This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2022-6355C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

CCGrid 2022: The 22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

Assembling Portable In-Situ Workflow from
Heterogeneous Components using Data
Reorganization

Bo Zhang*, Pradeep Subedi, Philip E Davis*, Francesco Rizzi*, Keita Teranishi® and Manish Parashar*
*Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112
TSamsung Semiconductor Inc., San Jose, California, 95134
INexGen Analytics, Sheridan, Wyoming 82801
§Sandia National Laboratories, Livermore, California 94551

Sandia

S Y9 sAMSUNG G (A e

www.sci.utah.edu OF UTAH Laboratories

Sandia National Laboratories is a multimission
laboratory managed and operated by National

International Inc., for the U.S. Department of

. . . n TS UN IVERSITY . " . . Frarqy’s National Nuclear Security |
Sandia National Laboratories is'a/multimission laboratory.managediand operated by National Technology & Engineering/Solutions of Sandia, LLC, a wholly,ownediion under contract DE-NA0003525.

subsidiary of Honeywell International Inc., for the U.S. Department of| Energy's National Nuclear Security Administration/under contract DE-NA0003525.

Technology & Engineering Solutions of Sandia,
S Qr/\h THE LLC, a wholly owned subsidiary of Honeywell

Outline

e [ntroduction

e Background and Related Work

e Heterogeneous Data Reorganization Methods
e Implementation

e Evaluation

e Conclusion and Future Work

Introduction

e Key Concepts

@)

Loosely-coupled in-situ workflow: Tasks are running on MPI (+ X)

Python
several components with flexible resources configuration. Data is Resource A Resource B
shared through high-speed network. The memory used to temporarily
store the transferred data is called staging area. Simulation) Post-Analysis

Heterogeneity: Individual components use different programming
models (languages) due to performance considerations or th;eg‘,’\‘”egt};lz'ih‘
development cost.

Data Layout: The mapping from logical data representation to

physical memory location, which is usually constrained by _

Heterogeneity. Resource C
GPU

| Visualization |

Portability:
m Performance: Better performance after porting.
m Development Cost: Easy to port.

Sg fI’/E 5
= m//f UNIVERSITY
www.sci.utah.edu OF UTAH

Introduction

e Principles for Building Portable In-Situ Workflow with Heterogeneous Components

o Individual components:

MPI (+ X) Python
m Maximize the performance of each components. Resource A Resource B
m Maintain the flexibility of being ported to new model. Simulation) Post-Analysis

o Data Movement:
Data through High-

d k
m Optimize the data movement path. Speed Networ

m Hide data reorganization when layouts mismatch.

Visualization

o Coupling Semantics: Resource C

GPU
m Add heterogeneity into abstraction.

m Automated data reorganization when layouts mismatch.

S S
= .// UNIVERSITY
www.sci.utah.edu OF UTAH

Introduction

e Abstraction for Portable In-Situ Workflows with Heterogeneous Components

@)

How to maintain the flexibility of the workflow
while each component can be easily switched to
another programming model?

Where should data reorganization be placed to
best hide the overhead of layout transformation
with different workflow features and resource
configurations?

Saa Y

: UNIVERSITY
www.sci.utah.edu OF UTAH

MPI (+ X)

Resource A

Simulation

Python

Resource B
) Post-Analysis

Data through High-
Speed Network

Visualization

Resource C

GPU

Introduction

e Limited Existing Work

@)

Performance portable programming frameworks only focus on the portability of single
applications.

Workflow coupling middleware do not consider the heterogeneity between components and
the requirement for the same data but in different memory layouts associated with these

components.

The question “how to efficiently solve the data layout mismatch between heterogeneous
components” needs to be explored within a breadth of workflow configurations.

S Y

: UNIVERSITY
wwwisci.utah.edu OF UTAH

Introduction

e Major Contributions

@)

An exploration of the trade-offs between three data reorganization methods with respect to the
available resources and features of the workflow.

A self-adaptive data reorganization method that reduces resource consumption by collecting
data access pattern information.

A portable application coupling framework prototype that extends Kokkos abstraction to
heterogeneous workflow level.

