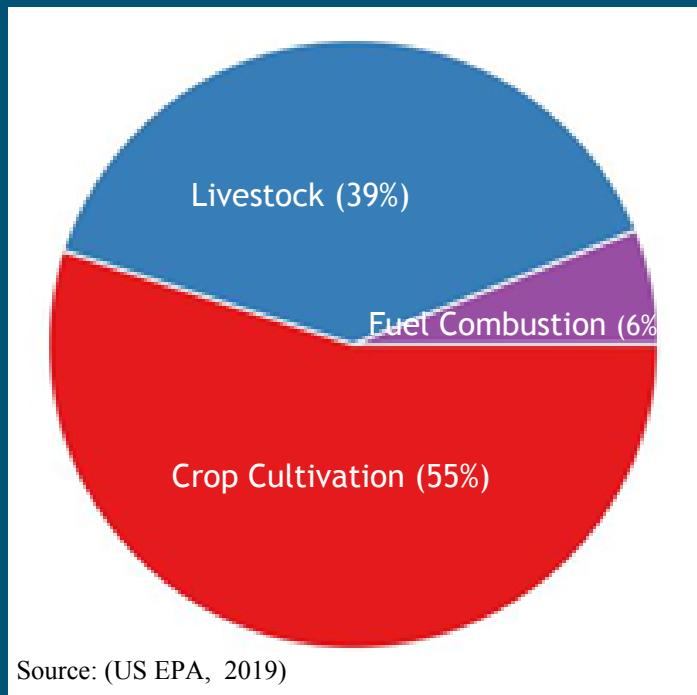


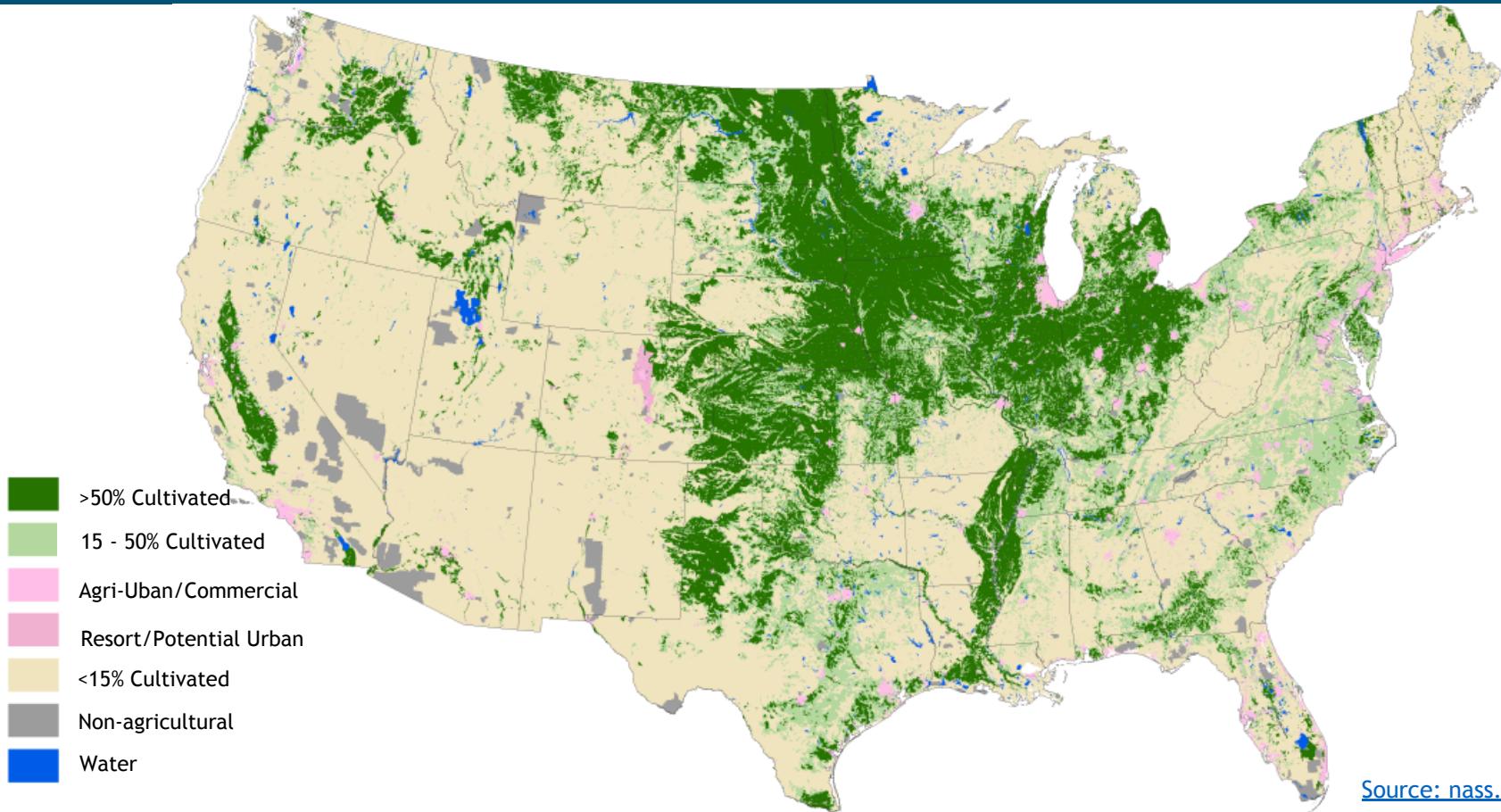
The benefits of carbon-farming and carbon market

