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Introduction

e Key Concepts

@)

Loosely-coupled in-situ workflow: Tasks are running on MPI (+ X)

Python
several components with flexible resources configuration. Data is Resource A Resource B
shared through high-speed network. The memory used to temporarily
store the transferred data is called staging area. Simulation ) Post-Analysis

Heterogeneity: Individual components use different programming
models (languages) due to performance considerations or th;eg‘,’\‘”egt};lz'ih‘
development cost.

Data Layout: The mapping from logical data representation to

physical memory location, which is usually constrained by _

Heterogeneity.  Resource C
GPU

| Visualization |

Portability:
m Performance: Better performance after porting.
m Development Cost: Easy to port.
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Introduction

e Principles for Building Portable In-Situ Workflow with Heterogeneous Components

o Individual components:

MPI (+ X) Python
m  Maximize the performance of each components. Resource A Resource B
m  Maintain the flexibility of being ported to new model. Simulation ) Post-Analysis

o Data Movement:
Data through High-

d k
m  Optimize the data movement path. Speed Networ

m Hide data reorganization when layouts mismatch.

Visualization

o Coupling Semantics: Resource C

GPU
m  Add heterogeneity into abstraction.

m Automated data reorganization when layouts mismatch.
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Introduction

e Abstraction for Portable In-Situ Workflows with Heterogeneous Components

@)

How to maintain the flexibility of the workflow
while each component can be easily switched to
another programming model?

Where should data reorganization be placed to
best hide the overhead of layout transformation
with different workflow features and resource
configurations?
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Introduction

e Limited Existing Work

@)

Performance portable programming frameworks only focus on the portability of single
applications.

Workflow coupling middleware do not consider the heterogeneity between components and
the requirement for the same data but in different memory layouts associated with these

components.

The question “how to efficiently solve the data layout mismatch between heterogeneous
components” needs to be explored within a breadth of workflow configurations.
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Introduction

e Major Contributions

@)

An exploration of the trade-offs between three data reorganization methods with respect to the
available resources and features of the workflow.

A self-adaptive data reorganization method that reduces resource consumption by collecting
data access pattern information.

A portable application coupling framework prototype that extends Kokkos abstraction to
heterogeneous workflow level.

An evaluation of the portable application coupling framework prototype compared to current
file-based solutions in a synthetic workflow configuration.
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Background and Related Work

App 0 (row-major)

Heterogeneity for high'performance, but
imposes SHGINSIONUGIGHEVOUIS.

Heterogeneity comes from:
o New Hardware: e.g. CUDA Memory Coalescing!'1i2],

o Legacy Software: e.g. Math Library, Fortran Code. App 1 (column-major)
; P : : . Fig. 1. Data layout mismatch between heterogeneous applications. Left:
Portlng IndIVIduaI appllcatlons Application 0 partitions a 4x4 2D array into 4 processors. Application

o Ad-Hoc DeSign: e.g. CUDA expert porting OpenMP 1 partitions it into 2 processors. Above: Row-major data layout in each

processors memory. Below: Column-major data layout in each processor’s
code to CUDA. memory. Arrows show required data movement.

o Portable Programming Abstraction: e.g. Kokkos!3l.

Assembling heterogeneous applications to a workflow:

o Data movements between components whose data layout mismatch
m  Unify the data layouts? -> Lose Performance.
m Ad-Hoc design? -> Development Cost, Overhead of Transformation.
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Background and Related Work

e Individual Application Portability
Kokkos
RAJAM“
SYCLD!
MPI + X6/l Practice
e Reorganization Mechanism
o Parallel I/O Systemsi8l-[10]
o Cloud Environment (Apache Arrowl('1])

® WorkﬂOW COU p“ng Framework Fig. 2. Complex workflow requires combinatorial numbers of ad-hoc data
o ADIOSI!2] layout transformations for polymorphic applications.

@)
@)
@)
@)

o DataSpaces!'3
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Heterogeneous Data Reorganization Methods

Source App
A. Reorganization at Destination (RAD) Staging
e Straightforward; consistent performance. Destination App 1

Destination App 2

e No transformation time overlap; no replica reuse.

B. Reorganization at Staging as Requested (RASAR)  .cci»

Staging

e Replica at server for reuse. Server

Destination App 1

e No transformation time overlap when no replica is

Destination App 2
avallable (b) Reorganization at Staging as Requested (RASAR)

C. Reorganization at Staging in Advance (RASIA) e

Staging
Server

e Overlapped transformation time.

