
Assembling Portable In-Situ Workflow from
Heterogeneous Components using Data

Reorganization

CCGrid 2022: The 22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
SAND2022-6355CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

● Introduction

● Background and Related Work

● Heterogeneous Data Reorganization Methods

● Implementation

● Evaluation

● Conclusion and Future Work

2

Introduction
● Key Concepts

○ Loosely-coupled in-situ workflow: Tasks are running on
several components with flexible resources configuration. Data is
shared through high-speed network. The memory used to temporarily
store the transferred data is called staging area.

○ Heterogeneity: Individual components use different programming
models (languages) due to performance considerations or
development cost.

○ Data Layout: The mapping from logical data representation to
physical memory location, which is usually constrained by
Heterogeneity.

○ Portability:
■ Performance: Better performance after porting.
■ Development Cost: Easy to port.

3

Introduction
● Principles for Building Portable In-Situ Workflow with Heterogeneous Components

4

○ Individual components:

■ Maximize the performance of each components.

■ Maintain the flexibility of being ported to new model.

○ Data Movement:

■ Optimize the data movement path.

■ Hide data reorganization when layouts mismatch.

○ Coupling Semantics:

■ Add heterogeneity into abstraction.

■ Automated data reorganization when layouts mismatch.

Introduction

● Abstraction for Portable In-Situ Workflows with Heterogeneous Components

5

○ How to maintain the flexibility of the workflow
while each component can be easily switched to
another programming model?

○ Where should data reorganization be placed to
best hide the overhead of layout transformation
with different workflow features and resource
configurations?

Introduction

● Limited Existing Work
○ Performance portable programming frameworks only focus on the portability of single

applications.

○ Workflow coupling middleware do not consider the heterogeneity between components and
the requirement for the same data but in different memory layouts associated with these
components.

○ The question “how to efficiently solve the data layout mismatch between heterogeneous
components” needs to be explored within a breadth of workflow configurations.

6

Introduction

● Major Contributions
○ An exploration of the trade-offs between three data reorganization methods with respect to the

available resources and features of the workflow.

○ A self-adaptive data reorganization method that reduces resource consumption by collecting
data access pattern information.

○ A portable application coupling framework prototype that extends Kokkos abstraction to
heterogeneous workflow level.

○ An evaluation of the portable application coupling framework prototype compared to current
file-based solutions in a synthetic workflow configuration.

7

Background and Related Work
● Heterogeneity for high performance, but

imposes constraints on data layouts.

● Heterogeneity comes from:
○ New Hardware: e.g. CUDA Memory Coalescing[1][2].
○ Legacy Software: e.g. Math Library, Fortran Code.

● Porting Individual applications:
○ Ad-Hoc Design: e.g. CUDA expert porting OpenMP

code to CUDA.
○ Portable Programming Abstraction: e.g. Kokkos[3].

8

● Assembling heterogeneous applications to a workflow:
○ Data movements between components whose data layout mismatch

■ Unify the data layouts? -> Lose Performance.
■ Ad-Hoc design? -> Development Cost, Overhead of Transformation.

Background and Related Work
● Individual Application Portability

○ Kokkos
○ RAJA[4]

○ SYCL[5]

○ MPI + X[6][7] Practice

● Reorganization Mechanism
○ Parallel I/O Systems[8] - [10]

○ Cloud Environment (Apache Arrow[11])
● Workflow Coupling Framework

○ ADIOS[12]

○ DataSpaces[13]

9

Heterogeneous Data Reorganization Methods
A. Reorganization at Destination (RAD)

● Straightforward; consistent performance.
● No transformation time overlap; no replica reuse.

B. Reorganization at Staging as Requested (RASAR)
● Replica at server for reuse.

● No transformation time overlap when no replica is

available.

C. Reorganization at Staging in Advance (RASIA)
● Overlapped transformation time.
● Unnecessary replica; waste computing and high memory

consumption.

10

Heterogeneous Data Reorganization Methods
D. Self-Adaptive Hybrid Reorganization (SAHR)

11

● Assumptions:
○ A particular numerical application is interested in a

fixed set of data objects with iterative values.

○ The particular numerical application only requests
one specific layout for each data object.

● Access Pattern Collection module:
○ An access pattern is defined by: variable name,

layout, domain index descriptor(bounding box), and
frequency.

○ Clients (individual applications) keeps their own
patterns and update to the staging server; Server
keeps all patterns from every application.

○ Always calculate the superset for intersections to
avoid duplicated region.

Heterogeneous Data Reorganization Methods

D. Self-Adaptive Hybrid Reorganization (SAHR)

12

Implementation
A. Heterogeneous DataSpaces

13

Access Pattern Collection module:
Identify and record new data access pattern

Data Reorganization module:
● Transformation Algorithm: Define how

to transform from Layout A to B.
● Layout Management: Manage all

layouts.
● Heterogeneous Replica Management:

Keep a superset of domain data for
specific layouts; remove redundancy.