PRESENTED BY

Shruti Mishra, PhD


Senior Member of Technical Staff

Applied Biosciences and Engineering


Background

- Global agriculture and land use emissions in 2018 was 9.3 Billion tons of CO₂e i.e. 17% of total GHG emissions(FAO, 2018)
- U.S. Agriculture -10% of total U.S. emissions of 6558 million Mtons. Agricultural emissions - approximately 655.8 million Mtons (EPA, 2019)

Background

Source: nass.usda.gov

- 922 million acres of cropland, pasture and range & 2 million farms in the U.S. (USDA).
- Carbon farming practices can sequester 0.3 to 2.8 MT CO₂e ha⁻¹ yr⁻¹ (based on 12 studies)
- Total mitigation potential of U.S. Agriculture: 105 TgCO₂e at \$40/MTCO₂e and 40TgCO₂e at \$15/MTCO₂e (Pape et al., 2016)
- Carbon-farming has potential for reducing GHG emissions and adapting to climate change (Bradford et al., 2019; Chenu et al., 2019; Paustian et al., 2019)

Carbon Farming Activities & Options

Crop Production Systems

- Cover Crops
- Crop rotation
- Field Management practices
 - No Tillage
 - Fertilizer application rate, timing, inhibitor application, variable rate technology)

Source: South Dakota State University; Dan Forney

Animal Production Systems

- Anaerobic digester & biogas
- Lagoon
- Grazing Land Management
- Legume inter-seeding

Source: USDA

NRCS, USDA

Land Retirement Systems

- Cultivated land to conservation
- Marginal land to conservation or bioenergy crops
- Wetlands restoration
- Windbreaks
- Riparian forest buffers

Source: Built on ICF, 2013

Carbon Farming Pathways

Some generalized carbon pathways for cropland (Chenu et al., 2019; Paustian et al., 2019; Mattila et al., 2022)

- i. Improving soil structure
- ii. Increasing soil biological activities
- iii. Increasing photosynthesis duration / intensity
- iv. Managing organic soils for carbon storage

Carbon Market

Carbon market

- Potential value of carbon: \$5.2 billion (Agribusiness Consulting, 2018)
- Potential volume of carbon: 190 million MT. (AC, 2018)
- Total supply of carbon credits: 326 million MT CO₂e (AC, 2018)
- Marketing platforms NORI, Ecosystem Service Market Consortium

ESMC/ESMRC Funders

Source: ecosystemservicemarket.org

Founding Circle Members		Legacy Partner Members	
FFAR	MCKNIGHT FOUNDATION	ESMC/ESMRC	The Nature Conservancy
NRCS	USDA	The Ida and Robert Gordon Family Foundation	General Mills
UNITED SOYBEAN BOARD	WALTON FAMILY FOUNDATION	arpa-e	NOBLE RESEARCH INSTITUTE
SOIL HEALTH INSTITUTE	Nestle	california almonds	BUSHEL
NOBLE RESEARCH INSTITUTE	The Nature Conservancy	NATIONAL CORN GROWERS ASSOCIATION	PORT
General Mills	DANONE NORTH AMERICA	National Association of Wheat Growers	MISSOURI SOYBEANS
Cargill	Nutrien Ag Solutions	BENSON HILL	TRACE GENOMICS
NFWF	INNOVATION CENTER for U.S. DAIRY	PEPSICO	Field to Market
syngenta	ADM	American Farmland Trust	MFA INCORPORATED
National Indian Carbon Coalition		OpenTEAM	HEARTLAND
		Farm Foundation	LAND COUNTY FOUNDATION
		NCBA	K-COE ISOM
		ASA American Soybean Association	JOYN BIO
		Cornell Atkinson Center for Sustainability	Sustainable Northwest
		CTIC	Low Carbon Prosperity Institute
		MARS	ARVA INTELLIGENCE
		FARMOBILE	SILICON RANCH
		VENCE	Crop Science Society of America
		native energy	Soil Health Institute
		SORGHUM CHECKOFF	PATTERSON
		ANUVIA	
		STEWARDSHIP INDEX for SPECIALTY CROPS	
		ASU Arizona State University	
		American Sugarbeet Growers Association	