An evaluation of the portable application coupling framework prototype compared to current
file-based solutions in a synthetic workflow configuration.

S Y

: UNIVERSITY
wwwisci.utah.edu OF UTAH

Background and Related Work

App 0 (row-major)

Heterogeneity for high'performance, but
imposes SHGINSIONUGIGHEVOUIS.

Heterogeneity comes from:
o New Hardware: e.g. CUDA Memory Coalescing!'1i2],

o Legacy Software: e.g. Math Library, Fortran Code. App 1 (column-major)
; P : : . Fig. 1. Data layout mismatch between heterogeneous applications. Left:
Portlng IndIVIduaI appllcatlons Application 0 partitions a 4x4 2D array into 4 processors. Application

o Ad-Hoc DeSign: e.g. CUDA expert porting OpenMP 1 partitions it into 2 processors. Above: Row-major data layout in each

processors memory. Below: Column-major data layout in each processor’s
code to CUDA. memory. Arrows show required data movement.

o Portable Programming Abstraction: e.g. Kokkos!3l.

Assembling heterogeneous applications to a workflow:

o Data movements between components whose data layout mismatch
m Unify the data layouts? -> Lose Performance.
m Ad-Hoc design? -> Development Cost, Overhead of Transformation.

N

Sy O
Jg.//h UNIVERSITY 8
wwwisci.utah.edu OF UTAH

Background and Related Work

e Individual Application Portability
Kokkos
RAJAM“
SYCLD!
MPI + X6/l Practice
e Reorganization Mechanism
o Parallel I/O Systemsi8l-[10]
o Cloud Environment (Apache Arrowl('1])

® WorkﬂOW COU p“ng Framework Fig. 2. Complex workflow requires combinatorial numbers of ad-hoc data
o ADIOSI!2] layout transformations for polymorphic applications.

@)
@)
@)
@)

o DataSpaces!'3

N

Sy O

Jg.//h UNIVERSITY 9
wwwisci.utah.edu OF UTAH

Heterogeneous Data Reorganization Methods

Source App
A. Reorganization at Destination (RAD) Staging
e Straightforward; consistent performance. Destination App 1

Destination App 2

e No transformation time overlap; no replica reuse.

B. Reorganization at Staging as Requested (RASAR) .cci»

Staging

e Replica at server for reuse. Server

Destination App 1

e No transformation time overlap when no replica is

Destination App 2
avallable (b) Reorganization at Staging as Requested (RASAR)

C. Reorganization at Staging in Advance (RASIA) e

Staging
Server

e Overlapped transformation time.

Destination App 1

e Unnecessary replica; waste computing and high memory .

consum pt| on (c) Reorganization at Staging in Advance (RASIA)

Fig. 3. A schematic illustration of data reorganization methods.

/gih . 10

wwwisci.utah.edu OF UTAH

Heterogeneous Data Reorganization Methods
D. Self-Adaptive Hybrid Reorganization (SAHR)

Algorithm 1 Get Pattern Update
e Assumptions: godsc <MetaData for the queried data object {Contains

o A particular numerical application is interested in a varname, bounding box descriptor, version, layout,

)) .) src_layout, etc..}
fixed set of data objects with iterative values. query « Query(qodsc) {Request for a specified data

object}
pattern < ExtractPattern(query)

o The particular numerical application only requests

one specific layout for each data object. record_list +SearchGetPattern(pattern.varname,
e Access Pattern Collection module: f}“ﬁﬁ;ﬁj“ﬂi?ﬁl NULL then
o An access pattern is defined by: variable name, for all record in record_list do
layout, domain index descriptor(bounding box), and if CheckGridIntersection(pattern.bbox, record.bbox)
frequency. then
pattern <—CalculateSuperSet(pattern, record)
o Clients (individual applications) keeps their own end if
patterns and update to the staging server; Server end for
keeps all patterns from every application. end if

_) record_list <—UpdateGetPattern(pattern)
o Always calculate the superset for intersections to

avoid duplicated region.

