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.| Materials for Fusion Energy

» Difficult to develop materials to handle
extreme conditions within tokamak
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Large heat loads of 10-20 MW/m?

* High particles fluxes of ~102* m-2s-1 of
mixed ion species (H/He/Be/N etc.)
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material degradation
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‘ Plasma Material Interactions in Tungsten

Helium Fuzz Growth Material Degredation
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Kajita, et al. Nucl. Fus. 471, 886-890 (2007)

Hydrogen Blisters

W-Be Intermetallics

Be deposits (surface)
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Tritium Retention

He : 0% He o ~0,1%%
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Ta K

Ueda, et. al. J. Nucl. Mater. 386-388 (2009) 725-728

Co-Deposit Layer at Divertor Surface

M Mayer et al 2016 Phys. Scr. 2016 014051



Decreasing melting temperature

Beryllium Effect on Tungsten Melting HALIIEEIER fomtent
* W-Be intermetallics observed in linear plasma 1
experiments P
o P

- Tokamak experiments indicated beryllium I e I
deposition on the divertor P ;ﬁ %
- Phase diagr i |
temperature How do W Be Intermetalllcs form \

and how do they affect the divertor? "
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5 ‘ Multiscale Modeling of Materials

Hydrogen Potential ¥
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s I What Makes a Machine Learned Interatomic Potential?

Training Data Descriptor
* Generated using quantum Describes the local atomic

Regression Method
Linear regression

methods environment * Kernel ridge regression
« Can mcluc}e: ¢ Requ1rem§nts | . Gaussian process
* Energies ¢ Rotatlon/.'l'raljslatl.on/. - Non-linear optimization
* Forces Permutgtlon invariant . Neural Networks
» Stresses « Equivariant forces
« Variety of atomic « Smooth differentiable
configurations « Extensible
« Bulk structures, liquids, * Some Examples
surfaces, defects, etc. « Bispectrum, SOAP, ACE, SNAP
Moment Tensors, etc. * Energies, forces, and

stresses from DFT
* Bispectrum component
descriptors
Linear regression




SNAP Definition and Work Flow

Model Form

K
EENAP = Bo + Zﬁk(BE: - B!zcﬂ)
k=1

Regression Method

» B vector fully describes a SNAP potential
* Decouples MD speed from training set size
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*
Weights  Set of Descriptors DFT Training

Fitting

Hyper-parameters TENEN
TR NN
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Objective Functions,
Material Properties

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99,

184305
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Code available: https://github.com/FitSNAP/FitSNAP




.1 Tungsten-Beryllium SNAP Fitting w-Be Intermetallic Formation Energies (e

-m

- Initially fit SNAP potential for pure 0.67 030 -2.20

elements C14 WBe2 -0.87 -1.27 -4.20
* Making a multi-element SNAP potential C WBe 0.92 -1.15 -4.19
does sacrifice some accuracy from either 15 2 ' ' '
pure component fit. Cie WBe, -0.90  -1.22  -4.20
* Training set includes W-Be intermetallic L,, WBe, -0.51 -0.15 -4.58
Descripion  Ng  Np op  or D,B WBe,, 0.96 -0.34  -6.69
W-Be:
Elastic Deform!’ 3946 68040 3-10° 2.10° Be Defect Formation Energies in W (eV)
Equation of State” 1113 39627 2-10° 4-10* _ 1 1
DFT-MD' 3360 497124 7-10* 6- 102 2t =
Surface Adhesion 381 112527 2-10* 9-10% [111] Dumbbell 4.30 3.66 0.67
T Multiple crystal phases included in this group: Substitution 3.11 3.29 -2.00
Surface Hollow Site -1.05  -1.39 -3.52
Tetrahedral 4.13 4.20 -0.28
[110] Dumbbell 4.86 4.29 -0.03
Octahedral 3.0 5.11 0.34

[1] M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 184305 9 g
[2] C. Bjérkas et al 2010 J. Phys.: Condens. Matter 22 352206 Surface Bridge Site  1.01 0.44 -1.30



beryllium

Cusentino, et al. Nucl. Fusion, 61, 046049 (2021)

75 eV) and low energy (0 eV)
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9 ‘ Beryllium Deposition Results in Near Surface Mixed Layer




urple: Be

10‘ How Does Be Diffuse Within the Mixed Materials LayEEF CW

* How quickly does beryllium diffuse within the MML and
how does this impact intermetallic formation over longer
periods of time?