Carbon market : Demand and Supply of Carbon Credits

Demand

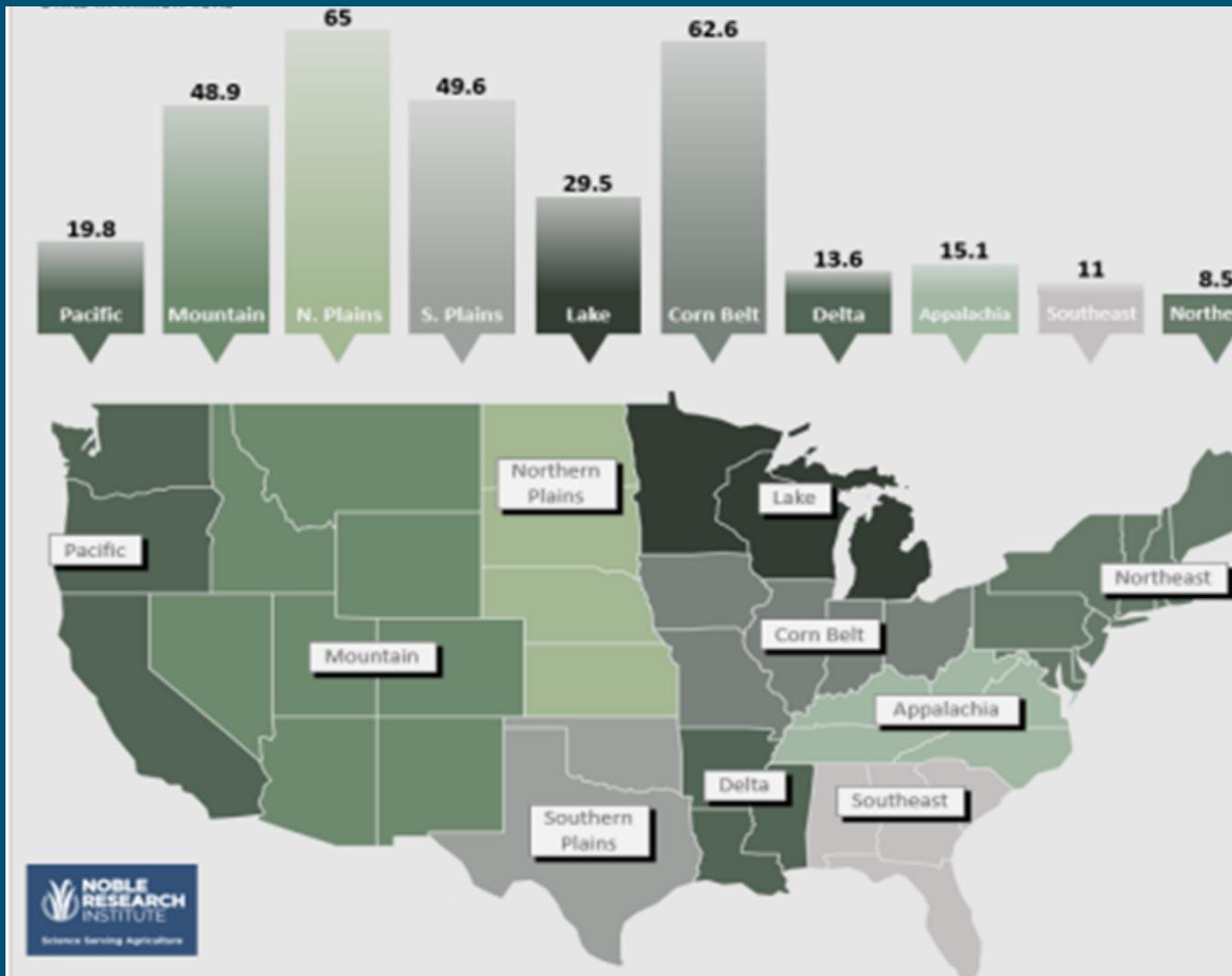
Potential Demand >100 companies

- Food and Beverage 57% of total demand
- Energy companies
- Industries
- Chemical, fertilizer and other materials
- Information and Telecommunications
- Utilities
- Financial
- Consumer discretionary