S O
> 537 UNIVERSITY 11
wwwisci.utah.edu OF UTAH

Heterogeneous Data Reorganization Methods

D. Self-Adaptive Hybrid Reorganization (SAHR)

Nell|o-WiVeo Il COompute Write

Reorganization | Cache

Heterogeneous
Replica

Stagin

ging SyelsLPattern Exist?
Server

T Reorganization

. . Pattern Pattern

Destination) Queried Data
Pattern Exist?
App Yes

Fig. 4. A schematic illustration of Self-Adaptive Hybrid Reorganization (SAHR) method.

Implementation

A. Heterogeneous DataSpaces

Staging Server

_— —— = — — — — — -
|_ Coordination Layer ok os S athace
| Query Data Access |Data Reorganization | | Kokkos::HostSpace | S
. . : X\
Engine |Indexing Pattern Transformation - - 5\3\)“
| Collection Algorithm | I Kokkos::Staging Interface l \(O\A«O
Layout Mngmt | |_ Coordination Layer al
| NISDlmSenswnal Hete.rogeneous | Data Reorganization| Access | Kokkos
ata Storage Replica Mngmt Transformation Pattern Application
| Concurrency Ctrl | Algorithm Collection | Client
1
|_ Margo Communication Layer J
— — — — — — — — — — — — — — —

Heterogeneous DataSpaces

Fig. 5. Architecture of Kokkos Staging Space. The data reorganization module
and Kokkos::Staging API were implemented on top of the DataSpaces and
Kokkos framework respectively.

SHan 8
= s UNIVERSITY
wwwisci.utah.edu OF UTAH

Access Pattern Collection module:
Identify and record new data access pattern

Data Reorganization module:

e Transformation Algorithm: Define how
to transform from Layout A to B.

e Layout Management: Manage all
layouts.

e Heterogeneous Replica Management:
Keep a superset of domain data for
specific layouts; remove redundancy.

e Concurrency Control: avoid repetitive
transformation incurred by concurrent
data requests.

13

Implementation

B. Kokkos::Staging Interface

Staging Server

Fig. 5. Architecture of Kokkos Staging

Heterogeneous DataSpaces

_— —— — — — — — — -
|_ Coordination Layer fokfions Gl aibac
| Query | Data F:t\ctctc-:ss Da:_a Rec;rganitzgtion | | Kokkos::HostSpace | e

Engine |Indexing attern LanSIONMSON . : o RV
| Collection Algorithm | | Kokkos::Staging Interface | \(\o\d‘o
Layout Mngmt | |_ Coordination Layer ol

| NIZ;DlmSensnonaI Hete.rogeneous | Data Reorganization| Access | Kokkos

ata Storage Replica Mngmt | T ; Pattern Application
| Concurrency Ctrl Collection | Client

Space. The data reorganization module

and Kokkos::Staging API were implemented on top of the DataSpaces and

Kokkos framework respectively.

THE

Sy

wwwisci.utah.edu

UNIVERSITY
OFUTAH

R - N SRV R SR

Kokkos::Staging::initialize();

{

using ViewHost_lr_t = Kokkos::View<Data_t+=*,
Kokkos::LayoutRight, Kokkos::HostSpace>;
using ViewHost_11_t = Kokkos::View<Data_txx,
Kokkos::LayoutLeft, Kokkos::HostSpace>;
using ViewStaging_lr_t = Kokkos::View<Data_txx,
Kokkos::LayoutRight, Kokkos::StagingSpace>;
using ViewStaging_l1l_t = Kokkos::View<Data_txx,

Kokkos::LayoutLeft, Kokkos::StagingSpace>;
ViewHost_lr_t v_P ("PutView", 10, 1i1);
ViewStaging_lr_t v_S_1lr ("StagingView_LayoutRight",

i0, il);
ViewStaging_1l1_t v_S_11("StagingView_LayoutLeft",
i0, il);
ViewHost_11_t v_G("GetView", 10, 1i1);

// global domain geometric descriptor

Kokkos::Staging::set_lower_bound(v_S_1lr, 1b0, 1bl);
Kokkos::Staging::set_upper_bound(v_S_lr, 1b0, 1bl);
Kokkos::Staging::set_lower_bound(v_S_11, 1b0, 1bl);
Kokkos::Staging::set_upper_bound(v_S_11, 1b0, 1bl);

