Motion in Real Time

Collaborator: D.C. Bufford

Triple beam condition:
2.8 MeV Au** + 10 keV He* /D,

31

- ~30 nm apart




Simultaneous In situ TEM Triple Beam:
2.8 MeV Au** + 10 keV He* /D,

Collaborator: D.C. Bufford

In situ triple beam He, D,,
and Au beam irradiation
has been demonstrated
on Sandia’s IF'TEM!
Intensive work is still
needed to understand the
defect structure evolution
that has been observed.

Speed = Approximate fluence:
x1.5 - Au 1.2 x 103 ions/cm?

- He 1.3 X 10" ions/cm?
- D 2.2 x10% jons/cm?
m Cavity nucleation and disappearance 11/ Sandia National Laboratories




\ Laser Irradiation in a TEM

Contributors: P. Price, L. Treadwell, A. Cook

A Complex Combination of Sintering,
] Reactions, and Ablation Occurs

Speed = 2.5x

(1) Sandia National Laboratoris



In situ Quantitative Mechanical Testing

Contributors: J. Sharon, B. L. Boyce, C. Chisholm, H. Bei, E.P. George, P. Hosemann, A.M. Minor, & Hysitron Inc.
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- Sub nanometer displacement resolution
- Quantitative force information with pN resolution
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Can we Combine Laser Heating with Mechanical Testing?

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon
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Irradiation Creep (4 MeV Cu3* 102 DPA/s)

Contributors: G.S. Jawaharram, S. Dillon & R.S. Averback )
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Can We Gain Insight into the Corrosion
Process through In situ TEM?

Contributors: D. Gross, J. Kacher, .M. Robertson & Protochips, Inc.
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Pitting mechanisms during dilute flow of acetic acid over 99.95% nc-PLD Fe involves many grains.
Large grains resulting from annealing appear more corrosion tolerant




Other Fun Uses of Microfluidic Cell

Protocell @ b BSA
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ACOM in Liquid Cell Environment

Contributors: C. Taylor, S. Pratt, & T. Nenoff
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The Dream:
Testing Greater Extremes in the TEM

Advanced Manufacturing
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