Supply

Potential supply

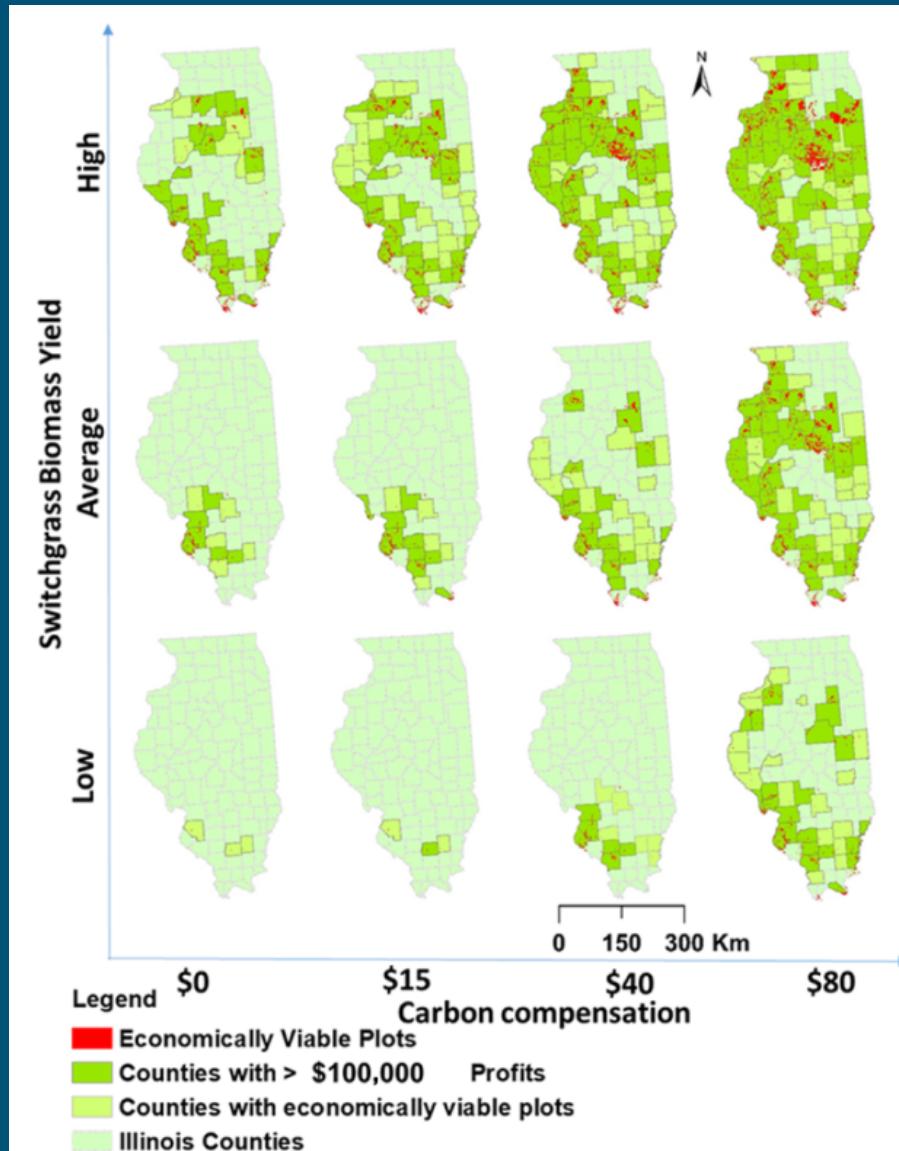
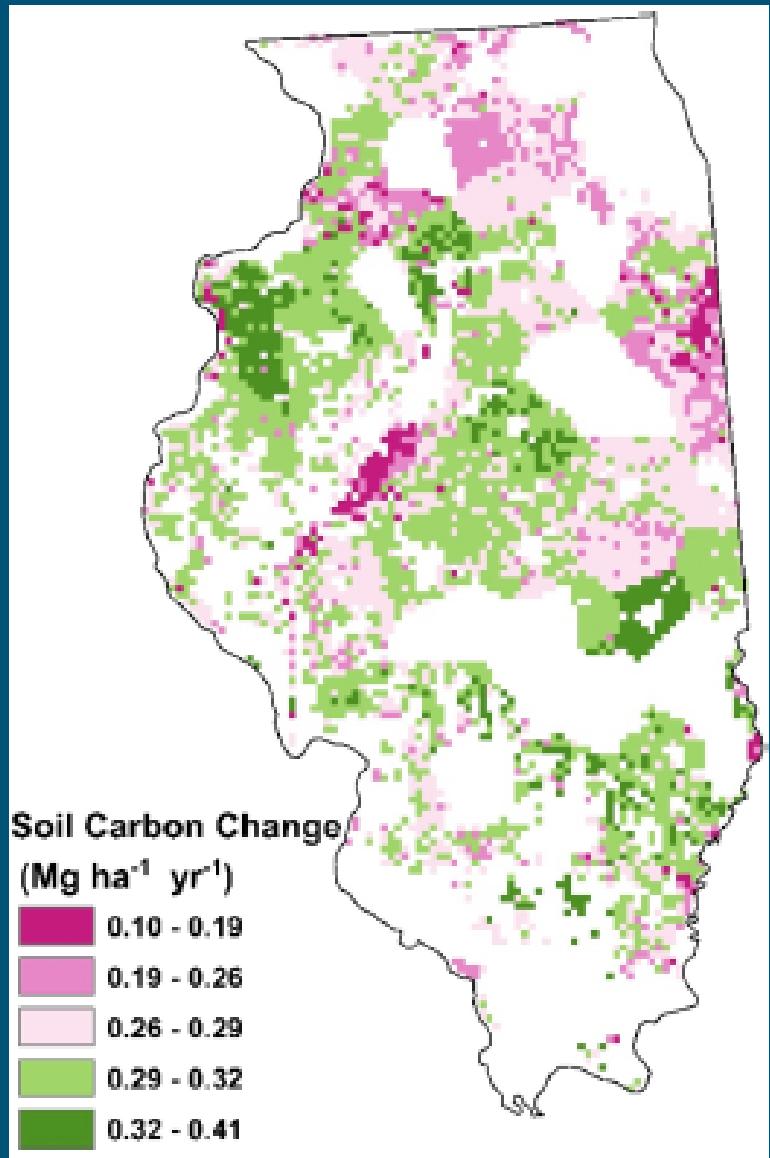
Field Crops: 195 million MT CO₂ e