Destination App 1

e Unnecessary replica; waste computing and high memory .

consum pt| on (c) Reorganization at Staging in Advance (RASIA)

Fig. 3. A schematic illustration of data reorganization methods.
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Heterogeneous Data Reorganization Methods
D. Self-Adaptive Hybrid Reorganization (SAHR)

Algorithm 1 Get Pattern Update
e Assumptions: godsc <MetaData for the queried data object {Contains

o A particular numerical application is interested in a varname, bounding box descriptor, version, layout,

) ) . ) src_layout, etc..}
fixed set of data objects with iterative values. query « Query(qodsc) {Request for a specified data

object}
pattern < ExtractPattern(query)

o  The particular numerical application only requests

one specific layout for each data object. record_list +SearchGetPattern(pattern.varname,
e Access Pattern Collection module: f}“ﬁﬁ;ﬁj“ﬂi?ﬁl NULL then
o  An access pattern is defined by: variable name, for all record in record_list do
layout, domain index descriptor(bounding box), and if CheckGridIntersection(pattern.bbox, record.bbox)
frequency. then
pattern <—CalculateSuperSet(pattern, record)
o  Clients (individual applications) keeps their own end if
patterns and update to the staging server; Server end for
keeps all patterns from every application. end if

_ ) record_list <—UpdateGetPattern(pattern)
o  Always calculate the superset for intersections to

avoid duplicated region.
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Heterogeneous Data Reorganization Methods

D. Self-Adaptive Hybrid Reorganization (SAHR)

Nell|o-WiVeo Il COompute Write

Reorganization | Cache

Heterogeneous
Replica

Stagin

ging SyelsLPattern Exist?
Server

T Reorganization

. . Pattern Pattern

Destination ) Queried Data
Pattern Exist?
App Yes

Fig. 4. A schematic illustration of Self-Adaptive Hybrid Reorganization (SAHR) method.




Implementation

A. Heterogeneous DataSpaces

Staging Server

_— —— = — — — — — -
|_ Coordination Layer ok os S athace
| Query Data Access |Data Reorganization | | Kokkos::HostSpace | S
. . : X\
Engine |Indexing Pattern Transformation - - 5\3\)“
| Collection Algorithm | I Kokkos::Staging Interface l \(O\A«O
Layout Mngmt | |_ Coordination Layer al
| NISDlmSenswnal Hete.rogeneous | Data Reorganization| Access | Kokkos
ata Storage Replica Mngmt Transformation Pattern Application
| Concurrency Ctrl | Algorithm Collection | Client
1
|_ Margo Communication Layer J
— — — — — — — — — — — — — — —

Heterogeneous DataSpaces

Fig. 5. Architecture of Kokkos Staging Space. The data reorganization module
and Kokkos::Staging API were implemented on top of the DataSpaces and
Kokkos framework respectively.
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Access Pattern Collection module:
Identify and record new data access pattern

Data Reorganization module:

e Transformation Algorithm: Define how
to transform from Layout A to B.

e Layout Management: Manage all
layouts.

e Heterogeneous Replica Management:
Keep a superset of domain data for
specific layouts; remove redundancy.

e Concurrency Control: avoid repetitive
transformation incurred by concurrent
data requests.
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Implementation

B. Kokkos::Staging Interface

Staging Server

Fig. 5. Architecture of Kokkos Staging

Heterogeneous DataSpaces

_— —— — — — — — — -
|_ Coordination Layer fokfions Gl aibac
| Query | Data F:t\ctctc-:ss Da:_a Rec;rganitzgtion | | Kokkos::HostSpace | e

Engine |Indexing attern LanSIONMSON . : o RV
| Collection Algorithm | | Kokkos::Staging Interface | \(\o\d‘o
Layout Mngmt | |_ Coordination Layer ol

| NIZ;DlmSensnonaI Hete.rogeneous | Data Reorganization| Access | Kokkos

ata Storage Replica Mngmt | T ; Pattern Application
| Concurrency Ctrl Collection | Client

Space. The data reorganization module

and Kokkos::Staging API were implemented on top of the DataSpaces and

Kokkos framework respectively.
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Kokkos::Staging::initialize();