// global iteration
Kokkos::Staging::set_version(v_S_lr, version);
Kokkos::Staging::set_version(v_S_11, wversion);

bind two staging views 1n different layout
Kokkos::Staging::view_bind_layout (v_S_11, v_S_1r);

// from host to staging
Kokkos: :deep_copy (v_S_1lr, v_P);
// from staging to host
Kokkos: :deep_copy (v_G, v_S_11);

}
Kokkos::Staging::finalize();

Fig. 6. Code example of data exchange between Kokkos views in different
layouts

14

Evaluation - Platform

e Frontera at TACC

Processor | Clock Rate | Physical Cores | Threads/ @ Sockets/ Node

INode Core
Intel Xeon 2.7 GHz 56 1 2
Platinum
8280

S .,

RAM/ Node | Network

192 GB DDR4 | Mellanox HDR

www.sci.utah.edu OF UTAH

15

Evaluation - Workflow

e Synthetic Staging-Based In-Situ Workflow

Layout A/B

Layout A
Shares the Same

Read Pattern

Layout A/B

Evaluation

A. Exploring the task placement of data reorganization TABLE I
i Metric 1 C cle time Of writer and reader EXPERIMENTAL SETUP CONFIGURATIONS FOR SYNTHETIC EXPERIMENTS
' y Data Domain 1024 x 1024 x 1024
e writers and readers ran with 0, 5, 10, 20 seconds No. of Parallel Writer Cores (Nodes) S12(16)
. . No. of Parallel Reader Cores (Nodes) 64(4)
of sleep after each computation time step. No. of 2nd Parallel Reader Cores (Nodes) 64(4)
No. of Staging Cores (Nodes) 32(8)
Total Staged Data Size (15 Time-steps) 120 GB
Writer Reader 2nd Reader
100 1600 1600
= = 1400 = 1400
E w0 [E E
a o 1200 o 1200
] K]
g 60 E 1000 ag) 1000
F ~ 800 800
g g g
o 40 o 600 @ 600
£ £ £
E " E 400 % 400
e € 200 2 200
0 0 0-
0 5 10 20 0 5 10 20 0 5 10 20
Delay (second) Delay (second) Delay (second)

Emm Reorganization at Destination (RAD) mmm Reorganization at Staging as Requested (RASAR) Emm Reorganization at Staging in Advance (RASIA) mmm Self-Adaptive Hybrid Reorganization (SAHR)

Fig. 7. Comparison of I/O time per time step among four data reorganization methods with varying cycle time of applications

.og’r/!- ':! -

wwwisci.utah.edu

Evaluation

ii. Metric 2 - Staging server scale

e Fixed writer scale: 512 cores (16 nodes); reader scale: 64 cores (4 nodes).
e Vary staging server scale: 8 cores (2 nodes), 16 cores (4 nodes), 32 cores (8 nodes).

Writer Reader 2nd Reader
1000 3500 3500
_ __ 3000 __ 3000
0 o o
e E E
a o 2500 o 2500
2 9 9
v.] 2
o o o
g 60 £ 2000 E 2000
F F F
v . .
& & 1500 & 1500
o 400 [o
£ £ £
P 5 1000 5 1000
£ © ©
S 200 k4 &
500 500
0 0 0
32:64 16:64 8:64 32:64 16:64 8:64 32:64 16:64 8:64
Server:Reader Server:Reader Server:Reader
Read Time Covergence (Server:Reader = 32:64) Read Time Covergence (Server:Reader = 16:64) Read Time Covergence (Server:Reader = 8:64)
000 5000 7000
6000 1
4000 4000
. - — 5000 T
m M o
E E E
@ 3000 T 3000 T
2 g g 4000
= E E
T T T 3000
© ® 2000 | - | - | ®
§ 2000 8 [g P
- h L* 2000 —
-
1000 t T t t 1000 —
5 \ 1000 N P~
\ o —r—— N
o] TV N ~¥= o Mg
2 4 5 6 7 9 10 11 12 13 14 15 2 3 45 6 7 8 9 1011 1213 14 15 2 3 5 6 8 10 11 12 13 14 15
Time Step Time Step Time Step
mmm Reorganization at Destination (RAD) mmm Reorganization at Staging as Requested (RASAR) ~ mmm Reorganization at Staging in Advance (RASIA) mmm Self-Adaptive Hybrid ization (SAHR)