Fruits, Vegetables, Nuts : 13 million MT CO₂ e

Pasture: 32 million MT CO₂ e

Rangeland: 84 million MT CO₂ e

Total: 326 million MT CO₂ e



Carbon Market: Potential Carbon Sequestration (million Metric Tons)

Carbon Sequestration Potential

10

\$0: 3000 – 28,000 ha; \$15: 6000 – 39,000 ha; \$40 - \$80: 13,000- 128,000 ha. (Source: Mishra et al. 2021)

Carbon Market: Potential Carbon Sequestration ('000 Metric Tons)

Region	Field Crops	Fruit, Vegetable & Tree Nuts	Pasture	Rangeland	Total
Northeast	5,581	1,204	1,743	0	8,528
Lake States	25,374	1,495	2,652	0	29,520
Corn Belt	56,446	344	5,799	13	62,602
Northern Plains	46,730	174	2,151	16,414	65,469
Appalachia	9,977	427	4,671	0	15,075
Southeast	5,501	2,050	2,809	686	11,046
Delta	10,561	129	2,852	60	13,603
Southern Plains	18,475	497	6,660	24,551	50,183
Mountain	11,798	754	1,982	35,474	50,008
Pacific	5,488	6,180	1,018	7,279	19,965
United States	195,931	13,255	32,337	84,477	326,000

Carbon market: Mechanisms for compensating farmers

Carbon credits based on cap and trade

Payment of carbon maintenance

Payment for Ecosystem Services

Pricing Carbon : Breakeven prices

Potential breakeven prices for converting from conventional till to No-Till (in \$/tCO₂e)

Crop	Northern Plains	Mountain	Southern Plains	Delta	Lake	Pacific	Corn Belt	Appalachia	Northeast
Soybeans	<\$0		\$3	\$23	\$17		\$32	\$114	\$104
Corn	\$18	\$1	\$14	\$16	\$22	\$20	\$34	\$42	\$44
Sorghum	\$26	\$18	\$27	\$27			\$74		
Wheat	\$39	\$16	\$44	\$17	\$47	\$106	\$57	\$57	\$58
Cotton		\$136	\$93	\$141			\$324		
Average	\$21	\$43	\$36	\$45	\$29	\$63	\$104	\$71	\$69

Source: ICF International , NRCS/USDA Informa

Pricing Carbon : Breakeven prices

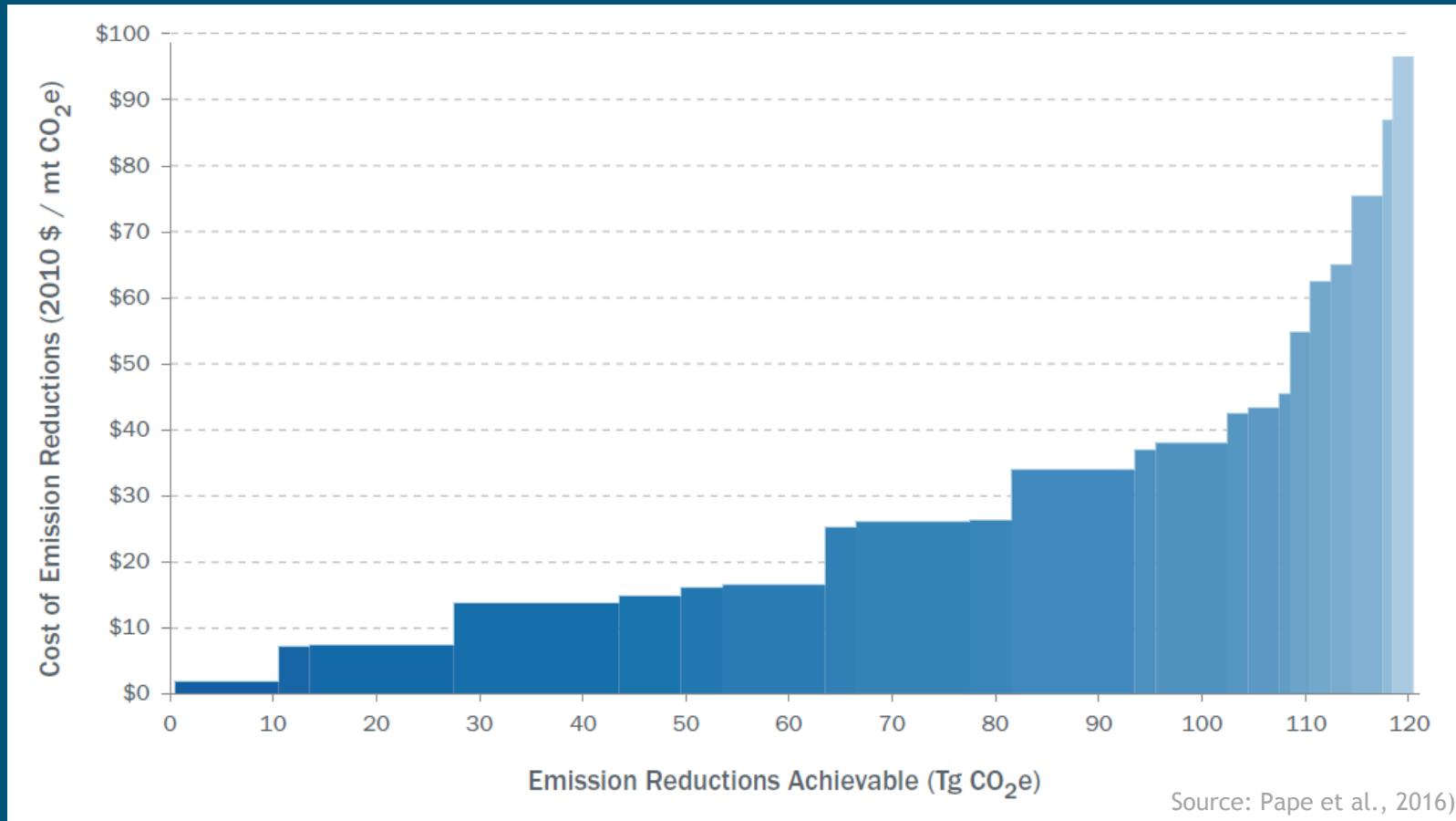
Potential breakeven prices for 10% reduction in nitrogen fertilizer application rate