Pre-Mixed W-Be W-Be Interface

« Diffusion was found to be limited in the pre-mixed case
and higher in the interface

* However, intermetallic growth saturates and further growth
is likely beyond MD timescales
Be MSD vs. Time
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Cusentino, et al. Nucl. Fusion 61, 046049 (2021)




® Purple: He Atom

+ 1 Mixed Material Effects in tl; ve
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Baldwin, et al. J. Nucl. Mater 390-391, 886-890 (2009)
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Tungsten:

Larger He clusters

distributed
throughout

simulation cell

Increasing TIme

Amorphous W-Be
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) Large Scale Be/He Implantation Simulations in W

He Implantation in Be Pre-Implanted W Surface Blue: He

Purple: Be

Time: 90 ns
Fluence: ]
3.56 x 1018 m-2

Helium resides in W-Be layer
No clustering of He atoms
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90% He/10% Be Implantation onto Clean W Surface
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14 | W-Be Mixed Materials Layer Alter He Bubble Nucleation

He Cluster Distribution He Depth Profile

0.8 1

0.6 1

Atom Fraction
Atom Fraction

—— pre-implant (100)

—— pre-implant (100])

—— co-implant (100) 0.2 4 — co-implant (100)

0.0 T T T T i i :
1 ] AL 5] 20 a 10 15 M0

Cluster Size Depth (nm)
« W-Be mixed materials layer results in:

| Pre-(100) | Co-(100) + Smaller helium clusters
% Retention 46.4 23 1 * Helium remaining near the surface
' ' * Higher helium retention
_ WBe « Slower helium diffusion
Diffusion Coefficient 1.2 x 108 1.8 1_11 « This will results in changes to helium bubble
UL LS LIS SIS £ X -6 X nucleation and will likely affect fuzz srowth



s 1 Next Steps: Incorporating Other Plasma Species in SNAP

Hydrogen H Diffusion in Bulk W
] o H Defect Formation Energies |
. %0020 0 0"
2620 | Ef*(eV) 0.88 0.74 .o.o.o.o.o°
tesesesel | By 126 1.06 O
Ef“" (eV) 4.08 4.05 .o.o.o.o.oe
EF 2(eV) -4.75 -4.77 .o.o.o.o.oo
® 0000
W.N, Formation Energies 75 eV N Depth Profile
BTN
WN,- P62mmc  -1.82 217 K S—
WN,- P6m2 0.91 1.91 % ) ‘
WN - NiAs 0.84 1.36 5. o
WN - WC 10.23 0.77 '
W,N -0.03 0.7 | S

'.I 3 4
Depth (nm)



16 ‘ Summary

» Understanding material degradation in PFMs is critical
for designing viable fusion reactors

» Atomistic modeling plays a key role in understanding
relevant physical mechanisms for material degradation
at the divertor

* A W-Be SNAP potential has been developed and used
to study Be implantation in W and extended to
simulation He implantation \W-Be materials

* Beryllium will quickly form a mixed material layer in the
near surface region which has some intermetallic
structure

* The W-Be mixed layer alters helium diffusion, cluster
formation, and depth profile

* Future work entails *-~ "'“"“':_"_‘__:““* ~f ~e W-Be-H-
He-N potential for st —~\ | S,
Colpigractions E \(l ) P
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EXASCARLE COMPUTING PROJECT
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17 I Backup Slides




18 I MD Approximations Change Over Time

Twobody (B.C.)
Lennard-Jones, Hard
Sphere, Coulomb,

Manybody (1980s)
Stillinger-Weber,
Tersoff, Embedded

Advanced (90s-

2000s)

REBO, BOP, COMB,

“RAndad GPU Tiamgy=th~ ReaxFF GAP, SNAP, NN, ...
LN ! L L ! L L L !
1000F  EAM Copper -6 M atoms, SNAF| 3 Resources are limited, which is your best choice?
&—€) 4M atoms, EAM
4M atoms 20+
| - E O Jo..=3
B 1OO§ Best Speed : "rgu o ® O/ h .
"‘2 [ 80 ns/day ZOX "'>"“ 10 - O O hidden layers [16, 16]
S 10k 4M atom/node . O ./ o O
S 5 = @
S : — N O Jow=3 [
7} ;[ SNAP Tungsten 1 & s5- g GAP o ®
E E — . MTP
= 4M atoms Best Speed O ® NNP O -
4 nS/day "E"J O SNAP 20 o g r FI
Olg o SOkatoms/node 3 @ | @ qsnap TR 2000 kernel
1 10 100 2 P T TR ok W I b el ¥
Summit Nodes 10 10 10 10 10

Gayatri, Moore et al. (2020) https://arxiv.org/abs/2011.12875

Big Data / Deep /
Machine Learning
(2010s)

Computational cost s/(MD step » atom)


https://arxiv.org/abs/2011.12875