{

using ViewHost_lr_t = Kokkos::View<Data_t+=*,
Kokkos::LayoutRight, Kokkos::HostSpace>;
using ViewHost_11_t = Kokkos::View<Data_txx,
Kokkos::LayoutLeft, Kokkos::HostSpace>;
using ViewStaging_lr_t = Kokkos::View<Data_txx,
Kokkos::LayoutRight, Kokkos::StagingSpace>;
using ViewStaging_l1l_t = Kokkos::View<Data_txx,

Kokkos::LayoutLeft, Kokkos::StagingSpace>;
ViewHost_lr_t v_P ("PutView", 10, 1i1);
ViewStaging_lr_t v_S_1lr ("StagingView_LayoutRight",

i0, il);
ViewStaging_1l1_t v_S_11("StagingView_LayoutLeft",
i0, il);
ViewHost_11_t v_G("GetView", 10, 1i1);

// global domain geometric descriptor

Kokkos::Staging::set_lower_bound(v_S_1lr, 1b0, 1bl);
Kokkos::Staging::set_upper_bound(v_S_lr, 1b0, 1bl);
Kokkos::Staging::set_lower_bound(v_S_11, 1b0, 1bl);
Kokkos::Staging::set_upper_bound(v_S_11, 1b0, 1bl);

// global iteration
Kokkos::Staging::set_version(v_S_lr, version);
Kokkos::Staging::set_version(v_S_11, wversion);

bind two staging views 1n different layout
Kokkos::Staging::view_bind_layout (v_S_11, v_S_1r);

// from host to staging
Kokkos: :deep_copy (v_S_1lr, v_P);
// from staging to host
Kokkos: :deep_copy (v_G, v_S_11);

}
Kokkos::Staging::finalize();

Fig. 6. Code example of data exchange between Kokkos views in different
layouts
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Evaluation - Platform

e Frontera at TACC

Processor | Clock Rate | Physical Cores | Threads/ @ Sockets/ Node

INode Core
Intel Xeon 2.7 GHz 56 1 2
Platinum
8280

S .,

RAM/ Node | Network

192 GB DDR4 | Mellanox HDR
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Evaluation - Workflow

e Synthetic Staging-Based In-Situ Workflow

Layout A/B

Layout A
Shares the Same

Read Pattern

Layout A/B



Evaluation

A. Exploring the task placement of data reorganization TABLE I
i Metric 1 C cle time Of writer and reader EXPERIMENTAL SETUP CONFIGURATIONS FOR SYNTHETIC EXPERIMENTS
' y Data Domain 1024 x 1024 x 1024
e writers and readers ran with 0, 5, 10, 20 seconds No. of Parallel Writer Cores (Nodes) S12(16)
. . No. of Parallel Reader Cores (Nodes) 64(4)
of sleep after each computation time step. No. of 2nd Parallel Reader Cores (Nodes) 64(4)
No. of Staging Cores (Nodes) 32(8)
Total Staged Data Size (15 Time-steps) 120 GB
Writer Reader 2nd Reader
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E w0 [ E E
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] K ]
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F ~ 800 800
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Emm Reorganization at Destination (RAD) mmm Reorganization at Staging as Requested (RASAR) Emm Reorganization at Staging in Advance (RASIA) mmm Self-Adaptive Hybrid Reorganization (SAHR)

Fig. 7. Comparison of I/O time per time step among four data reorganization methods with varying cycle time of applications
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Evaluation

ii. Metric 2 - Staging server scale

e Fixed writer scale: 512 cores (16 nodes); reader scale: 64 cores (4 nodes).
e Vary staging server scale: 8 cores (2 nodes), 16 cores (4 nodes), 32 cores (8 nodes).

Writer Reader 2nd Reader
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v. ] 2
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v . .
& & 1500 & 1500
o 400 [ o
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£ © ©
S 200 k4 &
500 500
0 0 0
32:64 16:64 8:64 32:64 16:64 8:64 32:64 16:64 8:64
Server:Reader Server:Reader Server:Reader
Read Time Covergence (Server:Reader = 32:64) Read Time Covergence (Server:Reader = 16:64) Read Time Covergence (Server:Reader = 8:64)
000 5000 7000
6000 1
4000 4000
. - — 5000 T
m M o
E E E
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2 g g 4000
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2 4 5 6 7 9 10 11 12 13 14 15 2 3 45 6 7 8 9 1011 1213 14 15 2 3 5 6 8 10 11 12 13 14 15
Time Step Time Step Time Step
mmm Reorganization at Destination (RAD)  mmm Reorganization at Staging as Requested (RASAR) ~ mmm Reorganization at Staging in Advance (RASIA)  mmm Self-Adaptive Hybrid ization (SAHR)