Low Emissions Reduction Scenario			High Emissions Reduction Scenario		
Region	Crop Type	Break-Even Price (2010 \$/mt CO ₂ -eq)	Region	Crop Type	Break-Even Price (2010 \$/mt CO ₂ -eq)
Mountain	Corn	<\$0 ^a	Mountain	Corn	<\$0
Delta	Sorghum	<\$0	Delta	Sorghum	<\$0
Appalachia	Wheat	<\$0	Appalachia	Wheat	<\$0
Northeast	Wheat	<\$0	Northeast	Wheat	<\$0
Corn Belt	Wheat	\$17	Corn Belt	Wheat	\$2
Southeast	Corn	\$64	Corn Belt	Sorghum	\$11
Lake States	Corn	\$124	Lake States	Corn	\$17
Delta	Wheat	\$133	Southeast	Corn	\$17
Lake States	Wheat	\$135	Delta	Wheat	\$18
Southeast	Wheat	\$135	Southeast	Wheat	\$18
Corn Belt	Corn	\$174	Lake States	Wheat	\$18
Corn Belt	Sorghum	\$175	Appalachia	Corn	\$26
Delta	Corn	\$180	Northeast	Corn	\$28
Northern Plains	Soybeans	\$189	Corn Belt	Corn	\$32
Appalachia	Corn	\$194	Delta	Corn	\$48
Northeast	Corn	\$215	Southern Plains	Corn	\$65
Northern Plains	Wheat	\$429	Southern Plains	Wheat	\$72
Southern Plains	Corn	\$492	Southeast	Cotton	\$126
Southern Plains	Wheat	\$545	Delta	Cotton	\$295
Northern Plains	Corn	\$652	Northern Plains	Wheat	\$796

Pricing Carbon : Breakeven prices

Breakeven prices for Land Retirement practices

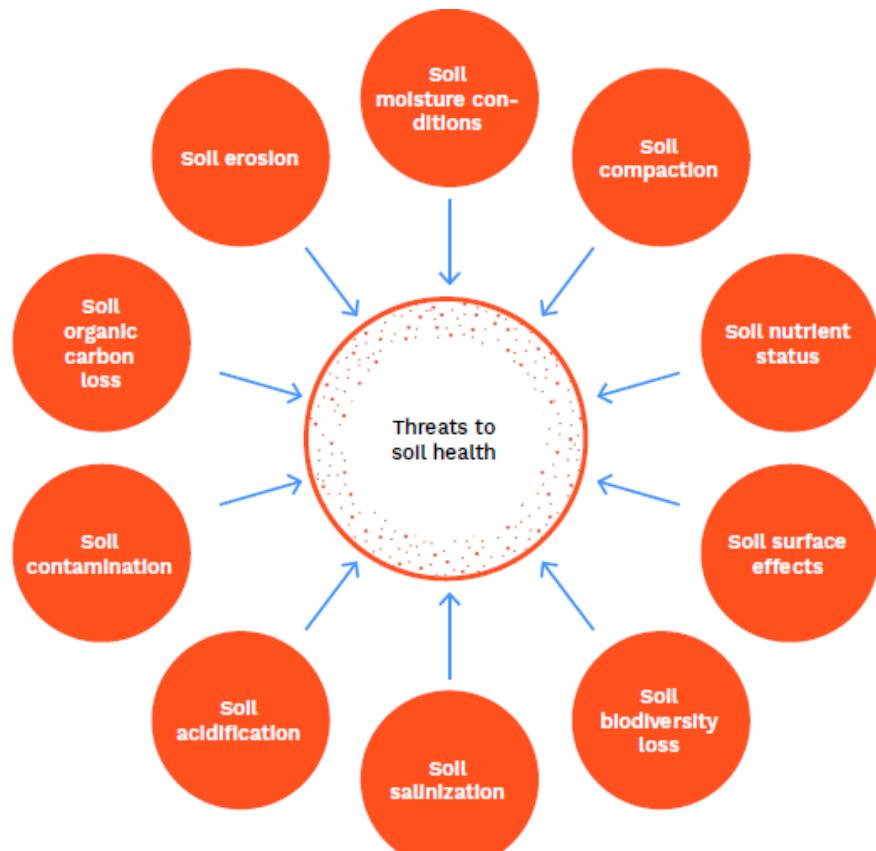
Practice	Crop Type	Breakeven Price (2010 \$/mt CO ₂ -eq)
Retiring cultivated organic soils to permanent grassland ^{5,7}		\$11
Retiring marginal soils to permanent grassland ⁵		\$24
Restoring forested wetlands ⁵		\$24
Restoring grassy wetlands ⁵		\$63
Establishment of wind breaks ⁵		\$17
Restoring riparian forest buffers ⁵		\$49
Retiring cultivated organic soils to permanent grassland ^{6,7}		\$16
Retiring marginal soils to permanent grassland ⁶		\$144
Restoring forested wetlands ⁶		\$36
Restoring grassy wetlands ⁶		\$94
Establishment of wind breaks ⁶		\$97
Restoring riparian forest buffers ⁶		\$72


