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The fundamentals of fusion product spectroscopy come from the reaction kinematics for the 2-to-2 body isotropic fusion reaction 1 + 2 → 3 + 4, the relative velocity and Q-value determine centre of 
mass frame product velocities and centre of mass (CoM) velocities introduce Doppler shifts to the lab frame outgoing particles:
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The above reaction kinematics describe the
microscopic scale. Within a local picture, the
spectral moments (mean shift and variance)
are found from the ion velocity distributions.
For isotropic* distributions:

The spectral moments of fusion
product spectra are directly related
to the reactant kinematics. A large
range in CoM velocities leads to
Doppler broadening. High relative
velocities, or relative kinetic
energies 𝐾 , cause an upshift in the
spectral mean. When considering a
single reaction, momenta-matched
collisions have zero CoM velocity at
finite K. The opposite is then true
for large momenta disparity in
collisions, creating a beam-target
like reaction.
Fluid velocities modify the spectral
moments in a constrained manner.
For the isotropic spectral moments,
the spectral temperature is inflated.

Point 1 can only have been
produced by anisotropic velocity
distributions. Point 2 must have
been produced by either isotropic
and anisotropic distributions - the
isotropic distributions must
include a majority of momenta-
matched reactions due to the
proximity to the isotropic upper
limit. Only point 3 could have been
produced by hydrodynamic
plasma. The exact positions of the
constraint curves depend on the
specific reaction.
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*moment expressions for anisotropic distributions
have been derived, see pre-print

Where define a reaction rate average. In
the case of a stationary Maxwellian 𝑇𝑠 = 𝑇𝑖
but this is a special case. Another unique
property of single temperature Maxwellians
is that they exhibit no correlation between 𝐾
and 𝑣𝑐𝑚

2 .

The fluid elements which make up the fusing
plasma may have non-zero velocity
themselves, if the mean particle velocity of
the distribution is non-zero. Boosting the
product spectra back to the lab frame
introduces a Doppler shift:
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Where defines a rest frame reaction rate
average (for anisotropic distributions these
moments are directionally dependent).

An upper limit on ∆𝐸 (𝑇𝑠) for isotropic distributions is
derived using velocity space shells with matched
momenta

We can use the coordinates in (∆𝐸 , 𝑇𝑠) space to 
comment on the character of the collisions.
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