—=— 1st Reader of RAD  -=- 2nd Reader of RAD ~ —+— 1st Reader of RASAR ~ -=- 2nd Reader of RASAR ~ —— 1st Reader of RASIA -~ 2nd Reader of RASIA  —— 1st Reader of SAHR  -e- 2nd Reader of SAHR

Fig. 8. Comparison of I/O time per time step among four data reorganization methods with different staging server scale




Evaluation

iii. Metric 3 - Data size of reading subset domain

e Read a geometric core, whose coordinates are {(1024-d)/2, (1024+d)/2} in each dimension.
e (=128, 256, 512; only read a d° cube from the geometric core of the entire data domain.

Writer Reader 2nd Reader Staging Server Memory Usage
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— . _ g
w
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B Reorganization at Destination (RAD) == Reorganization at Staging as Requested (RASAR) mmm Reorganization at Staging in Advance (RASIA) mmm Self-Adaptive Hybrid Reorganization (SAHR)

Fig. 9. Comparison of I/O time & staging server memory usage per time step among four data reorganization methods with different size of subset domain
to read




Evaluation

B. Strong scaling comparison to existing Kokkos backends
e Same Layout: StdlO vs HDF5 vs DataSpaces.
e Different Layout: StdlO + Ad-Hoc Re-org vs HDF5 + Ad-Hoc Re-org vs DataSpaces +SAHR.

TABLE 1II
EXPERIMENTAL SETUP CONFIGURATIONS OF DATA DOMAIN, CORE-ALLOCATIONS AND SIZE OF THE STAGED DATA FOR STRONG SCALING TESTS
Data Domain 1024 x 1024 x 1024
No. of Parallel Writer Cores (Nodes) 256(8) | 512(16) 1024(32) | 2048(64) | 4096(128)
No. of Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)
No. of 2nd Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)
No. of Staging Cores (Nodes) 16(4) 32(8) 64(16) 128(32) 256(64)
Total Staged Data Size (15 Time-steps) 120 GB
Cycle Time 20 second
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Evaluation

B. Strong scaling comparison to existing Kokkos backends
e Same Layout: StdlO vs HDF5 vs DataSpaces.
e Different Layout: StdlO + Ad-Hoc Re-org vs HDF5 + Ad-Hoc Re-org vs DataSpaces +SAHR.

Writer Reader 2nd Reader
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E E ~ \\ E SO
PO OIS e 210
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NN 3 St .
g N\\ E S ~ g ~
3 \\\\‘ — 3 102 k‘ \ 3 102 s\‘
NUN SN “‘ ~- "\‘
E \\\ E \? \\‘ E C~-
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= N © A2 © A IS
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s = « RN e RN
R 10 e 10! ey
10°
256. 525.,. 10 204 409, 256. 515.5. o, 20, 40 256. 515.5. o, 20, 40,
:16. 35,0246, <Y4s. 6: 2265 12:35. 9244, <U48: 96: 6:26.5.742:35. 245, <U48. 96
6:3, 9264 ~76q, 128 128"?55 25@512 6:3; 9264 764 128 12%56 25@512 6:35 9264 764 128 124.256 255_.512
Writer:Server:Reader Writer:Server:Reader Writer:Server:Reader
—e— CPPStdI0  —e— DataSpaces Without Reorganization =~ —e-- HDF5 + Ad-Hoc Reorganization
~e— HDF5 —e- CPP StdlO + Ad-Hoc Reorganization =~ —e- DataSpaces with Self-Adaptive Hybrid Reorganization

Fig. 10. Strong scaling comparison of I/O time per time step among C++ standard I/0, HDF5 and DataSpaces




Conclusion and Future Work

We explored the trade-offs between different data reorganization methods within various
experimental configurations, and then propose a Self-Adaptive Hybrid Reorganization (SAHR)
method which reduces resource consumption by collecting data access pattern information.

By integrating asynchronous data layout conversions, we implemented Kokkos Staging Space as
an extension of Kokkos to workflow level, and demonstrated its effectiveness in terms of both
time-to-solution and scalability for inter-application data exchange.

In future work, we plan to support more data reorganization types, such as the transformation
between Array of Structs(AoS) and Struct of Arrays(SoA), and to evaluate these methods using a
production scientific workflow of heterogeneous components.
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