Source: UIUC, 2020; IFS, 2013

Costs per MT CO₂e . No Till - \$33. Crop Rotation - \$32. Cover Crops - \$184 (ICF, 2013)

Marginal Abatement cost curve

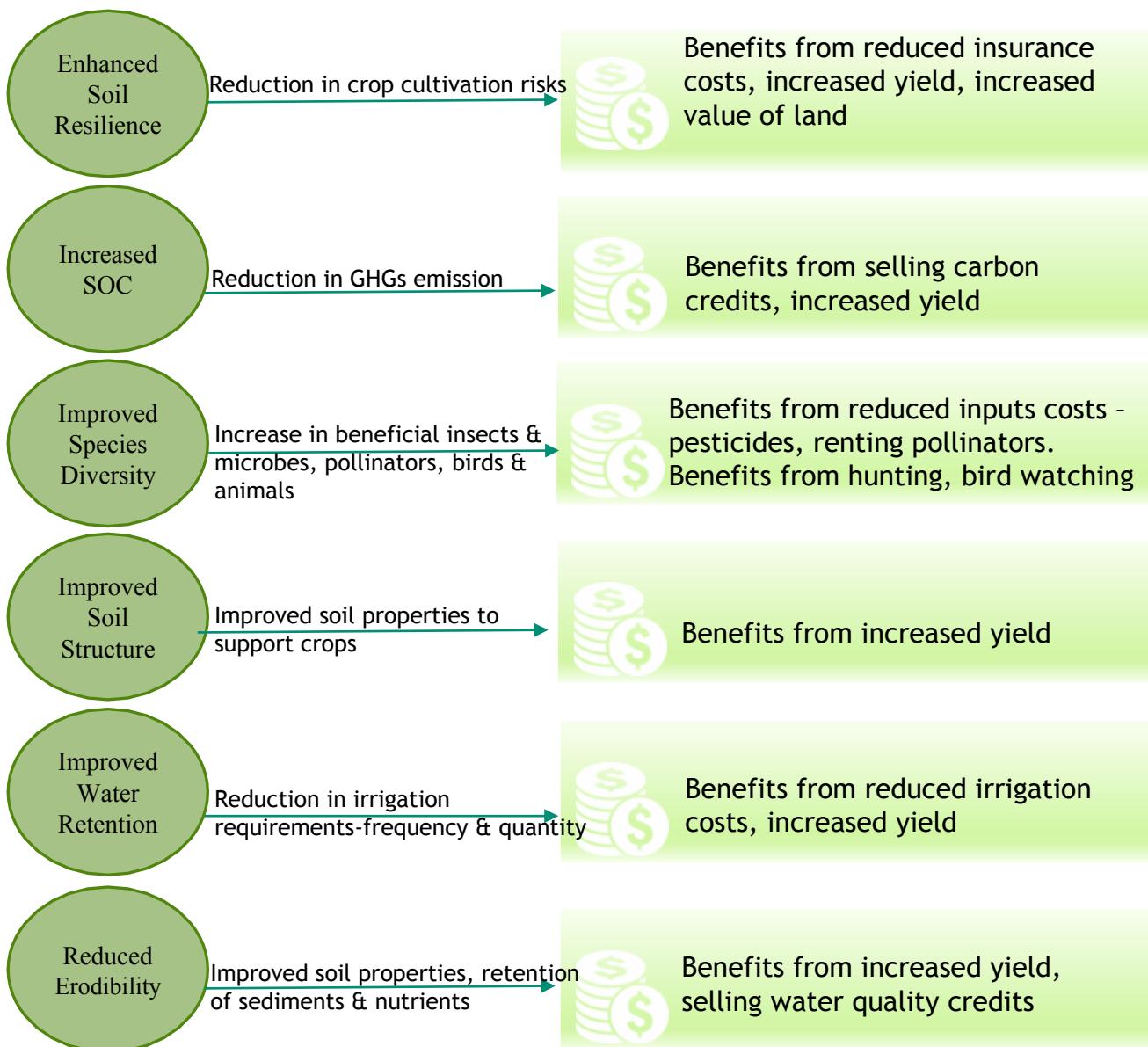
(for breakeven prices less than \$100/MTonCO₂e)