● Concurrency Control: avoid repetitive
transformation incurred by concurrent
data requests.

Implementation
B. Kokkos::Staging Interface

14

Evaluation - Platform
● Frontera at TACC

15

Processor Clock Rate Physical Cores
/Node

Threads/
Core

Sockets/ Node RAM/ Node Network

Intel Xeon
Platinum
8280

2.7 GHz 56 1 2 192 GB DDR4 Mellanox HDR

Evaluation - Workflow
● Synthetic Staging-Based In-Situ Workflow

16

Evaluation
A. Exploring the task placement of data reorganization

i. Metric 1 - Cycle time of writer and reader

17

● writers and readers ran with 0, 5, 10, 20 seconds
of sleep after each computation time step.

Evaluation
ii. Metric 2 - Staging server scale

● Fixed writer scale: 512 cores (16 nodes); reader scale: 64 cores (4 nodes).
● Vary staging server scale: 8 cores (2 nodes), 16 cores (4 nodes), 32 cores (8 nodes).

18

Evaluation

19

iii. Metric 3 - Data size of reading subset domain
● Read a geometric core, whose coordinates are {(1024-d)/2, (1024+d)/2} in each dimension.
● d=128, 256, 512; only read a d3 cube from the geometric core of the entire data domain.

Evaluation

20

B. Strong scaling comparison to existing Kokkos backends
● Same Layout: StdIO vs HDF5 vs DataSpaces.
● Different Layout: StdIO + Ad-Hoc Re-org vs HDF5 + Ad-Hoc Re-org vs DataSpaces +SAHR.

Evaluation

21

B. Strong scaling comparison to existing Kokkos backends
● Same Layout: StdIO vs HDF5 vs DataSpaces.
● Different Layout: StdIO + Ad-Hoc Re-org vs HDF5 + Ad-Hoc Re-org vs DataSpaces +SAHR.

Conclusion and Future Work

● We explored the trade-offs between different data reorganization methods within various
experimental configurations, and then propose a Self-Adaptive Hybrid Reorganization (SAHR)
method which reduces resource consumption by collecting data access pattern information.

● By integrating asynchronous data layout conversions, we implemented Kokkos Staging Space as
an extension of Kokkos to workflow level, and demonstrated its effectiveness in terms of both
time-to-solution and scalability for inter-application data exchange.

● In future work, we plan to support more data reorganization types, such as the transformation
between Array of Structs(AoS) and Struct of Arrays(SoA), and to evaluate these methods using a
production scientific workflow of heterogeneous components.

22

Reference
1. Bell, Nathan, and Michael Garland. Efficient sparse matrix-vector multiplication on CUDA. Vol. 2. No. 5. Nvidia Technical Report NVR-2008-

004, Nvidia Corporation, 2008.
2. (2021) Cuda c++ programming guide - v11.5.1. [Online]. Available: https://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf
3. Trott, Christian R., et al. "Kokkos 3: Programming model extensions for the exascale era." IEEE Transactions on Parallel and Distributed

Systems 33.4 (2021): 805-817.
4. Beckingsale, David A., et al. "Raja: Portable performance for large-scale scientific applications." 2019 ieee/acm international workshop on

performance, portability and productivity in hpc (p3hpc). IEEE, 2019.
5. Reyes, Ruyman, et al. "SYCL 2020: more than meets the eye." Proceedings of the International Workshop on OpenCL. 2020.
6. Khuvis, Samuel, et al. "Exploring Hybrid MPI+ Kokkos Tasks Programming Model." 2020 IEEE/ACM 3rd Annual Parallel Applications

Workshop: Alternatives To MPI+ X (PAW-ATM). IEEE, 2020.
7. Deakin, Tom, and Simon McIntosh-Smith. "Evaluating the performance of HPC-style SYCL applications." Proceedings of the International

Workshop on OpenCL. 2020.
8. Wan, Lipeng, et al. "Improving I/O Performance for Exascale Applications through Online Data Layout Reorganization." IEEE Transactions

on Parallel and Distributed Systems 33.4 (2021): 878-890.
9. He, Shuibing, et al. "Optimizing parallel I/O accesses through pattern-directed and layout-aware replication." IEEE Transactions on

Computers 69.2 (2019): 212-225.
10. Tang, Houjun, et al. "Usage pattern-driven dynamic data layout reorganization." 2016 16th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid). IEEE, 2016.
11. (2021) Apache arrow: A cross-language development platform for in-memory data. [Online]. Available: https://arrow.apache.org/
12. Godoy, William F., et al. "Adios 2: The adaptable input output system. a framework for high-performance data management." SoftwareX 12

(2020): 100561.
13. Docan, Ciprian, Manish Parashar, and Scott Klasky. "Dataspaces: an interaction and coordination framework for coupled simulation

workflows." Cluster Computing 15.2 (2012): 163-181.

23

Thanks for your time !

bozhang@sci.utah.edu

24