—=— 1st Reader of RAD -=- 2nd Reader of RAD ~ —+— 1st Reader of RASAR ~ -=- 2nd Reader of RASAR ~ —— 1st Reader of RASIA -~ 2nd Reader of RASIA —— 1st Reader of SAHR -e- 2nd Reader of SAHR

Fig. 8. Comparison of I/O time per time step among four data reorganization methods with different staging server scale

Evaluation

iii. Metric 3 - Data size of reading subset domain

e Read a geometric core, whose coordinates are {(1024-d)/2, (1024+d)/2} in each dimension.
e (=128, 256, 512; only read a d° cube from the geometric core of the entire data domain.

Writer Reader 2nd Reader Staging Server Memory Usage
120 120 120 171 -
— . _ g
w
£ 100 £ 100 £ 100 2 161
-~ -~ ~ Q
9] a 2 151
w80 % 80 % 80 £
[} (] (1] S 14 A
E E E 5
'~ 60 T 601 F e g1
(7] (7] @ [
o Q o o 12
Q [[©
E 407 E 40 g 40 Sn
= F F 1
2 o © s‘
T 204 o 20 S 20 10
= < < £
[
s 99
0- 0- T T
12873 25673 512~3 128”3 256°3 512°3 12873 256°3 512°3 12873 256°3 512~3 1024~3
Subset Domain to Read Subset Domain to Read Subset Domain to Read Subset Domain to Read

B Reorganization at Destination (RAD) == Reorganization at Staging as Requested (RASAR) mmm Reorganization at Staging in Advance (RASIA) mmm Self-Adaptive Hybrid Reorganization (SAHR)

Fig. 9. Comparison of I/O time & staging server memory usage per time step among four data reorganization methods with different size of subset domain
to read

Evaluation

B. Strong scaling comparison to existing Kokkos backends
e Same Layout: StdlO vs HDF5 vs DataSpaces.
e Different Layout: StdlO + Ad-Hoc Re-org vs HDF5 + Ad-Hoc Re-org vs DataSpaces +SAHR.

TABLE 1II
EXPERIMENTAL SETUP CONFIGURATIONS OF DATA DOMAIN, CORE-ALLOCATIONS AND SIZE OF THE STAGED DATA FOR STRONG SCALING TESTS
Data Domain 1024 x 1024 x 1024
No. of Parallel Writer Cores (Nodes) 256(8) | 512(16) 1024(32) | 2048(64) | 4096(128)
No. of Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)
No. of 2nd Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)
No. of Staging Cores (Nodes) 16(4) 32(8) 64(16) 128(32) 256(64)
Total Staged Data Size (15 Time-steps) 120 GB
Cycle Time 20 second

Adag e 20
wwwisci.utah.edu OF UTAH

Evaluation

B. Strong scaling comparison to existing Kokkos backends
e Same Layout: StdlO vs HDF5 vs DataSpaces.
e Different Layout: StdlO + Ad-Hoc Re-org vs HDF5 + Ad-Hoc Re-org vs DataSpaces +SAHR.

