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Introduction
● Key Concepts

○ Loosely-coupled in-situ workflow: Tasks are running on 
several components with flexible resources configuration. Data is 
shared through high-speed network. The memory used to temporarily 
store the transferred data is called staging area.

○ Heterogeneity: Individual components use different programming 
models (languages) due to performance considerations or 
development cost.

○ Data Layout: The mapping from logical data representation to 
physical memory location, which is usually constrained by 
Heterogeneity.

○ Portability:
■ Performance: Better performance after porting.
■ Development Cost: Easy to port.
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Introduction
● Principles for Building Portable In-Situ Workflow with Heterogeneous Components
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○ Individual components:

■ Maximize the performance of each components.

■ Maintain the flexibility of being ported to new model.

○ Data Movement:

■ Optimize the data movement path.

■ Hide data reorganization when layouts mismatch.

○ Coupling Semantics:

■ Add heterogeneity into abstraction.

■ Automated data reorganization when layouts mismatch.



Introduction

● Abstraction for Portable In-Situ Workflows with Heterogeneous Components
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○ How to maintain the flexibility of the workflow 
while each component can be easily switched to 
another programming model?

○ Where should data reorganization be placed to  
best hide the overhead of layout transformation 
with different workflow features and resource 
configurations? 



Introduction

● Limited Existing Work
○ Performance portable programming frameworks only focus on the portability of single 

applications.

○ Workflow coupling middleware do not consider the heterogeneity between components and 
the requirement for the same data but in different memory layouts associated with these 
components.

○ The question “how to efficiently solve the data layout mismatch between heterogeneous 
components” needs to be explored within a breadth of workflow configurations.
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Introduction

● Major Contributions
○ An exploration of the trade-offs between three data reorganization methods with respect to the 

available resources and features of the workflow.

○ A self-adaptive data reorganization method that reduces resource consumption by collecting 
data access pattern information.

○ A portable application coupling framework prototype that extends Kokkos abstraction to 
heterogeneous workflow level.

○ An evaluation of the portable application coupling framework prototype compared to current 
file-based solutions in a synthetic workflow configuration.
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Background and Related Work
● Heterogeneity for high performance, but 

imposes constraints on data layouts.

● Heterogeneity comes from:
○ New Hardware: e.g. CUDA Memory Coalescing[1][2].
○ Legacy Software: e.g. Math Library, Fortran Code.

● Porting Individual applications:
○ Ad-Hoc Design: e.g. CUDA expert porting OpenMP 

code to CUDA.
○ Portable Programming Abstraction: e.g. Kokkos[3].
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● Assembling heterogeneous applications to a workflow:
○ Data movements between components whose data layout mismatch

■ Unify the data layouts? -> Lose Performance.
■ Ad-Hoc design? -> Development Cost, Overhead of Transformation.  



Background and Related Work
● Individual Application Portability

○ Kokkos
○ RAJA[4]

○ SYCL[5]

○ MPI + X[6][7] Practice

● Reorganization Mechanism
○ Parallel I/O Systems[8] - [10]

○ Cloud Environment (Apache Arrow[11])
● Workflow Coupling Framework

○ ADIOS[12]

○ DataSpaces[13]

9



Heterogeneous Data Reorganization Methods
A. Reorganization at Destination (RAD)

● Straightforward; consistent performance.
● No transformation time overlap; no replica reuse.

B. Reorganization at Staging as Requested (RASAR)
● Replica at server for reuse.

● No transformation time overlap when no replica is 

available.

C. Reorganization at Staging in Advance (RASIA)
● Overlapped transformation time.
● Unnecessary replica; waste computing and high memory 

consumption.
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Heterogeneous Data Reorganization Methods
D. Self-Adaptive Hybrid Reorganization (SAHR)
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● Assumptions:
○ A particular numerical application is interested in a 

fixed set of data objects with iterative values.

○ The particular numerical application only requests 
one specific layout for each data object.

● Access Pattern Collection module:
○ An access pattern is defined by: variable name, 

layout, domain index descriptor(bounding box), and 
frequency.

○ Clients (individual applications) keeps their own 
patterns and update to the staging server; Server 
keeps all patterns from every application.

○ Always calculate the superset for intersections to 
avoid duplicated region.



Heterogeneous Data Reorganization Methods

D. Self-Adaptive Hybrid Reorganization (SAHR)
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Implementation
A. Heterogeneous DataSpaces
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Access Pattern Collection module:
Identify and record new data access pattern

Data Reorganization module:
● Transformation Algorithm: Define how 

to transform from Layout A to B.
● Layout Management: Manage all 

layouts.
● Heterogeneous Replica Management: 

Keep a superset of domain data for 
specific layouts; remove redundancy.

● Concurrency Control: avoid repetitive 
transformation incurred by concurrent 
data requests.



Implementation
B. Kokkos::Staging Interface

14



Evaluation - Platform
● Frontera at TACC
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Processor Clock Rate Physical Cores 
/Node

Threads/ 
Core

Sockets/ Node RAM/ Node Network

Intel Xeon 
Platinum 
8280 

2.7 GHz 56 1 2 192 GB DDR4 Mellanox HDR



Evaluation - Workflow
● Synthetic Staging-Based In-Situ Workflow
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Evaluation
A. Exploring the task placement of data reorganization

i. Metric 1 - Cycle time of writer and reader
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● writers and readers ran with 0, 5, 10, 20 seconds 
of sleep after each computation time step.



Evaluation
ii. Metric 2 - Staging server scale

● Fixed writer scale: 512 cores (16 nodes); reader scale: 64 cores (4 nodes).
● Vary staging server scale: 8 cores (2 nodes), 16 cores (4 nodes), 32 cores (8 nodes).

18



Evaluation
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iii. Metric 3 - Data size of reading subset domain
● Read a geometric core, whose coordinates are {(1024-d)/2, (1024+d)/2} in each dimension.
● d=128, 256, 512; only read a d3 cube from the geometric core of the entire data domain.



Evaluation

20

B. Strong scaling comparison to existing Kokkos backends
● Same Layout: StdIO vs HDF5 vs DataSpaces.
● Different Layout: StdIO + Ad-Hoc Re-org vs HDF5 + Ad-Hoc Re-org vs DataSpaces +SAHR.



Evaluation
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Conclusion and Future Work

● We explored the trade-offs between different data reorganization methods within various 
experimental configurations, and then propose a Self-Adaptive Hybrid Reorganization (SAHR) 
method which reduces resource consumption by collecting data access pattern information.

● By integrating asynchronous data layout conversions, we implemented Kokkos Staging Space as 
an extension of Kokkos to workflow level, and demonstrated its effectiveness in terms of both 
time-to-solution and scalability for inter-application data exchange.

● In future work, we plan to support more data reorganization types, such as the transformation 
between Array of Structs(AoS) and Struct of Arrays(SoA), and to evaluate these methods using a 
production scientific workflow of heterogeneous components.
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