Carbon market : Pricing Carbon

- Marginal abatement costs for all U.S. farms ranges from \$1 to \$100/Mton CO₂e (Pepe et al., 2018)
- Payment for carbon farming in the US - \$12 to \$500/Mton CO₂e(Antle et al., 2007)
 - Quantity of carbon sequestered,
 - Type of contract or payment mechanism used, and
 - Site specific characteristics of the areas.
- The high level commission of carbon prices estimated that the carbon prices be at least \$40-80 per MT CO₂e in 2020 and \$50-\$100 per MTCO₂e in 2030 in order to cost effectively reduce GHGs emissions ([World Bank](#), 2020)
- There are more than 61 carbon pricing initiatives; Sweden and Switzerland @ >\$100/MT CO₂e
- In the U.S., California's Low carbon fuel standard (LCFS) credit market @ \$222/MT CO₂e, direct capture system @ \$180/MT CO₂e (California Air Resource Board)
- The market price for carbon farming are @ \$15/MT/CO₂e (NORI)

Benefits of Carbon Farming

Threats to soil health



Benefits to soil health

(Source: FAO and ITPS, 2015; World Bank, 2021)

Valuation of Carbon Farming Benefits

Potential Welfare Implications

Contribution to climate change mitigation

Increased farmers' cash flow

Increased surplus income for education, health & well being

Increased food production & nutrition

Decarbonization via bio-energy & bioproducts

Value of Ecosystem Services

Converting marginal land under corn/soy to switchgrass

Studies on Ecosystem Services valuation attributed to land use change										
Region of Studysite	Year	Soil carbon sequestration	Sediment reduction	Nitrate reduction	Water-based Recreation	Biodiversity				References
						Pollinators	Pest Control	Birds Watching	Hunting	
Chesapeake Bay	2018			\$13.29 kg ⁻¹						[37]
Chesapeake Bay	2019			\$13-14/kg						[38]
US Northern Plains	2007	\$12-500/MgC								[49]
Illinois	2019	\$61.07/ha/year	\$4.35/Mg	\$38.37/kg	\$3.45-8.21/ha	NA		\$42.36/ha	\$9.97/ha	[8]
Dwight, Illinois	2020	\$43-115/ha	\$3-5/Mg	\$13-30/kg	\$6-8/ha	\$24-85/ha	\$46/ha	\$11/ha	\$10/ha	This study

Value of Ecosystem Services

Converting marginal land under corn/soy to switchgrass

Ecosystem Service	2016 Dollars
Nitrate reduction	\$38.37 per kg nitrate
Sediment reduction	\$4.35 per Mg
Carbon dioxide emission reduction	\$36.70 to \$79.27 ^a \$61.07 per ha per year ^b
Recreational value	
Water-based recreation	\$3.45 to \$8.21 per ha
Wildlife viewing	\$42.36 per ha
Pheasant hunting	\$9.97 per ha

Mishra et al,
2019; Mishra et
al., 2021

Carbon Market Challenges

Net profitability of carbon farming depends upon

- price of carbon,
- cost of implementation CF activities in the farm,
- loss of productivity,
- data costs for measuring carbon increment and
- transaction fees

Some challenges include

1. Accurate quantification of carbon credits generated
2. Carbon credits pricing
3. Trade barriers
4. Monitoring and verification

Summary

- Carbon market in the U.S. is valued at \$5.2 billion U. S. dollars with a potential demand of 190 million MT and a potential supply 326 million MT CO₂e.
- U.S. Agriculture has total carbon mitigation potential of 105 TgCO₂e at \$40/CO₂e. At \$15/CO₂e, it decreases to 40TgCO₂e
- Challenges of carbon market quantification of carbon credits generated, pricing, trade barriers, monitoring and verification
- In order to attain decarbonization, the carbon prices should be at least \$40-80 per MT CO₂e in 2020 and \$50-\$100 per MT CO₂e in 2030
- Carbon price in the existing market ranges from \$5 to \$15 per MT CO₂e.
- Carbon sequestration benefit is only one of the multiple benefits from carbon farming. Monetization and internalization of additional benefits of carbon farming:
 - increased yield,
 - increased value of land,
 - reduced insurance costs,
 - recreational benefits from hunting, bird watching,

Acknowledgement

This work was supported by DOE BETO's support to Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Exceptional service in the national interest

Thank you