Writer Reader 2nd Reader
1024 5 2 N
n ~ m SSIE<C n SSIELC
E E ~ \\ E SO
PO OIS e 210
o "N \ g 10 \ < = g0 - =
N ~ N~ S~
NN 3 St .
g N\\ E S ~ g ~
3 \\\\‘ — 3 102 k‘ \ 3 102 s\‘
NUN SN “‘ ~- "\‘
E \\\ E \? \\‘ E C~-
o \\\ = ‘\\ - ‘s\
= N © A2 © A IS
= . 9] L Q SO
s = « RN e RN
R 10 e 10! ey
10°
256. 525.,. 10 204 409, 256. 515.5. o, 20, 40 256. 515.5. o, 20, 40,
:16. 35,0246, <Y4s. 6: 2265 12:35. 9244, <U48: 96: 6:26.5.742:35. 245, <U48. 96
6:3, 9264 ~76q, 128 128"?55 25@512 6:3; 9264 764 128 12%56 25@512 6:35 9264 764 128 124.256 255_.512
Writer:Server:Reader Writer:Server:Reader Writer:Server:Reader
—e— CPPStdI0 —e— DataSpaces Without Reorganization =~ —e-- HDF5 + Ad-Hoc Reorganization
~e— HDF5 —e- CPP StdlO + Ad-Hoc Reorganization =~ —e- DataSpaces with Self-Adaptive Hybrid Reorganization

Fig. 10. Strong scaling comparison of I/O time per time step among C++ standard I/0, HDF5 and DataSpaces

Conclusion and Future Work

We explored the trade-offs between different data reorganization methods within various
experimental configurations, and then propose a Self-Adaptive Hybrid Reorganization (SAHR)
method which reduces resource consumption by collecting data access pattern information.

By integrating asynchronous data layout conversions, we implemented Kokkos Staging Space as
an extension of Kokkos to workflow level, and demonstrated its effectiveness in terms of both
time-to-solution and scalability for inter-application data exchange.

In future work, we plan to support more data reorganization types, such as the transformation
between Array of Structs(AoS) and Struct of Arrays(SoA), and to evaluate these methods using a
production scientific workflow of heterogeneous components.

S o »

www.sci.utah.edu OF UTAH

Reference

10.

11.
12.

13.

Bell, Nathan, and Michael Garland. Efficient sparse matrix-vector multiplication on CUDA. Vol. 2. No. 5. Nvidia Technical Report NVR-2008-
004, Nvidia Corporation, 2008.

(2021) Cuda c++ programming guide - v11.5.1. [Online]. Available: https://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf
Trott, Christian R., et al. "Kokkos 3: Programming model extensions for the exascale era." IEEE Transactions on Parallel and Distributed
Systems 33.4 (2021): 805-817.

Beckingsale, David A., et al. "Raja: Portable performance for large-scale scientific applications." 2019 ieee/acm international workshop on
performance, portability and productivity in hpc (p3hpc). IEEE, 2019.

Reyes, Ruyman, et al. "SYCL 2020: more than meets the eye." Proceedings of the International Workshop on OpenCL. 2020.

Khuvis, Samuel, et al. "Exploring Hybrid MPI+ Kokkos Tasks Programming Model." 2020 IEEE/ACM 3rd Annual Parallel Applications
Workshop: Alternatives To MPI+ X (PAW-ATM). |IEEE, 2020.

Deakin, Tom, and Simon MclIntosh-Smith. "Evaluating the performance of HPC-style SYCL applications." Proceedings of the International
Workshop on OpenCL. 2020.

Wan, Lipeng, et al. "Improving I/O Performance for Exascale Applications through Online Data Layout Reorganization." IEEE Transactions
on Parallel and Distributed Systems 33.4 (2021): 878-890.

He, Shuibing, et al. "Optimizing parallel I/O accesses through pattern-directed and layout-aware replication." IEEE Transactions on
Computers 69.2 (2019): 212-225.

Tang, Houjun, et al. "Usage pattern-driven dynamic data layout reorganization." 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid). IEEE, 2016.

(2021) Apache arrow: A cross-language development platform for in-memory data. [Online]. Available: https://arrow.apache.org/

Godoy, William F., et al. "Adios 2: The adaptable input output system. a framework for high-performance data management." SoftwareX 12
(2020): 100561.

Docan, Ciprian, Manish Parashar, and Scott Klasky. "Dataspaces: an interaction and coordination framework for coupled simulation
workflows." Cluster Computing 15.2 (2012): 163-181.

S Y

: UNIVERSITY
wwwisci.utah.edu OF UTAH

Thanks for your time !

bozhang@sci.utah.edu

THE
UUUUUUUUUU
OF

