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Mimicking Biological Membranes

Can we incorporate or mimic properties and 
functions of biological cells to create robust 
advanced materials?

2 Major Challenges:
Limited Chemical and Mechanical Stability
Limited Modification Chemistries

Liposomes

POPC

Polymersomes

Polymersomes Can Help
Enhanced Chemical and Mechanical Stability
Unlimited Modification Chemistries

PEO

PBD P2904 - RITC
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Dynamic Polymer Vesicle Membranes

Angew. Chem. – Int. Ed. 2014, 53, 3372-3376; J. Poly. Sci. B, 
2014, 53, 297–303 

Mechanically-Activated Fusion

Modulating Permeability in Hybrid 
Vesicles

Colloids and Surfaces B, 2017, 159, 268–276

Dynamic Assembly of Polymer 
Nanotubes – Fluidity

Nanoscale, 2015, 7, 10998–11004

Kinesin / MT

 Pt
 

+ soap

+ Pt

+ soap
vesicles 
persist!

Catalytically-Active Cross-Links
(Reactivity and Stability)

Chem. Mater, 2015, 27, 4808–4813
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Gramicidin A (Palivan et al, 2015)

Bacteriorhodopsin
F1-ATP-ase (Montemagno et al, 2005)Aquaporin (Meier et 

al, 2004)
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Vesicle Permeability Model

∆cw

d

Solubility-Diffusion 
Mechanism

P = permeability coeff.
D = diffusion coeff.
K = partition coeff.
d = bilayer thickness
J = solute flux
∆cw = solute gradient
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Multilamellar Vesicles

Unilamellar Vesicles

extrusion
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Ion Flux Monitored by Fluorescence

Inside:
Pyranine
(0.5 mM)

amphiphile
film

rehydrated
vesicles

extruded
vesicles

dialyzed
vesicles

Vesicle Preparation

Outside: no pyranine

~200 nm vesicles
(“unilamellar”)

pH = 7
(PIPES/Sucrose)

KOH(aq)

time

pHt1

I402 nm

I456 nm

I456 nm

I402 nm

pHt2
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Measuring Ion Flux in Vesicles

OH

OH

K+ K+

neutral negative

OH

K+

fast

slow
neutral

OH

1. Permeability of OH- is FAST  buildup of negative charge
2. Negative charge compensated by flux of the K+ counterion…
3. …but permeability of K+ is SLOW.
4. K+ flux is the rate limiting step for net flux of OH-

pH can be used to determine flux of K+

OH

fast
K+ K+

K+ OH

slow
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Calculating Lipid Permeability

DOPC

OH- flux 
across a 

membrane

Effective permeability 
coeff.

Effective diffusion coeff.

P =
5.1(7)  1010

cm/s

OH pH = 7 pH = 7.9

P

D*

via
Henderson-

Hasselbalch

I II III
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Vesicle Permeability Summary

Sample

Vesicle 
diameter 

(nm)a

Membrane
Thickness

(nm)

POH-
 (10

10

cm/s)

D*

(1016

cm2/s)
DOPS 170(30) 2.6b 5.4(8) 1.4(2)

DOPC 190(30) 2.7c 5.1(7) 1.4(2)

EO20BD33 200(40) 6.8d 1.5(3) 1.0(2)

EO89BD120 260(70) 22d 0.4(1) 0.9(2)

a DLS. b,c Literature values. d Estimated from published models.

vs.

Polymer
Thickness

(nm)
PA-

 (cm/s)
D*

(cm2/s)

PEO-PBOa 2.4 10-7 10-14

PEO-PBD 6.8 10-9 10-16

PS-PAAb  33 10-13 10-18

a Battaglia et al. 2006; b Eisenberg et al. 2006

Permeability ↔ Thickness

Permeability
↕ 

Chemical
Composition



10

Large Persistent ∆pH in Polymersomes
EO20BD33
1 M KOH

+3 eq H+

H3PO4

After
3 weeks

+0.1%
TX100

pHinternal 14 >10 >10 4.2

pHexternal 14 3.8 3.8 4.2

• OH-/H+ gradients up to 6 orders…
• …that Persist for several weeks

How can we exploit this effect?
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Uptake of a Fluorescent Reporter

neutral / permeable charged / impermeable

HA

X

HA + OH-

A-

Neutral species 
readily penetrates 

membrane

Charged species 
do not

Provides basis for enrichment of a fluorescent reporter.
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~4

pKa
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FITC Uptake Results

FITC

X

FITC + 2OH-

FITC2-

Neutral species 
readily penetrates 

membrane

Charged species 
do not

Low pH (4)

High pH (>10)

∆pH in polymersomes to 
sequester acidic compounds

FITC
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A Nanoreactor for Ester Hydrolysis

pH=3

pH=7

vesicle
(pHexternal=3)

Polymersomes act as an artificial 
lysosome, collecting and digesting 
hydrolysable materials
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Dynamic Polymer Vesicle Membranes

Angew. Chem. – Int. Ed. 2014, 53, 3372-3376; J. Poly. Sci. B, 
2014, 53, 297–303 

Mechanically-Activated Fusion

Modulating Permeability in Hybrid 
Vesicles

Colloids and Surfaces B, 2017, 159, 268–276

Dynamic Assembly of Polymer 
Nanotubes – Fluidity

Nanoscale, 2015, 7, 10998–11004

Kinesin / MT

 Pt
 

+ soap

+ Pt

+ soap
vesicles 
persist!

Catalytically-Active Cross-Links
(Reactivity and Stability)

Chem. Mater, 2015, 27, 4808–4813

w/Hae Ra Shin & Patrick McAninch
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Preparing and Characterizing *Hybrid* 
Vesicles

Good vesicles w/worm-like micelles
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100% EO22Bd37

100% DOPC

25% EO22Bd37

Hybrid Vesicle Permeability

J = PΔC  P ~10-9 cm/s
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Blank DOPC only

10% EO22Bd47 25% EO22Bd47

100% EO22Bd4750% EO22Bd47

Control (+KOH)
Nigericin
Valinomycin

OH

fast

K+

K+

sl
ow

fast

Modulating Permeability with Ionophores
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Modulating Permeability with Ion Channels

25% EO22Bd47

OH

fast

fast K+

K+

sl
ow

Control (+KOH)
Gramicidin A (incubated <5 min)
Gramicidin A (rehydrated >5 days)

10% EO22Bd47

50% EO22Bd47 100% EO22Bd47
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Summary and Conclusions

Monitoring and Modulating Ion Flux in Hybrid Bilayers

Hybrids MORE permeable than 100% lipid or 100% polymer vesicles

Modulated ion flux in hybrid vesicles via reconstituted membrane 
proteins (Nigericin / Valinomycin / Gramicidin)

The permeability of hybrid bilayers is critical property for drug delivery, 
nanoreactor, and sensing applications. 

Catalytically Active Cross-Links

Used organometallic interactions to modulate the properties of “normal” 
polymersomes:

1. Enhanced Stability:
• Pt--‖  Organometallic cross-links
• Resistant to destabilization 
• Crosslinking can be selectively reversed w/ phosphine ligands

2. Catalytic Activity:
• Pt centers still active
• Enable hydrosilation reactions

To produce soft self-assembling material that is both robust and dynamic.
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