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Annular-to-planar diodes generally
used in HERMES-III and similar high-
current accelerators have a strong
correlation between diode impedance
and electron incident angle, or the
beam pinch angle. The self-magnetic
field of the beam causes the beam to
pinch radially inwards (on a coaxial
geometry). This causes relatively pool
far-field dose rates due to high beam
divergence. Sanford has empirically
derived this relation in the small-angle
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Based on Sanfords work [3], a shaped :
cathode can be used to help shape the Time: 25.00 ns
electron beam. The below geometry uses a o
frustum-tipped cathode with the same final
cathode radius. Indeed the only difference is
now the MITL radii and the cathode frustum
itself.
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The intent is to direct the electron beam
radially inwards to help shield the indent
corner from the beam.

Time: §5.00 ns
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The indented-anode diode has been
shown by Sanford [2] and this work to
decouple the impedance and incident
angle. Current loss to the indent is
also considered. Characterizing the
esuand minimizing It IS.Im thtant for
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This approach seems to help immediately. The loss current vanished in the mid-pulse, and

constant and varies the cathode the loss front doesn’t reach 50kA. However, the diode impedance does increase in this

radius. The anode radius varies to _ | R ST i 1 configuration. The cathode frustum decreases the ratio of the anode radius to the cathode

maintain constant coaxial o radius. This is likely the cause for the increased impedance.
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The impedance decreases with a
higher indent percentage in
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We have eye-balled an empirical immpedance relation for our geometries outlined in green above
and shown as green dots below. The impedance decreases with R1 and increases with Ry while
the incident angle decreases to some extent. This demonstrates a successful decoupling of the
impedance and incident angle. Interestingly, the prefactors are in the vicinity of the MITL
impedanceg,fram each work: 30Q and 3§) . respectively.

To better understand the impact of the MITL impedance, it was also varied. Decreasing it
down to the standard HERMES-III MITL impedance of 34Q, (a 32% reduction in
impedance), the system operating impedance decreases from impedance from 31Q to 26Q
(a 16% reduction). The reflection coefficient also decreases as there is less of an

100% Indent impedance mismatch. This yields a 14% increase in diode voltage and a 15% increase in
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S0-Ohm MITL: 20.00 ns | 34-Ohm MITL: 20.00 ns

Conclusions and Future Work

We have demonstrated successful
decoupling of incident angle and diode
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ncdontArgie dogl - Energy MoV ooty il impedance. The impedance of the base
iIndented-anode geometry scales with
Sanfords equation. With some minor
modification, we can fit Sanfords impedance
equation to our own.

v
Reducing the diode impedance has negative effects. The reflection coefficient due to the
Impedance mismatch between the diode and MITL increases, causing poor endpoint energy.

Not all of the current makes it to the converter. This can cause emission of knock-on ions in the
diode. If the ion presence in the diode is large enough, the electron beam can short into the
indent causing catastrophic damage to the anode surface. Thus the loss to the indent needs to
be characterized and minimized.

Introducing a cathode taper decreases the
loss front. This also increases operating
Impedance, which seems to be directly
related to the MITL impedance.

50-Ohm MITL: 55.00 ns | 34-Ohm MITL: $5.00 ns

1.0e+19 1.02+1%

22418 2e+18
= le+léd = le+]B
:EE:EH? = ba+17
— 2e417 — 2a+17
= le+17
= be+ld
= 2a+1&
le+1é&
Ee+15

Shown below is the current loss characterization. The 100% indent shows massive current loss.
The 50% indent shows the least loss, however the incident angles are quite high. So as an
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Future work:

example, we will use the 75% indent geometry and, work to reduce this loss. Note this geomet
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. Introduce knock-on ions into simulation
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